Multidimensional Binary Vector Assignment problem: standard, structural and above guarantee parameterizations

Rémi Watrigant¹

joint work with Marin Bougeret², Guillerme Duvillié², Rodolphe Giroudeau²

¹ Hong Kong Polytechnic University, Hong Kong ² LIRMM, Montpellier, France

FCT 2015, Gdansk, Poland. August 17-19 2015

Contents

Applications, definitions and related works

First observations

3 Above guarantee parameterization

4 Lower bounds

Yield maximization in wafer-to-wafer 3D chip integration.

Multidimensional Binary Vector Assignment

• a wafer = a binary vector of good/bad dies (1/0)

Yield maximization in wafer-to-wafer 3D chip integration.

- a wafer = a binary vector of good/bad dies (1/0)
- a stack = superposition of several wafers

Yield maximization in wafer-to-wafer 3D chip integration.

- a wafer = a binary vector of good/bad dies (1/0)
- a stack = superposition of several wafers
- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)

Yield maximization in wafer-to-wafer 3D chip integration.

- a wafer = a binary vector of good/bad dies (1/0)
- a stack = superposition of several wafers
- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: pick one wafer from each set to form *n* stacks

Yield maximization in wafer-to-wafer 3D chip integration.

- a wafer = a binary vector of good/bad dies (1/0)
- a stack = superposition of several wafers
- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: pick one wafer from each set to form *n* stacks
- <u>Goal</u>: obtain at most *k* bad dies in total

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: pick one wafer from each set to form *n* stacks
- <u>Goal</u>: obtain at most *k* bad dies in total

Previous results:

• NP-hard even when m = 3 (reduction from 3D matching)

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: pick one wafer from each set to form *n* stacks
- <u>Goal</u>: obtain at most *k* bad dies in total

- NP-hard even when m = 3 (reduction from 3D matching)
- Approximating the maximization version (at least *k* good dies):

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: pick one wafer from each set to form *n* stacks
- Goal: obtain at most k bad dies in total

- NP-hard even when m = 3 (reduction from 3D matching)
- Approximating the maximization version (at least *k* good dies):
 - f(m)-approximation

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: pick one wafer from each set to form *n* stacks
- Goal: obtain at most k bad dies in total

- NP-hard even when m = 3 (reduction from 3D matching)
- Approximating the maximization version (at least *k* good dies):
 - f(m)-approximation
 - $O(p^{1-\epsilon})$ and $O(m^{1-\epsilon})$ inapproximability unless P = NP

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: pick one wafer from each set to form *n* stacks
- Goal: obtain at most k bad dies in total

- NP-hard even when m = 3 (reduction from 3D matching)
- Approximating the maximization version (at least *k* good dies):
 - f(m)-approximation
 - $O(p^{1-\epsilon})$ and $O(m^{1-\epsilon})$ inapproximability unless P = NP
 - $\frac{p}{c}$ -approximation for any $c \in \mathbb{N}$

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: pick one wafer from each set to form *n* stacks
- Goal: obtain at most k bad dies in total

- NP-hard even when m = 3 (reduction from 3D matching)
- Approximating the maximization version (at least *k* good dies):
 - f(m)-approximation
 - $O(p^{1-\epsilon})$ and $O(m^{1-\epsilon})$ inapproximability unless P = NP
 - $\frac{p}{c}$ -approximation for any $c \in \mathbb{N}$
 - FPT parameterized by p

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: pick one wafer from each set to form *n* stacks
- Goal: obtain at most k bad dies in total

- NP-hard even when m = 3 (reduction from 3D matching)
- Approximating the maximization version (at least k good dies):
 - f(m)-approximation
 - $O(p^{1-\epsilon})$ and $O(m^{1-\epsilon})$ inapproximability unless P = NP
 - $\frac{p}{c}$ -approximation for any $c \in \mathbb{N}$
 - FPT parameterized by p
 - ▶ W[1]-hard for standard parameter (maximization version)

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: pick one wafer from each set to form *n* stacks
- Goal: obtain at most k bad dies in total

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: pick one wafer from each set to form *n* stacks
- Goal: obtain at most k bad dies in total

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: pick one wafer from each set to form *n* stacks
- Goal: obtain at most *k* bad dies in total

For an instance \mathcal{I} of the problem, choose a parameter $\kappa(\mathcal{I})$

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: pick one wafer from each set to form *n* stacks
- Goal: obtain at most k bad dies in total

For an instance \mathcal{I} of the problem, choose a parameter $\kappa(\mathcal{I}) = m$

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: pick one wafer from each set to form *n* stacks
- Goal: obtain at most k bad dies in total

