Cardinality constrained subgraph problems

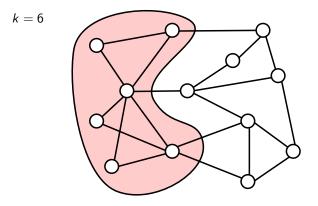
Rémi Watrigant

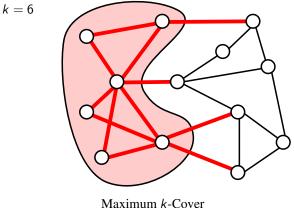
Postdoc @ Hong Kong Polytechnic University

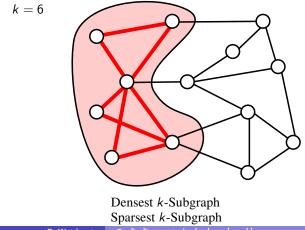
results picked from two works: one with É. Bonnet, M. Bougeret, V. Paschos, F. Sikora one with M. Bougeret, N. Bousquet, R. Giroudeau

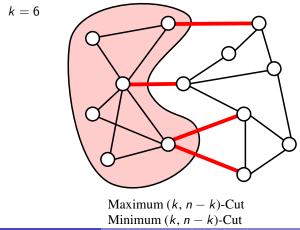
> Workshop on Parameterized Complexity Chofu, Tokyo, Japan Feb 28 - Mar 1, 2015

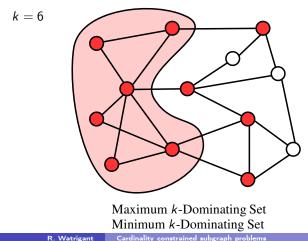


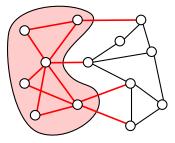


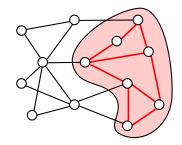










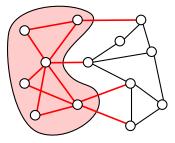


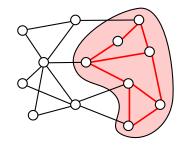
Maximum k-Cover

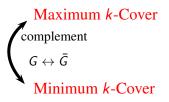
Densest k-Subgraph

Minimum k-Cover

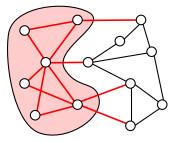
Sparsest k-Subgraph

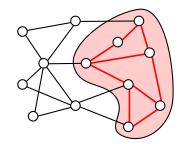


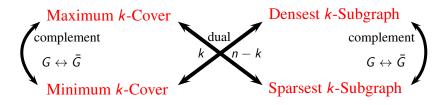




Densest k-Subgraph complement $G \leftrightarrow \overline{G}$ Sparsest k-Subgraph







	Covering		Inducing	
Graphs	Max	Min	Max	Min
	Max- <i>k</i> -Cover	Min- <i>k</i> -Cover	Densest	Sparsest
General				
Bipartite				
Chordal				

	Covering		Inducing	
Graphs	Max	Min	Max	Min
	Max- <i>k</i> -Cover	Min- <i>k</i> -Cover	Densest	Sparsest
General	<i>NP</i> -h (generalization o	f Clique, Independ	ent Set)
Bipartite				
Chordal				

	Covering		Inducing	
Graphs	Max	Min	Max	Min
	Max- <i>k</i> -Cover	Min- <i>k</i> -Cover	Densest	Sparsest
General	<i>NP</i> -h (generalization o	f Clique, Independ	ent Set)
		W[1]-h ((k) [Cai '08]	
Bipartite				
Chordal				

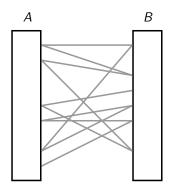
	Covering		Inducing	
Graphs	Max	Min	Max	Min
	Max- <i>k</i> -Cover	Min- <i>k</i> -Cover	Densest	Sparsest
General	<i>NP</i> -h (generalization o	f Clique, Independ	ent Set)
		W[1]-h ((<i>k</i>) [Cai '08]	
	FPT (std. para	m.) [Blaser'03]		
Bipartite				
Chordal				

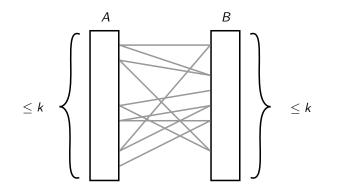
	Covering		Inducing	
Graphs	Max	Min	Max	Min
	Max- <i>k</i> -Cover	Min- <i>k</i> -Cover	Densest	Sparsest
General	<i>NP</i> -h (generalization o	f Clique, Independ	ent Set)
		W[1]-h ((<i>k</i>) [Cai '08]	
	FPT(std. parai	n.) [Blaser'03]	Ì	
Bipartite	<i>NP</i> -h [CK'14]			
Chordal				

	Covering		Inducing	
Graphs	Max	Min	Max	Min
	Max- <i>k</i> -Cover	Min- <i>k</i> -Cover	Densest	Sparsest
General	<i>NP</i> -h (generalization o	f Clique, Independ	ent Set)
		W[1]-h ((k) [Cai '08]	
	FPT (std. parai	m.) [Blaser'03]		
Bipartite	<i>NP</i> -h [CK'14]		<i>NP</i> -h [CP'84]	
			W[1]-h [CP'84]	
Chordal				

	Covering		Inducing	
Graphs	Max	Min	Max	Min
	Max- <i>k</i> -Cover	Min- <i>k</i> -Cover	Densest	Sparsest
General	<i>NP</i> -h (generalization o	f Clique, Independ	ent Set)
		W[1]-h ((<i>k</i>) [Cai '08]	
	FPT (std. parai	m.) [Blaser'03]		
Bipartite	<i>NP</i> -h [CK'14]	NP-h (dual)	<i>NP</i> -h [CP'84]	NP-h (dual)
			W[1]-h [CP'84]	
Chordal				

