
On Finding a Sparse Subgraph in Subclasses of Perfect

Graphs

Rémi Watrigant, Marin Bougeret and Rodolphe Giroudeau

LIRMM, Montpellier, France

1ères journées du GT CoA - Complexité et Algorithmes

Watrigant, Bougeret, Giroudeau On Finding a Sparse Subgraph in Subclasses of Perfect Graphs 1/19



Contents

1 Introduction

2 PTAS in Proper Interval Graphs

3 Open Problems and Future Work

Watrigant, Bougeret, Giroudeau On Finding a Sparse Subgraph in Subclasses of Perfect Graphs 2/19



k-Sparsest Subgraph Problem (k-SS)

Input: a graph G = (V ,E ), k ≤ |V |.
Output: a set S ⊆ V of size exactly k .
Goal: minimize |E (S)| (the number of edges induced by S)

Watrigant, Bougeret, Giroudeau On Finding a Sparse Subgraph in Subclasses of Perfect Graphs 3/19



k-Sparsest Subgraph Problem (k-SS)

Input: a graph G = (V ,E ), k ≤ |V |.
Output: a set S ⊆ V of size exactly k .
Goal: minimize |E (S)| (the number of edges induced by S)

generalization of independent set

⇒ k-SS NP-hard in general graphs (+ no FPT, approximation algorithm)

Watrigant, Bougeret, Giroudeau On Finding a Sparse Subgraph in Subclasses of Perfect Graphs 3/19



k-Sparsest Subgraph Problem (k-SS)

Input: a graph G = (V ,E ), k ≤ |V |.
Output: a set S ⊆ V of size exactly k .
Goal: minimize |E (S)| (the number of edges induced by S)

generalization of independent set

⇒ k-SS NP-hard in general graphs (+ no FPT, approximation algorithm)
But independent set is polynomial in perfect graphs!

what about k-SS ?

Watrigant, Bougeret, Giroudeau On Finding a Sparse Subgraph in Subclasses of Perfect Graphs 3/19



k-Sparsest Subgraph Problem (k-SS)

Input: a graph G = (V ,E ), k ≤ |V |.
Output: a set S ⊆ V of size exactly k .
Goal: minimize |E (S)| (the number of edges induced by S)

generalization of independent set

⇒ k-SS NP-hard in general graphs (+ no FPT, approximation algorithm)
But independent set is polynomial in perfect graphs!

what about k-SS ?

maximization version: k-Densest Subgraph:

Watrigant, Bougeret, Giroudeau On Finding a Sparse Subgraph in Subclasses of Perfect Graphs 3/19



k-Sparsest Subgraph Problem (k-SS)

Input: a graph G = (V ,E ), k ≤ |V |.
Output: a set S ⊆ V of size exactly k .
Goal: minimize |E (S)| (the number of edges induced by S)

generalization of independent set

⇒ k-SS NP-hard in general graphs (+ no FPT, approximation algorithm)
But independent set is polynomial in perfect graphs!

what about k-SS ?

maximization version: k-Densest Subgraph:
◮ NP-hard in chordal graphs [Corneil and Perl, 1984]
◮ unknown in (proper) interval graphs (longstanding open problem) [CP84]
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But independent set is polynomial in perfect graphs!

what about k-SS ?

maximization version: k-Densest Subgraph:
◮ NP-hard in chordal graphs [Corneil and Perl, 1984]
◮ unknown in (proper) interval graphs (longstanding open problem) [CP84]
◮ PTAS in interval graphs [Nonner, 2011]
◮ constant approximation algorithm in chordal graphs [Liazi et al., 2008]

k-SS polynomial in:
◮ split graphs (obvious)
◮ bounded cliquewidth (⇒ trees, cographs, ...) [Boersma et al., 2012]

Recall that proper interval ⊂ interval ⊂ chordal ⊂ perfect

split ⊂ chordal ⊂ perfect

Watrigant, Bougeret, Giroudeau On Finding a Sparse Subgraph in Subclasses of Perfect Graphs 3/19



k-Sparsest Subgraph Problem (k-SS)

Input: a graph G = (V ,E ), k ≤ |V |.
Output: a set S ⊆ V of size exactly k .
Goal: minimize |E (S)| (the number of edges induced by S)

Our results [W., Bougeret, Giroudeau, 2012]:

Watrigant, Bougeret, Giroudeau On Finding a Sparse Subgraph in Subclasses of Perfect Graphs 4/19



k-Sparsest Subgraph Problem (k-SS)

Input: a graph G = (V ,E ), k ≤ |V |.
Output: a set S ⊆ V of size exactly k .
Goal: minimize |E (S)| (the number of edges induced by S)

Our results [W., Bougeret, Giroudeau, 2012]:

FPT algorithm in interval graphs (parameterized by the cost of the solution)
PTAS in proper interval graphs
NP-hardness in chordal graphs

Watrigant, Bougeret, Giroudeau On Finding a Sparse Subgraph in Subclasses of Perfect Graphs 4/19



k-Sparsest Subgraph Problem (k-SS)

Input: a graph G = (V ,E ), k ≤ |V |.
Output: a set S ⊆ V of size exactly k .
Goal: minimize |E (S)| (the number of edges induced by S)

Our results [W., Bougeret, Giroudeau, 2012]:

FPT algorithm in interval graphs (parameterized by the cost of the solution)
PTAS in proper interval graphs ← This talk
NP-hardness in chordal graphs

Watrigant, Bougeret, Giroudeau On Finding a Sparse Subgraph in Subclasses of Perfect Graphs 5/19



k-Sparsest Subgraph Problem (k-SS)

Input: a graph G = (V ,E ), k ≤ |V |.
Output: a set S ⊆ V of size exactly k .
Goal: minimize |E (S)| (the number of edges induced by S)

Our results [W., Bougeret, Giroudeau, 2012]:

FPT algorithm in interval graphs (parameterized by the cost of the solution)
PTAS in proper interval graphs ← This talk
NP-hardness in chordal graphs

Polynomial-Time Approximation Scheme (PTAS)

A PTAS for a minimization problem is an algorithm Aǫ such that for any fixed
ǫ > 0, Aǫ runs in polynomial time and outputs a solution of cost < (1 + ǫ)OPT
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proper interval graph = no interval contains properly another one = unit interval
graphs
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PTAS in Proper Interval Graphs

Idea of the algorithm:

sort intervals according to their right (or left) endpoints

greedy decomposition of the graph into a path of separators/cliques

re-structuration of an optimal solution into a near optimal solution such that
all near optimal solutions can be enumerated in polynomial time

dynamic programming processes the graph through the decomposition,
enumerating all possible solutions.
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PTAS in Proper Interval Graphs
Restructuration of a solution : compaction S 7−→ comp(S)
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Restructuration of a solution : compaction S 7−→ comp(S)
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Remark

If for each block, the compaction produces a ρ-approximated solution, then it is a
ρ-approximated solution for the whole graph.
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P
)-approximation for any fixed P .

Watrigant, Bougeret, Giroudeau On Finding a Sparse Subgraph in Subclasses of Perfect Graphs 11/19



PTAS in Proper Interval Graphs
Re-structuration of optimal solutions

Let us built a compaction that yields a (1 + 4
P
)-approximation for any fixed P .

Let X⊆ Bi be a solution. We note X =XL ∪XR . Set sizes are in lowercase.

Watrigant, Bougeret, Giroudeau On Finding a Sparse Subgraph in Subclasses of Perfect Graphs 11/19



PTAS in Proper Interval Graphs
Re-structuration of optimal solutions

Let us built a compaction that yields a (1 + 4
P
)-approximation for any fixed P .

Let X⊆ Bi be a solution. We note X =XL ∪XR . Set sizes are in lowercase.

we divide XL into P consecutive subsets of same size qL → X L
1 , ...,X

L
P

we divide XR into P consecutive subsets of same size qR → XR
1 , ...,XR

P

Then define the compaction: for any t ∈ {1, ...,P}
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Y L
t are the qL rightmost intervals of the tth left block.
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PTAS in Proper Interval Graphs
Re-structuration of optimal solutions

What do we need to construct such a solution ?

the leftmost interval of the tth left block for t ∈ {1, ...,P}
the rightmost interval of the tth right block for t ∈ {1, ...,P}
xR , xL (plus remainders of divisions by P ...)

⇒ 2P + O(1) variables ranging in {0, ..., n}
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Sketch of proof of the (1 + 4
P
) approximation ratio:
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But:

if some intervals of Y L
t overlap some intervals of Y R

u

Then:

all intervals of X L
t+1 overlap all intervals of

⋃u−1

i=1 XR
i

Finally, we can prove that SOL

OPT
≤ 1 + 4

P
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PTAS in Proper Interval Graphs
Conclusion:

Theorem

For any P , the previous algorithm outputs a (1 + 4
P
)-approximation for the

k-Sparsest Subgraph in Proper Interval graphs in O(nO(P))
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Future work/open questions :

k-sparsest subgraph:
◮ extend FPT and/or approximation

results to Chordal graphs
◮ NP-h/Poly on Interval, Proper interval ?

k-densest subgraph:
◮ (NP-h/Poly on Interval, Proper interval)
◮ FPT/W[1]-hardness on Chordal graphs ?
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Merci de votre attention !
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