For an instance \mathcal{I} of the problem, choose a parameter $\kappa(\mathcal{I}) = n$

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: pick one wafer from each set to form *n* stacks
- Goal: obtain at most k bad dies in total

For an instance \mathcal{I} of the problem, choose a parameter $\kappa(\mathcal{I}) = p$

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: pick one wafer from each set to form *n* stacks
- Goal: obtain at most k bad dies in total

For an instance \mathcal{I} of the problem, choose a parameter $\kappa(\mathcal{I}) = k$

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: pick one wafer from each set to form *n* stacks
- Goal: obtain at most k bad dies in total

For an instance \mathcal{I} of the problem, choose a parameter $\kappa(\mathcal{I})=?$

Fixed-Parameter Tractability

A problem is **FPT** if there is an algorithm solving any instance \mathcal{I} in time $O(f(\kappa(\mathcal{I})) poly(|\mathcal{I}|))$

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: pick one wafer from each set to form *n* stacks
- Goal: obtain at most k bad dies in total

For an instance \mathcal{I} of the problem, choose a parameter $\kappa(\mathcal{I})=?$

Fixed-Parameter Tractability

A problem is **FPT** if there is an algorithm solving any instance \mathcal{I} in time $O(f(\kappa(\mathcal{I})) poly(|\mathcal{I}|))$

Corresponding lower bounds:

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: pick one wafer from each set to form *n* stacks
- Goal: obtain at most k bad dies in total

For an instance \mathcal{I} of the problem, choose a parameter $\kappa(\mathcal{I})=?$

Fixed-Parameter Tractability

A problem is **FPT** if there is an algorithm solving any instance \mathcal{I} in time $O(f(\kappa(\mathcal{I})) poly(|\mathcal{I}|))$

Corresponding lower bounds:

• W[1], W[2]-hardness: we suppose $FPT \neq W[1]$, W[2]

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: pick one wafer from each set to form *n* stacks
- Goal: obtain at most k bad dies in total

For an instance \mathcal{I} of the problem, choose a parameter $\kappa(\mathcal{I})=?$

Fixed-Parameter Tractability

A problem is **FPT** if there is an algorithm solving any instance \mathcal{I} in time $O(f(\kappa(\mathcal{I})) poly(|\mathcal{I}|))$

Corresponding lower bounds:

- W[1], W[2]-hardness: we suppose $FPT \neq W[1]$, W[2]
- Exponential Time Hypothesis: we suppose that 3-SAT cannot be solved in time O^{*}(2^{o(n)}) (n = number of variables)

MULTIDIMENSIONAL BINARY VECTOR ASSIGNMENT

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: n stacks (of m wafers each)
 Goal: obtain at most k bad dies in total

MULTIDIMENSIONAL BINARY VECTOR ASSIGNMENT

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: n stacks (of m wafers each)
 Goal: obtain at most k bad dies in total

MULTIDIMENSIONAL BINARY VECTOR ASSIGNMENT

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: n stacks (of m wafers each)
 Goal: obtain at most k bad dies in total

MULTIDIMENSIONAL BINARY VECTOR ASSIGNMENT

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: n stacks (of m wafers each)
 Goal: obtain at most k bad dies in total

MULTIDIMENSIONAL BINARY VECTOR ASSIGNMENT

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: n stacks (of m wafers each)
 Goal: obtain at most k bad dies in total

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
 Output: *n* stacks (of *m* wafers each)
 Goal: obtain at most *k* bad dies in total

is k a good parameter ? Let us show that we can suppose $n \leq k$

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- $\overline{\text{Goal}}$: obtain at most k bad dies in total

is k a good parameter ? Let us show that we can suppose $n \leq k$ Suppose n > k

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- $\overline{\text{Goal}}$: obtain at most k bad dies in total

is k a good parameter ? Let us show that we can suppose $n \leq k$ Suppose n > k

• each set must have a full-good wafer (otherwise cost $\geq n > k$)

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- $\overline{\text{Goal}}$: obtain at most k bad dies in total

is k a good parameter ? Let us show that we can suppose $n \leq k$ Suppose n > k

- each set must have a full-good wafer (otherwise cost $\geq n > k$)
- any solution must have a full-good stack (same argument)

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- $\overline{\text{Goal}}$: obtain at most k bad dies in total

is k a good parameter ? Let us show that we can suppose $n \leq k$ Suppose n > k

any solution must have a full-good stack (same argument)
 ⇒ we can arbitrarily form a full-good stack
 remove it, and continue until n ≤ k

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- $\overline{\text{Goal}}$: obtain at most k bad dies in total

is k a good parameter ? Let us show that we can suppose $n \le k$ Let us show that we can suppose $p \le k$ as well