	Covering		Inducing	
Graphs	Max	Min	Max	Min
	Max- <i>k</i> -Cover	Min- <i>k</i> -Cover	Densest	Sparsest
General	<i>NP</i> -h (generalization o	f Clique, Independ	ent Set)
		W[1]-h ((k) [Cai '08]	
	FPT(std. parar	n.) [Blaser'03]		
Bipartite	<i>NP</i> -h [CK'14]	NP-h (dual)	<i>NP</i> -h [CP'84]	<i>NP</i> -h (dual)
			W[1]-h [CP'84]	<i>FPT</i> (k)[trivial]
Chordal				





	Covering		Inducing	
Graphs	Max	Min	Max	Min
	Max- <i>k</i> -Cover	Min- <i>k</i> -Cover	Densest	Sparsest
General	<i>NP</i> -h (generalization o	f Clique, Independ	ent Set)
		W[1]-h ((<i>k</i>) [Cai '08]	
	FPT (std. para	m.) [Blaser'03]		
Bipartite	<i>NP</i> -h [CK'14]	NP-h (dual)	<i>NP</i> -h [CP'84]	NP-h (dual)
			W[1]-h [CP'84]	FPT(k)[trivial]
Chordal				

	Covering		Inducing	
Graphs	Max	Min	Max	Min
	Max- <i>k</i> -Cover	Min- <i>k</i> -Cover	Densest	Sparsest
General	<i>NP</i> -h (generalization o	f Clique, Independ	ent Set)
		W[1]-h ((<i>k</i>) [Cai '08]	
	FPT (std. para	m.) [Blaser'03]		
Bipartite	<i>NP</i> -h [CK'14]	NP-h (dual)	<i>NP</i> -h [CP'84]	<i>NP</i> -h (dual)
	FPT(k)	<i>W</i> [1]-h	W[1]-h [CP'84]	<i>FPT</i> (k)[trivial]
	[BBPSW'14]	[BBPSW'14]		
Chordal				

	Covering		Inducing	
Graphs	Max	Min	Max	Min
	Max- <i>k</i> -Cover	Min- <i>k</i> -Cover	Densest	Sparsest
General	<i>NP</i> -h (generalization o	f Clique, Independ	ent Set)
		W[1]-h ((<i>k</i>) [Cai '08]	
	FPT(std. parar	m.) [Blaser'03]		
Bipartite	<i>NP</i> -h [CK'14]	NP-h (dual)	<i>NP</i> -h [CP'84]	<i>NP</i> -h (dual)
	FPT(k)	<i>W</i> [1]-h	W[1]-h [CP'84]	<i>FPT</i> (k)[trivial]
	[BBPSW'14]	[BBPSW'14]		
Chordal		NP-h (dual)	<i>NP</i> -h [CP'84]	
			<i>FPT</i> (k) [trivial]	

Densest k-Subgraph in chordal graphs

• if G has a clique of size k (polynomial)

Densest k-Subgraph in chordal graphs

- if G has a clique of size k (polynomial)
 ⇒ optimal solution
- otherwise:

Densest k-Subgraph in chordal graphs

- if G has a clique of size k (polynomial)
 ⇒ optimal solution
- otherwise: treewidth $\leq k$
 - \Rightarrow classical dynamic programming gives $O^*(2^k)$ algorithm

	Covering		Inducing	
Graphs	Max	Min	Max	Min
	Max- <i>k</i> -Cover	Min-k-Cover	Densest	Sparsest
General	NP-h (generalization of Clique, Independent Set)			endent Set)
	W[1]-h (k) [Cai '08]			
	FPT(std. param.) [Blaser'03]			
Bipartite	<i>NP</i> -h [CK'14]	NP-h (dual)	<i>NP</i> -h [CP'84]	<i>NP</i> -h (dual)
	FPT(k)	<i>W</i> [1]-h	W[1]-h [CP'84]	FPT(k)[trivial]
	[BBPSW'14]	[BBPSW'14]		
Chordal		NP-h (dual)	<i>NP</i> -h [CP'84]	
			<i>FPT</i> (k) [trivial]	

	Covering		Inducing	
Graphs	Max	Min	Max	Min
	Max- <i>k</i> -Cover	Min- <i>k</i> -Cover	Densest	Sparsest
General	NP-h (generalization of Clique, Independent Set)			
	W[1]-h (k) [Cai '08]			
	FPT(std. param.) [Blaser'03]			
	1			
Bipartite	NP-h [CK'14]	NP-h (dual)	<i>NP</i> -h [CP'84]	NP-h (dual)
	FPT(k)	<i>W</i> [1]-h	W[1]-h [CP'84]	FPT(k)[trivial]
	[BBPSW'14]	[BBPSW'14]		
Chordal	NP-h (dual)	NP-h (dual)	<i>NP</i> -h [CP'84]	NP-h [BBGW'14]
	1	1	<i>FPT</i> (k) [trivial]	FPT(k) [BBBGW'14]

Lemma 1

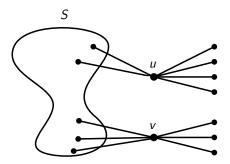
Lemma 1

Let $S \subseteq V$ be of size k - 1, and $u, v \notin S$. If $d(u) \ge d(v) + k$ then $S \cup \{u\}$ is strictly better than $S \cup \{v\}$

Lemma 1

Let $S \subseteq V$ be of size k - 1, and $u, v \notin S$. If $d(u) \ge d(v) + k$ then $S \cup \{u\}$ is strictly better than $S \cup \{v\}$

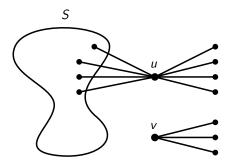
Proof:



Lemma 1

Let $S \subseteq V$ be of size k - 1, and $u, v \notin S$. If $d(u) \ge d(v) + k$ then $S \cup \{u\}$ is strictly better than $S \cup \{v\}$

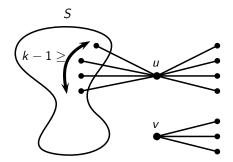
Proof:



Lemma 1

Let $S \subseteq V$ be of size k - 1, and $u, v \notin S$. If $d(u) \ge d(v) + k$ then $S \cup \{u\}$ is strictly better than $S \cup \{v\}$

Proof:



Lemma 1

Let $S \subseteq V$ be of size k - 1, and $u, v \notin S$. If $d(u) \ge d(v) + k$ then $S \cup \{u\}$ is strictly better than $S \cup \{v\}$

