On Finding a Sparse Subgraph in Subclasses of Perfect Graphs

Rémi Watrigant, Marin Bougeret and Rodolphe Giroudeau

LIRMM, Montpellier, France

1ères journées du GT CoA - Complexité et Algorithmes

Contents

2 PTAS in Proper Interval Graphs

3 Open Problems and Future Work

Input: a graph G = (V, E), $k \le |V|$. **Output:** a set $S \subseteq V$ of size exactly k. **Goal:** minimize |E(S)| (the number of edges induced by S)

Input: a graph G = (V, E), $k \le |V|$. **Output:** a set $S \subseteq V$ of size exactly k. **Goal:** minimize |E(S)| (the number of edges induced by S)

• generalization of INDEPENDENT SET

 \Rightarrow k-SS *NP*-hard in general graphs (+ no FPT, approximation algorithm)

Input: a graph G = (V, E), $k \le |V|$. **Output:** a set $S \subseteq V$ of size exactly k. **Goal:** minimize |E(S)| (the number of edges induced by S)

• generalization of INDEPENDENT SET

 \Rightarrow k-SS *NP*-hard in general graphs (+ no FPT, approximation algorithm) But INDEPENDENT SET is polynomial in perfect graphs! what about k-SS ?

Input: a graph G = (V, E), $k \le |V|$. **Output:** a set $S \subseteq V$ of size exactly k. **Goal:** minimize |E(S)| (the number of edges induced by S)

generalization of INDEPENDENT SET
 ⇒ k-SS NP-hard in general graphs (+ no FPT, approximation algorithm)
 But INDEPENDENT SET is polynomial in perfect graphs!
 what about k-SS ?

• maximization version: *k*-Densest Subgraph:

Input: a graph G = (V, E), $k \le |V|$. **Output:** a set $S \subseteq V$ of size exactly k. **Goal:** minimize |E(S)| (the number of edges induced by S)

• generalization of INDEPENDENT SET

 \Rightarrow k-SS *NP*-hard in general graphs (+ no FPT, approximation algorithm) But INDEPENDENT SET is polynomial in perfect graphs! what about k-SS ?

- maximization version: *k*-Densest Subgraph:
 - ► NP-hard in chordal graphs [Corneil and Perl, 1984]
 - unknown in (proper) interval graphs (longstanding open problem) [CP84]
 - PTAS in interval graphs [Nonner, 2011]
 - constant approximation algorithm in chordal graphs [Liazi et al., 2008]

Input: a graph G = (V, E), $k \le |V|$. **Output:** a set $S \subseteq V$ of size exactly k. **Goal:** minimize |E(S)| (the number of edges induced by S)

• generalization of INDEPENDENT SET

 \Rightarrow k-SS *NP*-hard in general graphs (+ no FPT, approximation algorithm) But INDEPENDENT SET is polynomial in perfect graphs! what about k-SS ?

- maximization version: *k*-Densest Subgraph:
 - ▶ NP-hard in chordal graphs [Corneil and Perl, 1984]
 - unknown in (proper) interval graphs (longstanding open problem) [CP84]
 - PTAS in interval graphs [Nonner, 2011]
 - constant approximation algorithm in chordal graphs [Liazi et al., 2008]
- *k*-SS polynomial in:
 - split graphs (obvious)
 - ▶ bounded cliquewidth (⇒ trees, cographs, ...) [Boersma et al., 2012]

Input: a graph G = (V, E), $k \le |V|$. **Output:** a set $S \subseteq V$ of size exactly k. **Goal:** minimize |E(S)| (the number of edges induced by S)

Our results [W., Bougeret, Giroudeau, 2012]:

Input: a graph G = (V, E), $k \le |V|$. **Output:** a set $S \subseteq V$ of size exactly k. **Goal:** minimize |E(S)| (the number of edges induced by S)

Our results [W., Bougeret, Giroudeau, 2012]:

- FPT algorithm in interval graphs (parameterized by the cost of the solution)
- PTAS in proper interval graphs
- NP-hardness in chordal graphs

Input: a graph G = (V, E), $k \le |V|$. **Output:** a set $S \subseteq V$ of size exactly k. **Goal:** minimize |E(S)| (the number of edges induced by S)

Our results [W., Bougeret, Giroudeau, 2012]:

• FPT algorithm in interval graphs (parameterized by the cost of the solution)

 \leftarrow This talk

- PTAS in proper interval graphs
- NP-hardness in chordal graphs

Input: a graph G = (V, E), $k \le |V|$. **Output:** a set $S \subseteq V$ of size exactly k. **Goal:** minimize |E(S)| (the number of edges induced by S)