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- $\overline{\text{Goal}}$: obtain at most k bad dies in total

is k a good parameter ? Let us show that we can suppose $n \le k$ Let us show that we can suppose $p \le k$ as well

• if there is a component with good dies everywhere

MULTIDIMENSIONAL BINARY VECTOR ASSIGNMENT

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- Goal: obtain at most k bad dies in total

is k a good parameter ? Let us show that we can suppose $n \leq k$ Let us show that we can suppose p < k as well

- p dimensions
- if there is a component with good dies everywhere
- \Rightarrow any solution will also have this good die

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- $\overline{\text{Goal}}$: obtain at most k bad dies in total

is k a good parameter ? Let us show that we can suppose $n \le k$ Let us show that we can suppose $p \le k$ as well

- p dimensions
- if there is a component with good dies everywhere
- \Rightarrow any solution will also have this good die
- we can remove the component from the instance

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- $\overline{\text{Goal}}$: obtain at most k bad dies in total

is k a good parameter ? Let us show that we can suppose $n \le k$ Let us show that we can suppose $p \le k$ as well

- p dimensions
- if there is a component with good dies everywhere
- \Rightarrow any solution will also have this good die
- we can remove the component from the instance
- \Rightarrow the cost of any solution will be at least p

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- $\overline{\text{Goal}}$: obtain at most k bad dies in total

is k a good parameter ? Let us show that we can suppose $n \le k$ Let us show that we can suppose $p \le k$ as well

Theorem

• From any instance, we can produce in polynomial time an equivalent one of size at most $O(k^2m) \implies$ kernel of size $O(k^2m)$

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- $\overline{\text{Goal}}$: obtain at most k bad dies in total

is k a good parameter ? Let us show that we can suppose $n \le k$ Let us show that we can suppose $p \le k$ as well

Theorem

• From any instance, we can produce in polynomial time an equivalent one of size at most $O(k^2m) \implies \text{kernel of size } O(k^2m)$

• No kernel polynomial in p even for m = 3 (unless $NP \subseteq coNP/poly$)

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- $\overline{\text{Goal}}$: obtain at most k bad dies in total

We just proved that we can suppose $n, p \le k \Rightarrow k$ is a too large parameter <u>Idea:</u> substracting a lower bound to the objective function

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- Goal: obtain at most k bad dies in total

We just proved that we can suppose $n, p \le k \Rightarrow k$ is a too large parameter <u>Idea:</u> substracting a lower bound to the objective function

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- Goal: obtain at most k bad dies in total

We just proved that we can suppose $n, p \le k \Rightarrow k$ is a too large parameter <u>Idea:</u> substracting a lower bound to the objective function

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- Goal: obtain at most k bad dies in total

We just proved that we can suppose $n, p \le k \Rightarrow k$ is a too large parameter <u>Idea:</u> substracting a lower bound to the objective function Let \mathcal{B} be the maximum number of bad dies in a set

 \Rightarrow parameter $\zeta_{\mathcal{B}} = k - \mathcal{B}$

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- Goal: obtain at most k bad dies in total
- Find in polynomial time if there is a costless assignment between two sets

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- Goal: obtain at most k bad dies in total
- Find in polynomial time if there is a costless assignment between two sets

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- Goal: obtain at most k bad dies in total
- Find in polynomial time if there is a costless assignment between two sets

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- Goal: obtain at most k bad dies in total
- Find in polynomial time if there is a costless assignment between two sets

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- Goal: obtain at most k bad dies in total
- Find in polynomial time if there is a costless assignment between two sets

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- Goal: obtain at most k bad dies in total
- Find in polynomial time if there is a costless assignment between two sets
- If no such assignment can be found, branch:

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- Goal: obtain at most k bad dies in total
- Find in polynomial time if there is a costless assignment between two sets
- If no such assignment can be found, branch:
 - guess all couples of wafers which will induce new bad dies

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- Goal: obtain at most k bad dies in total
- Find in polynomial time if there is a costless assignment between two sets
- If no such assignment can be found, branch:
 - guess all couples of wafers which will induce new bad dies

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- Goal: obtain at most k bad dies in total
- Find in polynomial time if there is a costless assignment between two sets
- If no such assignment can be found, branch:
 - guess all couples of wafers which will induce new bad dies
 - find a costless assignment for the others

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- Goal: obtain at most k bad dies in total
- Find in polynomial time if there is a costless assignment between two sets
- If no such assignment can be found, branch:
 - guess all couples of wafers which will induce new bad dies
 - find a costless assignment for the others