Lemma 2

For all $v \in V'$, $d(v) \in [\Delta - 2k, \Delta]$

 $(\Delta = \max. \text{ degree of } G[V'])$

Lemma 1

Let $S \subseteq V$ be of size k - 1, and $u, v \notin S$. If $d(u) \ge d(v) + k$ then $S \cup \{u\}$ is strictly better than $S \cup \{v\}$

Lemma 2

For all $v \in V'$, $d(v) \in [\Delta - 2k, \Delta]$

 $(\Delta = \max. \text{ degree of } G[V'])$

Lemma 1

Let $S \subseteq V$ be of size k - 1, and $u, v \notin S$. If $d(u) \ge d(v) + k$ then $S \cup \{u\}$ is strictly better than $S \cup \{v\}$

Lemma 2

For all $v \in V'$, $d(v) \in [\Delta - 2k, \Delta]$

 $(\Delta = \max. \text{ degree of } G[V'])$

Proof:
$$d(v_1) = \Delta$$

 $d(v_2)$ • sort vertices by non-increasing degrees
• if $d(v_j) + k \le d(v_k)$ then $v_j \notin opt$
 $d(v_k)$
 $d(v_k)$
 $d(v_j)$
 $d(v_j)$
 $d(v_j)$
 $d(v_j)$

Lemma 1

Let $S \subseteq V$ be of size k - 1, and $u, v \notin S$. If $d(u) \ge d(v) + k$ then $S \cup \{u\}$ is strictly better than $S \cup \{v\}$

Lemma 2

For all $v \in V'$, $d(v) \in [\Delta - 2k, \Delta]$

Proof:	$d(v_1) = \Delta$ $d(v_2)$	 sort vertices by non-increasing degrees
	•	• if $d(v_j) + k \le d(v_k)$ then $v_j \notin opt$
	$d(v_i)$	Proof: suppose $v_j \in opt$
	$d(v_k)$	
	•	
	$d(v_j)$	
	• $d(v_n)$	Cardinality constrained subgraph problems

Lemma 1

Let $S \subseteq V$ be of size k - 1, and $u, v \notin S$. If $d(u) \ge d(v) + k$ then $S \cup \{u\}$ is strictly better than $S \cup \{v\}$

Lemma 2

For all $v \in V'$, $d(v) \in [\Delta - 2k, \Delta]$

Proof:	$d(v_1) = \Delta$ $d(v_2)$ \vdots $d(v_i)$ \vdots $d(v_k)$ \vdots $d(v_j)$ \vdots	 sort vertices by non-increasing degrees if d(v_i) + k ≤ d(v_k) then v_j ∉ opt Proof: suppose v_j ∈ opt then v_i ∉ opt for some i ∈ {1, · · · , k}
	$d(v_n)$	Cardinality constrained subgraph problems

Lemma 1

Let $S \subseteq V$ be of size k - 1, and $u, v \notin S$. If $d(u) \ge d(v) + k$ then $S \cup \{u\}$ is strictly better than $S \cup \{v\}$

Lemma 2

For all $v \in V'$, $d(v) \in [\Delta - 2k, \Delta]$

 $(\Delta = \max. \text{ degree of } G[V'])$

Proof:
$$d(v_1) = \Delta$$

$$d(v_2)$$

$$d(v_i)$$

$$d(v_i)$$

$$d(v_k)$$

$$d(v_k)$$

$$d(v_k)$$

$$d(v_k)$$

$$d(v_k)$$

$$d(v_k)$$

sort vertices by non-increasing degrees

• if
$$d(v_j) + k \le d(v_k)$$
 then $v_j \notin opt$
Proof: suppose $v_j \in opt$
then $v_i \notin opt$ for some $i \in \{1, \dots, k\}$
but $d(v_i) \ge d(v_k) \ge d(v_j) + k$
 $\Rightarrow v_i$ is better than v_j !

Lemma 1

Let $S \subseteq V$ be of size k - 1, and $u, v \notin S$. If $d(u) \ge d(v) + k$ then $S \cup \{u\}$ is strictly better than $S \cup \{v\}$

Lemma 2

For all $v \in V'$, $d(v) \in [\Delta - 2k, \Delta]$

- Proof: $d(v_1) = \Delta$ $d(v_2)$ $d(v_i)$ $d(v_i)$ $d(v_k)$ $d(v_k)$ $d(v_j)$ $d(v_j)$
- sort vertices by non-increasing degrees
- if $d(v_j) + k \le d(v_k)$ then $v_j \notin opt$
- if $d(v_k) + k \leq d(v_1)$ then $v_1 \in opt$

Lemma 1

Let $S \subseteq V$ be of size k - 1, and $u, v \notin S$. If $d(u) \ge d(v) + k$ then $S \cup \{u\}$ is strictly better than $S \cup \{v\}$

Lemma 2

For all $v \in V'$, $d(v) \in [\Delta - 2k, \Delta]$

Proof:
$$d(v_1) = \Delta$$

 $d(v_2)$
:
 $d(v_i)$
:
 $d(v_k)$
:
 $d(v_k)$
:
 $d(v_j)$
:
 $d(v_j)$
:
 $d(v_j)$

- sort vertices by non-increasing degrees
- if $d(v_j) + k \le d(v_k)$ then $v_j \notin opt$
- if d(v_k) + k ≤ d(v₁) then v₁ ∈ opt
 Proof: suppose v₁ ∉ opt

Lemma 1

Let $S \subseteq V$ be of size k - 1, and $u, v \notin S$. If $d(u) \ge d(v) + k$ then $S \cup \{u\}$ is strictly better than $S \cup \{v\}$

Lemma 2

For all $v \in V'$, $d(v) \in [\Delta - 2k, \Delta]$

Proof:
$$d(v_{1}) = \Delta$$
$$d(v_{2})$$
$$\vdots$$
$$d(v_{i})$$
$$\vdots$$
$$d(v_{k})$$
$$\vdots$$
$$d(v_{j})$$
$$\vdots$$
$$d(v_{j})$$
$$\vdots$$
$$d(v_{n})$$