Our results [W., Bougeret, Giroudeau, 2012]:

• FPT algorithm in interval graphs (parameterized by the cost of the solution)

 \leftarrow This talk

- PTAS in proper interval graphs
- NP-hardness in chordal graphs

Polynomial-Time Approximation Scheme (PTAS)

A *PTAS* for a minimization problem is an algorithm A_{ϵ} such that for any fixed $\epsilon > 0$, A_{ϵ} runs in polynomial time and outputs a solution of cost $< (1 + \epsilon)OPT$

Input: a graph G = (V, E), $k \le |V|$. **Output:** a set $S \subseteq V$ of size exactly k. **Goal:** minimize |E(S)| (the number of edges induced by S)

Our results [W., Bougeret, Giroudeau, 2012]:

• FPT algorithm in interval graphs (parameterized by the cost of the solution)

 \leftarrow This talk

- PTAS in proper interval graphs
- NP-hardness in chordal graphs

Interval graph = intersection graph of intervals in the real line.

Input: a graph $G = (V, E), k \leq |V|$. **Output:** a set $S \subseteq V$ of size exactly k. **Goal:** minimize |E(S)| (the number of edges induced by S)

Our results [W., Bougeret, Giroudeau, 2012]:

- FPT algorithm in interval graphs (parameterized by the cost of the solution) \leftarrow This talk
- PTAS in proper interval graphs
- NP-hardness in chordal graphs

Interval graph = intersection graph of intervals in the real line.

Input: a graph G = (V, E), $k \le |V|$. **Output:** a set $S \subseteq V$ of size exactly k. **Goal:** minimize |E(S)| (the number of edges induced by S)

Our results [W., Bougeret, Giroudeau, 2012]:

• FPT algorithm in interval graphs (parameterized by the cost of the solution)

 \leftarrow This talk

- PTAS in proper interval graphs
- NP-hardness in chordal graphs

Interval graph = intersection graph of intervals in the real line.

proper interval graph = no interval contains properly another one = unit interval graphs

Contents

3 Open Problems and Future Work

Idea of the algorithm:

• sort intervals according to their right (or left) endpoints

- sort intervals according to their right (or left) endpoints
- greedy decomposition of the graph into a path of separators/cliques

- sort intervals according to their right (or left) endpoints
- greedy decomposition of the graph into a path of separators/cliques
- re-structuration of an optimal solution into a near optimal solution such that all near optimal solutions can be enumerated in polynomial time

- sort intervals according to their right (or left) endpoints
- greedy decomposition of the graph into a path of separators/cliques
- re-structuration of an optimal solution into a near optimal solution such that all near optimal solutions can be enumerated in polynomial time
- dynamic programming processes the graph through the decomposition, enumerating all possible solutions.

 I_{m_1}

Restructuration of a solution : **compaction** $S \mapsto comp(S)$

Restructuration of a solution : **compaction** $S \mapsto comp(S)$

Remark

If for each block, the compaction produces a ρ -approximated solution, then it is a ρ -approximated solution for the **whole** graph.

Watrigant, Bougeret, Giroudeau On Finding a Sparse Subgraph in Subclasses of Perfect Graphs

Re-structuration of optimal solutions

Let us built a compaction that yields a $(1 + \frac{4}{P})$ -approximation for any fixed P.

Re-structuration of optimal solutions

Let us built a compaction that yields a $(1 + \frac{4}{P})$ -approximation for any fixed P. Let $X \subseteq B_i$ be a solution. We note $X = X_L \cup X_R$. Set sizes are in lowercase.

Re-structuration of optimal solutions

Let us built a compaction that yields a $(1 + \frac{4}{P})$ -approximation for any fixed P. Let $X \subseteq B_i$ be a solution. We note $X = X_L \cup X_R$. Set sizes are in lowercase. • we divide X_L into P consecutive subsets of same size $q_L \to X_1^L, ..., X_P^L$ • we divide X_R into P consecutive subsets of same size $q_R \to X_1^R, ..., X_P^R$

Then define the compaction: for any $t \in \{1, ..., P\}$

Re-structuration of optimal solutions

Let us built a compaction that yields a $(1 + \frac{4}{P})$ -approximation for any fixed P. Let $X \subseteq B_i$ be a solution. We note $X = X_L \cup X_R$. Set sizes are in lowercase.