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- Goal: obtain at most k bad dies in total
- Find in polynomial time if there is a costless assignment between two sets
- If no such assignment can be found, branch:
 - guess all couples of wafers which will induce new bad dies
 - find a costless assignment for the others
- branching of width n^2 , applied at most $\zeta_{\mathcal{B}}$ times

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- Goal: obtain at most k bad dies in total
- Find in polynomial time if there is a costless assignment between two sets
- If no such assignment can be found, branch:
 - guess all couples of wafers which will induce new bad dies
 - find a costless assignment for the others
- branching of width n^2 , applied at most $\zeta_{\mathcal{B}}$ times

Theorem

There is an exact algorithm solving the problem in $O^*(4^{\zeta_B \log(n)})$ time.

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- Goal: obtain at most k bad dies in total
- Find in polynomial time if there is a costless assignment between two sets
- If no such assignment can be found, branch:
 - guess all couples of wafers which will induce new bad dies
 - find a costless assignment for the others
- branching of width n^2 , applied at most $\zeta_{\mathcal{B}}$ times

Theorem

There is an exact algorithm solving the problem in $O^*(4^{\zeta_{\mathcal{B}} \log(n)})$ time.

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- $\overline{\text{Goal}}$: obtain at most k bad dies in total
- Find in polynomial time if there is a costless assignment between two sets
- If no such assignment can be found, branch:
 - guess all couples of wafers which will induce new bad dies
 - find a costless assignment for the others
- branching of width n^2 , applied at most $\zeta_{\mathcal{B}}$ times

Theorem

There is an exact algorithm solving the problem in $O^*(4^{\zeta_{\mathcal{B}} \log(n)})$ time.

Simple, but somehow tight, because:

• W[2]-hard parameterized by $\zeta_{\mathcal{B}}$ only

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- $\overline{\text{Goal}}$: obtain at most k bad dies in total
- Find in polynomial time if there is a costless assignment between two sets
- If no such assignment can be found, branch:
 - guess all couples of wafers which will induce new bad dies
 - find a costless assignment for the others
- branching of width n^2 , applied at most $\zeta_{\mathcal{B}}$ times

Theorem

There is an exact algorithm solving the problem in $O^*(4^{\zeta_{\mathcal{B}} \log(n)})$ time.

- W[2]-hard parameterized by $\zeta_{\mathcal{B}}$ only
- no $2^{o(\zeta_{\mathcal{B}}) \log(n)}$ nor $2^{\zeta_{\mathcal{B}}o(\log(n))}$ under *ETH*

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- $\overline{\text{Goal}}$: obtain at most k bad dies in total
- Find in polynomial time if there is a costless assignment between two sets
- If no such assignment can be found, branch:
 - guess all couples of wafers which will induce new bad dies
 - find a costless assignment for the others
- branching of width n^2 , applied at most $\zeta_{\mathcal{B}}$ times

Theorem

There is an exact algorithm solving the problem in $O^*(4^{\zeta_{\mathcal{B}} \log(n)})$ time.

- W[2]-hard parameterized by $\zeta_{\mathcal{B}}$ only
- no $2^{o(\zeta_{\mathcal{B}})\log(n)}$ nor $2^{\zeta_{\mathcal{B}}o(\log(n))}$ under ETH
- no $2^{o(k)}$ (and thus no $2^{o(\zeta_{\mathcal{B}})}$) for fixed *n* under *ETH*.

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- Goal: obtain at most k bad dies in total
- Find in polynomial time if there is a costless assignment between two sets
- If no such assignment can be found, branch:
 - guess all couples of wafers which will induce new bad dies
 - find a costless assignment for the others
- branching of width n^2 , applied at most $\zeta_{\mathcal{B}}$ times

Theorem

There is an exact algorithm solving the problem in $O^*(4^{\zeta_{\mathcal{B}} \log(n)})$ time.

- W[2]-hard parameterized by $\zeta_{\mathcal{B}}$ only
- no $2^{o(\zeta_{\mathcal{B}})\log(n)}$ nor $2^{\zeta_{\mathcal{B}}o(\log(n))}$ under *ETH*
- no $2^{o(k)}$ (and thus no $2^{o(\zeta_{\mathcal{B}})}$) for fixed *n* under *ETH*.