- sort vertices by non-increasing degrees
- if $d(v_j) + k \le d(v_k)$ then $v_j \notin opt$
- if $d(v_k) + k \le d(v_1)$ then $v_1 \in opt$ Proof: suppose $v_1 \notin opt$ then $v_j \in opt$ for some j > k

Lemma 1

Let $S \subseteq V$ be of size k - 1, and $u, v \notin S$. If $d(u) \ge d(v) + k$ then $S \cup \{u\}$ is strictly better than $S \cup \{v\}$

Lemma 2

For all $v \in V'$, $d(v) \in [\Delta - 2k, \Delta]$

Proof:

$$d(v_1) = \Delta$$

$$d(v_2)$$

$$i$$

$$d(v_i)$$

$$i$$

$$d(v_k)$$

$$i$$

$$d(v_j)$$

$$i$$

$$d(v_n)$$

- sort vertices by non-increasing degrees
- if $d(v_j) + k \le d(v_k)$ then $v_j \notin opt$
- if $d(v_k) + k \le d(v_1)$ then $v_1 \in opt$ Proof: suppose $v_1 \notin opt$ then $v_j \in opt$ for some j > kbut $d(v_j) \le d(v_k) \le d(v_1) - k$ $\Rightarrow v_1$ is better than v_j !

Lemma 2

V'

For all $v \in V'$, $d(v) \in [\Delta - 2k, \Delta]$

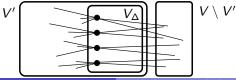
 $(\Delta = \max. \text{ degree of } G[V'])$

Lemma 2

For all $v \in V'$, $d(v) \in [\Delta - 2k, \Delta]$

 $(\Delta = \max. \text{ degree of } G[V'])$

- if V_{Δ} has an independent set of size $\geq k$
 - \Rightarrow we are done

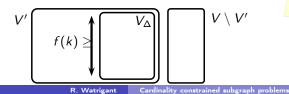


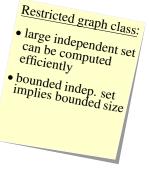
Lemma 2

For all $v \in V'$, $d(v) \in [\Delta - 2k, \Delta]$

 $(\Delta = \max. \text{ degree of } G[V'])$

- if V_Δ has an independent set of size $\geq k$
 - \Rightarrow we are done
- otherwise $|V_{\Delta}| \leq f(k)$
 - \Rightarrow branch on *opt* \cap V_{Δ} :



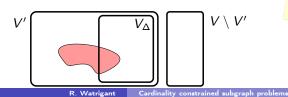


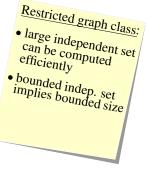
Lemma 2

For all $v \in V'$, $d(v) \in [\Delta - 2k, \Delta]$

 $(\Delta = \max. \text{ degree of } G[V'])$

- if V_{Δ} has an independent set of size $\geq k$
 - \Rightarrow we are done
- otherwise $|V_{\Delta}| \leq f(k)$
 - \Rightarrow branch on *opt* \cap V_{Δ} :
 - if opt ∩ V_∆ ≠ Ø ⇒ guess intersection and decrease k





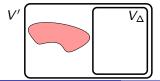
Lemma 2

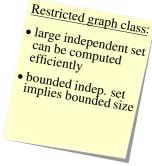
For all $v \in V'$, $d(v) \in [\Delta - 2k, \Delta]$

 $(\Delta = \max. \text{ degree of } G[V'])$

Let us consider $V_{\Delta} \subseteq V'$ the set of vertices of degree Δ Algorithm:

- if V_{Δ} has an independent set of size $\geq k$
 - \Rightarrow we are done
- otherwise $|V_{\Delta}| \leq f(k)$
 - \Rightarrow branch on *opt* \cap V_{Δ} :
 - if opt ∩ V_∆ ≠ Ø ⇒ guess intersection and decrease k
 - if opt ∩ V_Δ = Ø ⇒ delete V_Δ from V' number of ≠ degrees decreases





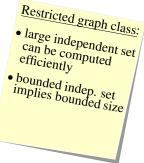
 $V \setminus V'$

Lemma 2

For all $v \in V'$, $d(v) \in [\Delta - 2k, \Delta]$

 $(\Delta = \max. \text{ degree of } G[V'])$

- if V_{Δ} has an independent set of size $\geq k$
 - \Rightarrow we are done
- otherwise $|V_{\Delta}| \leq f(k)$
 - \Rightarrow branch on *opt* \cap V_{Δ} :
 - if opt ∩ V_∆ ≠ Ø ⇒ guess intersection and decrease k
 - if opt ∩ V_Δ = Ø ⇒ delete V_Δ from V' number of ≠ degrees decreases



Lemma 2

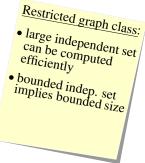
For all $v \in V'$, $d(v) \in [\Delta - 2k, \Delta]$

 $(\Delta = \max. \text{ degree of } G[V'])$

Let us consider $V_{\Delta} \subseteq V'$ the set of vertices of degree Δ Algorithm:

- if V_∆ has an independent set of size ≥ k
 ⇒ we are done
- otherwise $|V_{\Delta}| \leq f(k)$
 - \Rightarrow branch on *opt* $\cap V_{\Lambda}$:
 - if opt ∩ V_∆ ≠ Ø ⇒ guess intersection and decrease k
 - if opt ∩ V_Δ = Ø ⇒ delete V_Δ from V' number of ≠ degrees decreases

• \Rightarrow bounded search tree



Lemma 2

For all $v \in V'$, $d(v) \in [\Delta - 2k, \Delta]$

 $(\Delta = \max. \text{ degree of } G[V'])$

Let us consider $V_{\Delta} \subseteq V'$ the set of vertices of degree Δ Algorithm:

- if V_∆ has an independent set of size ≥ k
 ⇒ we are done
 - \Rightarrow we are done
- otherwise $|V_{\Delta}| \leq f(k)$
 - \Rightarrow branch on *opt* \cap V_{Δ} :
 - if opt ∩ V_Δ ≠ Ø ⇒ guess intersection and decrease k
 - if opt ∩ V_Δ = Ø ⇒ delete V_Δ from V' number of ≠ degrees decreases
- \Rightarrow bounded search tree