• we divide X_L into P consecutive subsets of same size $q_L \to X_1^L, ..., X_P^L$

• we divide X_R into P consecutive subsets of same size $q_R \to \tilde{X}_1^R, ..., \tilde{X}_P^R$ Then define the compaction: for any $t \in \{1, ..., P\}$

- Y_t^L are the q_L rightmost intervals of the t^{th} left block.
- Y_t^R are the q_R leftmost intervals of the t^{th} right block.

Re-structuration of optimal solutions

What do we need to construct such a solution ?

Re-structuration of optimal solutions

What do we need to construct such a solution ?

- the leftmost interval of the t^{th} left block for $t \in \{1, ..., P\}$
- the rightmost interval of the t^{th} right block for $t \in \{1, ..., P\}$
- x_R, x_L (plus remainders of divisions by P...)

 $\Rightarrow 2P + O(1)$ variables ranging in $\{0, ..., n\}$

Sketch of proof of the $(1 + \frac{4}{P})$ approximation ratio:

Sketch of proof of the $(1 + \frac{4}{P})$ approximation ratio: • $SOL = \binom{x_L}{2} + \binom{x_R}{2} + \sum_{t=1}^{a} \sum_{u=1}^{a} E(Y_t^L, Y_u^R)$

Sketch of proof of the $(1 + \frac{4}{P})$ approximation ratio: • $SOL = \binom{x_L}{2} + \binom{x_R}{2} + \sum_{t=1}^{a} \sum_{u=1}^{a} E(Y_t^L, Y_u^R)$ • $OPT = \binom{x_L}{2} + \binom{x_R}{2} + \sum_{t=1}^{a} \sum_{u=1}^{a} E(X_t^L, X_u^R)$

Sketch of proof of the $(1 + \frac{4}{P})$ approximation ratio:

•
$$SOL = \binom{x_L}{2} + \binom{x_R}{2} + \sum_{t=1}^{a} \sum_{u=1}^{u} E(Y_t^L, Y_u^U)$$

• $OPT = \binom{x_L}{2} + \binom{x_R}{2} + \sum_{t=1}^{a} \sum_{u=1}^{a} E(X_t^L, X_u^R)$

But:

Sketch of proof of the $(1 + \frac{4}{P})$ approximation ratio:

• $SOL = \begin{pmatrix} x_L \\ 2 \end{pmatrix} + \begin{pmatrix} x_R \\ 2 \end{pmatrix} + \sum_{t=1}^{r_a} \sum_{u=1}^{a} E(Y_t^L, Y_u^R)$ • $OPT = \begin{pmatrix} x_L \\ 2 \end{pmatrix} + \begin{pmatrix} x_R \\ 2 \end{pmatrix} + \sum_{t=1}^{a} \sum_{u=1}^{a} E(X_t^L, X_u^R)$

But:

• if some intervals of Y_t^L overlap some intervals of Y_u^R

Then:

• all intervals of X_{t+1}^{L} overlap all intervals of $\bigcup_{i=1}^{u-1} X_i^{R}$

Sketch of proof of the $(1 + \frac{4}{P})$ approximation ratio:

• $SOL = \begin{pmatrix} x_L \\ 2 \end{pmatrix} + \begin{pmatrix} x_R \\ 2 \end{pmatrix} + \sum_{t=1}^{r_a} \sum_{u=1}^{a} E(Y_t^L, Y_u^R)$ • $OPT = \begin{pmatrix} x_L \\ 2 \end{pmatrix} + \begin{pmatrix} x_R \\ 2 \end{pmatrix} + \sum_{t=1}^{a} \sum_{u=1}^{a} E(X_t^L, X_u^R)$

But:

• if some intervals of Y_t^L overlap some intervals of Y_u^R

Then:

• all intervals of X_{t+1}^{L} overlap all intervals of $\bigcup_{i=1}^{u-1} X_i^{R}$

Finally, we can prove that $\frac{SOL}{OPT} \leq 1 + \frac{4}{P}$

Conclusion:

Theorem

For any *P*, the previous algorithm outputs a $(1 + \frac{4}{P})$ -approximation for the *k*-Sparsest Subgraph in Proper Interval graphs in $O(n^{O(P)})$

Contents

2 PTAS in Proper Interval Graphs

Future work/open questions :

k-sparsest subgraph:

- extend FPT and/or approximation results to Chordal graphs
- ▶ NP-h/Poly on Interval, Proper interval ?

• k-densest subgraph:

- (NP-h/Poly on Interval, Proper interval)
- ▶ FPT/W[1]-hardness on Chordal graphs ?

Merci de votre attention !