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- $\overline{\text{Goal}}$: obtain at most k bad dies in total

Reduction from HITTING SET:

ground set =
$$\{1, 2, 3, 4, 5\}$$

instance = $\{1, 3, 4\}$, $\{2, 3, 4\}$, $\{2, 3, 5\}$, $\{1, 4, 5\}$

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- $\overline{\text{Goal}}$: obtain at most k bad dies in total

Reduction from $\operatorname{HITTING}$ Set:

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- $\overline{\text{Goal}}$: obtain at most k bad dies in total

Reduction from $\operatorname{HITTING}$ Set:

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- $\overline{\text{Goal}}$: obtain at most k bad dies in total

Reduction from HITTING SET:

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- $\overline{\text{Goal}}$: obtain at most k bad dies in total

Reduction from HITTING SET:

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- $\overline{\text{Goal}}$: obtain at most k bad dies in total

Reduction from HITTING SET:

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- $\overline{\text{Goal}}$: obtain at most k bad dies in total

Reduction from $\operatorname{HITTING}$ Set:

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- $\overline{\text{Goal}}$: obtain at most k bad dies in total

Reduction from HITTING SET:

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- $\overline{\text{Goal}}$: obtain at most k bad dies in total

Reduction from HITTING SET:

Lower bounds

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: *n* stacks (of *m* wafers each)
- $\overline{\text{Goal}}$: obtain at most k bad dies in total

Reduction from HITTING SET:

ground set = $\{1, 2, 3, 4, 5\}$ instance = $\{1, 3, 4\}, \{2, 3, 4\}, \{2, 3, 5\}, \{1, 4, 5\}$

Lower bounds

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: n stacks (of m wafers each)
 Goal: obtain at most k bad dies in total

Reduction from HITTING SET:

• $\zeta_{\mathcal{B}}$ = size of the hitting set \Rightarrow W[2]-hardness parameterized by $\zeta_{\mathcal{B}}$

I ower bounds

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: n stacks (of m wafers each)
 Goal: obtain at most k bad dies in total

Reduction from HITTING SET:

• $\zeta_{\mathcal{B}}$ = size of the hitting set \Rightarrow W[2]-hardness parameterized by $\zeta_{\mathcal{B}}$

Theorem [Lokshtanov, Marx, Saurabh, '11]

Assuming ETH, no $O^*(2^{o(k \log(k))})$ algorithm for HITTING SET where the goal is to find a hitting set of size k in an instance where the ground set is of size k^2

Lower bounds

Multidimensional Binary Vector Assignment

- Input: *m* sets of *n* wafers (*p*-dimensional binary vectors)
- Output: n stacks (of m wafers each)
 Goal: obtain at most k bad dies in total

Reduction from HITTING SET:

• $\zeta_{\mathcal{B}}$ = size of the hitting set \Rightarrow W[2]-hardness parameterized by $\zeta_{\mathcal{B}}$

Theorem [Lokshtanov, Marx, Saurabh, '11]

Assuming ETH, no $O^*(2^{o(k \log(k))})$ algorithm for HITTING SET where the goal is to find a hitting set of size k in an instance where the ground set is of size k^2

 \Rightarrow no $O^*(2^{o(\zeta_{\mathcal{B}})\log(n)})$ nor $O^*(2^{\zeta_{\mathcal{B}}o(\log(n))})$ for our problem, under *ETH*.

Summary of the results

Positive results	Negative results
<i>O</i> (<i>k</i> ² <i>m</i>) kernel	no $p^{O(1)}$ kernel unless $NP \subseteq coNP/poly$
$O^*(4^{\zeta_{\mathcal{B}} \log(n)})$ algorithm	$W[2]$ -hard for $\zeta_{\mathcal{B}}$ only no $2^{o(\zeta_{\mathcal{B}})\log(n)}$ nor $2^{\zeta_{\mathcal{B}}o(\log(n))}$ under ETH no $2^{o(k)}$ for fixed <i>n</i> under ETH
$O^*(d^{\zeta_ ho})$ algorithm for $n=2$	<i>NP</i> -hard for $\zeta_p=0$ and fixed $n\geq 3$

Summary of the results

Positive results	Negative results
<i>O</i> (<i>k</i> ² <i>m</i>) kernel	no $p^{O(1)}$ kernel unless $NP\subseteq coNP/poly$
$O^*(4^{\zeta_{\mathcal{B}}\log(n)})$ algorithm	$W[2]$ -hard for $\zeta_{\mathcal{B}}$ only no $2^{o(\zeta_{\mathcal{B}})\log(n)}$ nor $2^{\zeta_{\mathcal{B}}o(\log(n))}$ under ETH no $2^{o(k)}$ for fixed <i>n</i> under ETH
$O^*(d^{\zeta_ ho})$ algorithm for $n=2$	NP-hard for $\zeta_p=0$ and fixed $n\geq 3$

Open questions:

- algorithm in $O^*(2^k)$? (*n* part of the input)
- polynomial kernel parameterized by k only ?

Thank you for your attention !