Restricted graph class:
large independent set can be computed efficiently
bounded indep. set implies bounded size
planar graphs, r-partite (r fixed)

Lemma 2

For all $v \in V'$, $d(v) \in [\Delta - 2k, \Delta]$

 $(\Delta = \max. \text{ degree of } G[V'])$

Let us consider $V_{\Delta} \subseteq V'$ the set of vertices of degree Δ Algorithm:

- if V_{Δ} has an independent set of size $\geq k$
 - \Rightarrow we are done
- otherwise $|V_{\Delta}| \leq f(k)$
 - \Rightarrow branch on *opt* \cap V_{Δ} :
 - if opt ∩ V_∆ ≠ Ø ⇒ guess intersection and decrease k
 - if opt ∩ V_Δ = Ø ⇒ delete V_Δ from V' number of ≠ degrees decreases
- \Rightarrow bounded search tree

Restricted graph class:
large independent set can be computed efficiently
bounded indep. set implies bounded size
planar graphs, r-partite (r fixed)

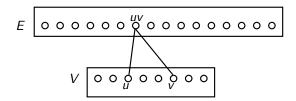
A similar algorithm can be designed for Max-(k, n - k)-Cut

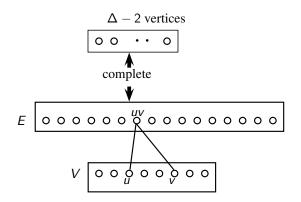
Summary

	Covering		Inducing	
Graphs	Max	Min	Max	Min
	Max- <i>k</i> -Cover	Min-k-Cover	Densest	Sparsest
General	NP-h (generalization of Clique, Independent Set)			
	W[1]-h (k) [Cai '08]			
	FPT (std. param.) [Blaser'03]			
Bipartite	<i>NP</i> -h [CK'14]	NP-h (dual)	<i>NP</i> -h [CP'84]	<i>NP</i> -h (dual)
	FPT(k)	W[1]-h	W[1]-h [CP'84]	FPT(k)[trivial]
	[BBPSW'14]	[BBPSW'14]		
Chordal	NP-h (dual)	NP-h (dual)	<i>NP</i> -h [CP'84]	NP-h [BBGW'14]
			<i>FPT</i> (k) [trivial]	<i>FPT</i> (k) [BBBGW'14]

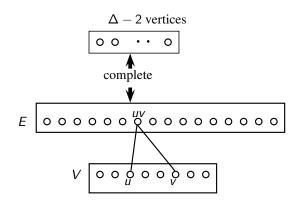
Summary

	Covering		Inducing	
Graphs	Max	Min	Max	Min
	Max- <i>k</i> -Cover	Min- <i>k</i> -Cover	Densest	Sparsest
General	NP-h (generalization of Clique, Independent Set)			
	W[1]-h (k) [Cai '08]			
	FPT(std. param.) [Blaser'03]			
Bipartite	<i>NP-</i> h [CK'14]	NP-h (dual)	<i>NP</i> -h [CP'84]	<i>NP</i> -h (dual)
	FPT(k)	W[1]-h	W[1]-h [CP'84]	FPT(k)[trivial]
	[BBPSW'14]	[BBPSW'14]		
Chordal	NP-h (dual)	NP-h (dual)	<i>NP</i> -h [CP'84]	NP-h [BBGW'14]
			<i>FPT</i> (k) [trivial]	<i>FPT</i> (k) [BBBGW'14]

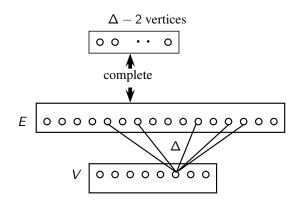




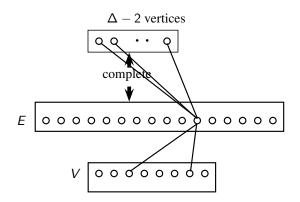
$$k' = k + \binom{k}{2}$$
 vertices covering $k'\Delta - 2\binom{k}{2}$ edges ?



$$k' = k + \binom{k}{2}$$
 vertices covering $k'\Delta - 2\binom{k}{2}$ edges ?



$$k' = k + \binom{k}{2}$$
 vertices covering $k'\Delta - 2\binom{k}{2}$ edges ?



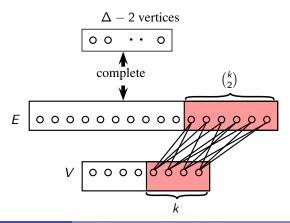
$$k' = k + {\binom{k}{2}}$$
 vertices covering $k'\Delta - 2{\binom{k}{2}}$ edges ?
 \Leftrightarrow equivalent to find a k'-densest subgraph



$$k' = k + \binom{k}{2} \text{ vertices covering } k'\Delta - 2\binom{k}{2} \text{ edges } ?$$

$$\Leftrightarrow \text{ equivalent to find a } k' \text{-densest subgraph}$$

$$\Leftrightarrow \text{ equivalent to find a } k \text{-clique in } G$$



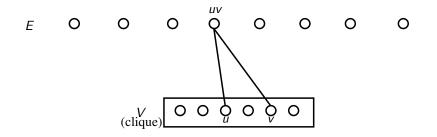
Summary

	Covering		Inducing	
Graphs	Max	Min	Max	Min
	Max- <i>k</i> -Cover	Min- <i>k</i> -Cover	Densest	Sparsest
General	NP-h (generalization of Clique, Independent Set)			
	W[1]-h (k) [Cai '08]			
	FPT(std. param.) [Blaser'03]			
Bipartite	<i>NP-</i> h [CK'14]	NP-h (dual)	<i>NP</i> -h [CP'84]	<i>NP</i> -h (dual)
	FPT(k)	W[1]-h	W[1]-h [CP'84]	FPT(k)[trivial]
	[BBPSW'14]	[BBPSW'14]		
Chordal	NP-h (dual)	NP-h (dual)	<i>NP</i> -h [CP'84]	NP-h [BBGW'14]
			<i>FPT</i> (k) [trivial]	<i>FPT</i> (k) [BBBGW'14]

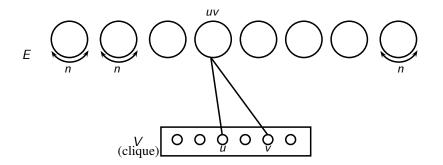
Summary

	Covering		Inducing	
Graphs	Max	Min	Max	Min
	Max- <i>k</i> -Cover	Min- <i>k</i> -Cover	Densest	Sparsest
General	NP-h (generalization of Clique, Independent Set)			
	W[1]-h (k) [Cai '08]			
	FPT(std. param.) [Blaser'03]			
Bipartite	<i>NP</i> -h [CK'14]	NP-h (dual)	<i>NP</i> -h [CP'84]	<i>NP</i> -h (dual)
	FPT(k)	W[1]-h	W[1]-h [CP'84]	FPT(k)[trivial]
	[BBPSW'14]	[BBPSW'14]		
Chordal	NP-h (dual)	NP-h (dual)	<i>NP</i> -h [CP'84]	<i>NP</i> -h [BBGW'14]
			<i>FPT</i> (k) [trivial]	<i>FPT</i> (k) [BBBGW'14]

$$k' = k + \binom{k}{2}$$



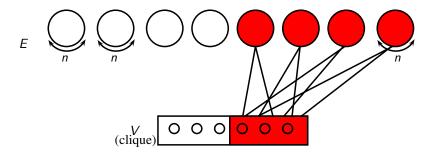
$$k' = k + n \binom{k}{2}$$

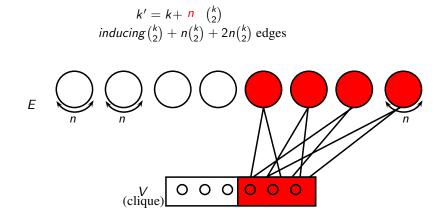


R. Watrigant Cardinality constrained subgraph problems

$$k' = k + n \binom{k}{2}$$

inducing $\binom{k}{2} + n\binom{k}{2} + 2n\binom{k}{2}$ edges

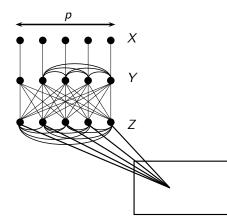




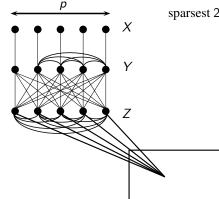
What about Sparsest k-Subgraph now ..?

Sparsest *k*-Subgraph is *NP*-hard in chordal graphs [B. G. W., '14] <u>Idea:</u> gadget

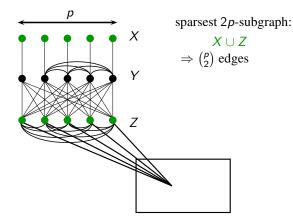
Sparsest *k*-Subgraph is *NP*-hard in chordal graphs [B. G. W., '14] <u>Idea:</u> gadget

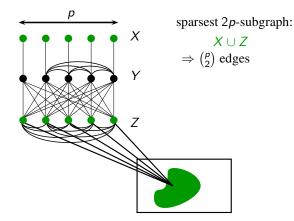


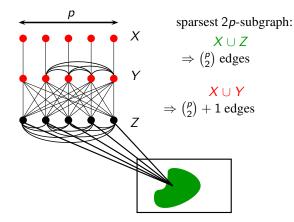
Sparsest *k*-Subgraph is *NP*-hard in chordal graphs [B. G. W., '14] <u>Idea:</u> gadget

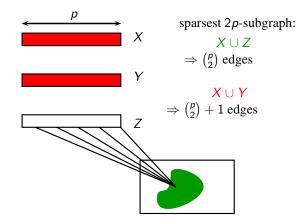


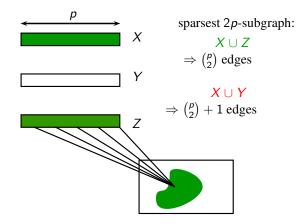
sparsest 2*p*-subgraph:

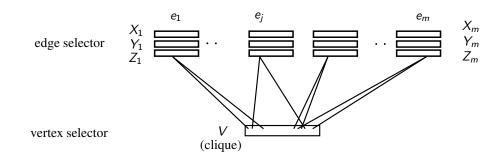


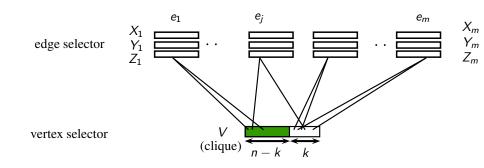


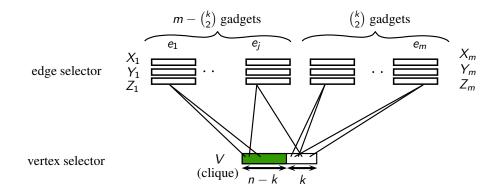


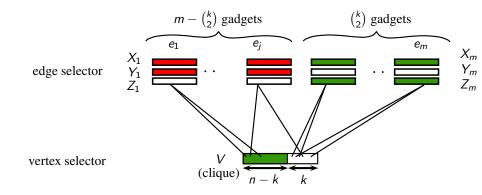




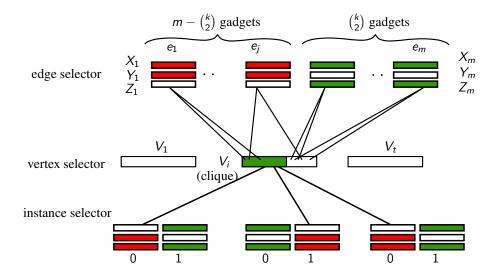








Sparsest k-Subgraph is NP-hard in chordal graphs [B. G. W., '14] Extension to cross-composition \Rightarrow no polynomial kernel (unless...)



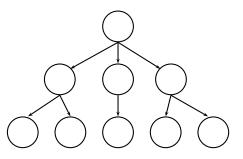
Summary

	Covering		Inducing	
Graphs	Max	Min	Max	Min
	Max- <i>k</i> -Cover	Min-k-Cover	Densest	Sparsest
General	NP-h (generalization of Clique, Independent Set)			
	W[1]-h (k) [Cai '08]			
	FPT(std. param.) [Blaser'03]			
Bipartite	<i>NP</i> -h [CK'14]	NP-h (dual)	<i>NP</i> -h [CP'84]	<i>NP</i> -h (dual)
	FPT(k)	W[1]-h	W[1]-h [CP'84]	FPT(k)[trivial]
	[BBPSW'14]	[BBPSW'14]		
Chordal	NP-h (dual)	NP-h (dual)	<i>NP</i> -h [CP'84]	NP-h [BBGW'14]
			<i>FPT</i> (k) [trivial]	<i>FPT</i> (k) [BBBGW'14]

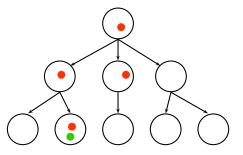
Summary

	Covering		Inducing	
Graphs	Max	Min	Max	Min
	Max- <i>k</i> -Cover	Min-k-Cover	Densest	Sparsest
General	NP-h (generalization of Clique, Independent Set)			
	W[1]-h (k) [Cai '08]			
	FPT (std. param.) [Blaser'03]			
Bipartite	<i>NP</i> -h [CK'14]	NP-h (dual)	<i>NP</i> -h [CP'84]	<i>NP</i> -h (dual)
	FPT(k)	W[1]-h	W[1]-h [CP'84]	FPT(k)[trivial]
	[BBPSW'14]	[BBPSW'14]		
Chordal	NP-h (dual)	NP-h (dual)	<i>NP</i> -h [CP'84]	NP-h [BBGW'14]
			<i>FPT</i> (k) [trivial]	FPT(k) [BBBGW'14]

• tree decomposition \mathcal{T} with (nodes of $\mathcal{T} \leftrightarrow$ maximal cliques of G)



- tree decomposition \mathcal{T} with (nodes of $\mathcal{T} \leftrightarrow$ maximal cliques of \mathcal{G})
- domination rule: $N(\bigcirc) \subseteq N(\bigcirc) \Rightarrow \bigcirc$ is cheaper than \bigcirc^*

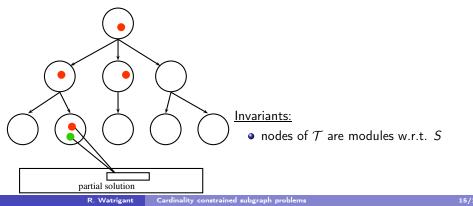


- tree decomposition \mathcal{T} with (nodes of $\mathcal{T} \leftrightarrow$ maximal cliques of \mathcal{G})
- domination rule: $N(\bigcirc) \subseteq N(\bigcirc) \Rightarrow \bigcirc$ is cheaper than \bigcirc^*

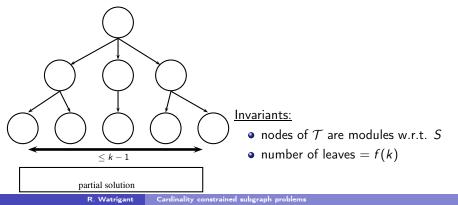
*true if • and • are modules w.r.t. the partial solution



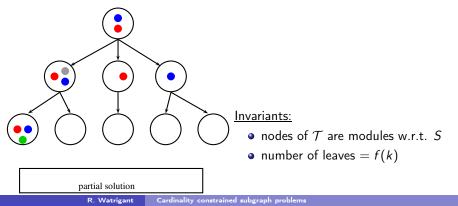
- tree decomposition \mathcal{T} with (nodes of $\mathcal{T} \leftrightarrow$ maximal cliques of \mathcal{G})
- domination rule: $N(\bigcirc) \subseteq N(\bigcirc) \Rightarrow \bigcirc$ is cheaper than \bigcirc^*
 - *true if 🔵 and 🛑 are modules w.r.t. the partial solution
 - \Rightarrow at the beginning: take one simplicial per leaf. But what next ?



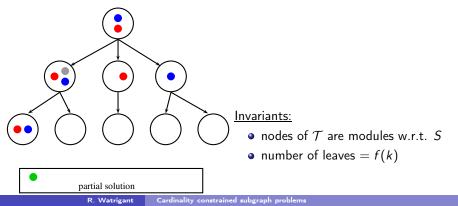
- tree decomposition \mathcal{T} with (nodes of $\mathcal{T} \leftrightarrow$ maximal cliques of \mathcal{G})
- domination rule: $N(\bigcirc) \subseteq N(\bigcirc) \Rightarrow \bigcirc$ is cheaper than \bigcirc^*
 - *true if 🔵 and 🛑 are modules w.r.t. the partial solution
 - \Rightarrow at the beginning: take one simplicial per leaf. But what next ?
- $\alpha(G) < k$, one simplicial per leaf \Rightarrow at most k 1 leaves



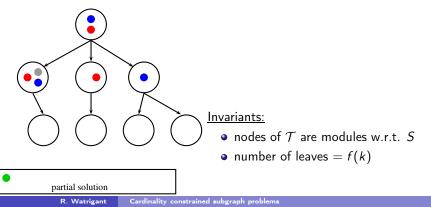
- tree decomposition \mathcal{T} with (nodes of $\mathcal{T} \leftrightarrow$ maximal cliques of \mathcal{G})
- domination rule: $N(\bigcirc) \subseteq N(\bigcirc) \Rightarrow \bigcirc$ is cheaper than \bigcirc^*
 - *true if 🔵 and 🛑 are modules w.r.t. the partial solution
 - \Rightarrow at the beginning: take one simplicial per leaf. But what next ?
- $\alpha(G) < k$, one simplicial per leaf \Rightarrow at most k 1 leaves



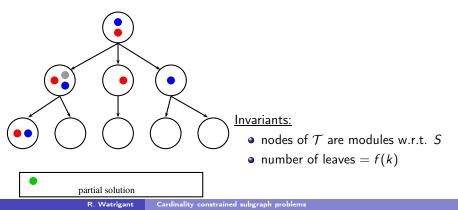
- tree decomposition \mathcal{T} with (nodes of $\mathcal{T} \leftrightarrow$ maximal cliques of \mathcal{G})
- domination rule: $N(\bigcirc) \subseteq N(\bigcirc) \Rightarrow \bigcirc$ is cheaper than \bigcirc^*
 - *true if 🔵 and 🛑 are modules w.r.t. the partial solution
 - \Rightarrow at the beginning: take one simplicial per leaf. But what next ?
- $\alpha(G) < k$, one simplicial per leaf \Rightarrow at most k 1 leaves



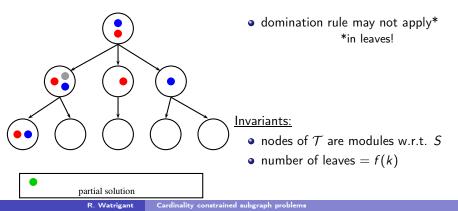
- tree decomposition \mathcal{T} with (nodes of $\mathcal{T} \leftrightarrow$ maximal cliques of \mathcal{G})
- domination rule: $N(\bigcirc) \subseteq N(\bigcirc) \Rightarrow \bigcirc$ is cheaper than \bigcirc^*
 - *true if 🔵 and 🛑 are modules w.r.t. the partial solution
 - \Rightarrow at the beginning: take one simplicial per leaf. But what next ?
- $\alpha(G) < k$, one simplicial per leaf \Rightarrow at most k 1 leaves



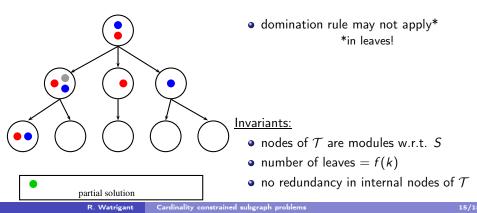
- tree decomposition \mathcal{T} with (nodes of $\mathcal{T} \leftrightarrow \frac{\mathsf{maximal}}{\mathsf{maximal}}$ cliques of G)
- domination rule: $N(\bigcirc) \subseteq N(\bigcirc) \Rightarrow \bigcirc$ is cheaper than \bigcirc^*
 - *true if and are modules w.r.t. the partial solution
 - \Rightarrow at the beginning: take one simplicial per leaf. But what next ?
- $\alpha(G) < k$, one simplicial per leaf \Rightarrow at most k 1 leaves
- $\bullet\,$ add redundancy in the leaves of ${\cal T}\,$



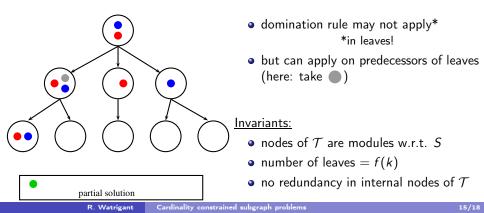
- tree decomposition \mathcal{T} with (nodes of $\mathcal{T} \leftrightarrow \frac{\mathsf{maximal}}{\mathsf{maximal}}$ cliques of G)
- domination rule: $N(\bigcirc) \subseteq N(\bigcirc) \Rightarrow \bigcirc$ is cheaper than \bigcirc^*
 - *true if 🔵 and 🛑 are modules w.r.t. the partial solution
 - \Rightarrow at the beginning: take one simplicial per leaf. But what next ?
- $\alpha(G) < k$, one simplicial per leaf \Rightarrow at most k 1 leaves
- $\bullet\,$ add redundancy in the leaves of ${\cal T}\,$



- tree decomposition \mathcal{T} with (nodes of $\mathcal{T} \leftrightarrow \frac{\mathsf{maximal}}{\mathsf{maximal}}$ cliques of \mathcal{G})
- domination rule: $N(\bigcirc) \subseteq N(\bigcirc) \Rightarrow \bigcirc$ is cheaper than \bigcirc^*
 - *true if 🔵 and 🛑 are modules w.r.t. the partial solution
 - \Rightarrow at the beginning: take one simplicial per leaf. But what next ?
- $\alpha(G) < k$, one simplicial per leaf \Rightarrow at most k 1 leaves
- $\bullet\,$ add redundancy in the leaves of ${\cal T}$



- tree decomposition \mathcal{T} with (nodes of $\mathcal{T} \leftrightarrow \frac{\mathsf{maximal}}{\mathsf{maximal}}$ cliques of G)
- domination rule: $N(\bigcirc) \subseteq N(\bigcirc) \Rightarrow \bigcirc$ is cheaper than \bigcirc^*
 - *true if 🔵 and 🛑 are modules w.r.t. the partial solution
 - \Rightarrow at the beginning: take one simplicial per leaf. But what next ?
- $\alpha(G) < k$, one simplicial per leaf \Rightarrow at most k-1 leaves
- $\bullet\,$ add redundancy in the leaves of ${\cal T}$



Conclusion, open problems

	Covering		Inducing	
Graphs	Max	Min	Max	Min
	Max- <i>k</i> -Cover	Min- <i>k</i> -Cover	Densest	Sparsest
General	NP-h (generalization of Clique, Independent Set)			
	W[1]-h (k) [Cai '08]			
	FPT (std. param.) [Blaser'03]			
Bipartite	<i>NP</i> -h [CK'14]	NP-h (dual)	<i>NP</i> -h [CP'84]	<i>NP</i> -h (dual)
	FPT(k)	W[1]-h	W[1]-h [CP'84]	FPT(k)[trivial]
	[BBPSW'14]	[BBPSW'14]		
Chordal	NP-h (dual)	NP-h (dual)	<i>NP</i> -h [CP'84]	<i>NP</i> -h [BBGW'14]
	?	?	FPT(k) [trivial]	FPT(k) [BBBGW'14]

Conclusion, open problems

	Covering		Inducing	
Graphs	Max	Min	Max	Min
	Max- <i>k</i> -Cover	Min-k-Cover	Densest	Sparsest
General	NP-h (generalization of Clique, Independent Set)			
	W[1]-h (k) [Cai '08]			
	FPT(std. param.) [Blaser'03]			
Bipartite	NP-h [CK'14]	NP-h (dual)	<i>NP</i> -h [CP'84]	NP-h (dual)
	FPT(k)	W[1]-h	W[1]-h [CP'84]	FPT(k)[trivial]
	[BBPSW'14]	[BBPSW'14]		
Chordal	NP-h (dual)	NP-h (dual)	<i>NP</i> -h [CP'84]	<i>NP</i> -h [BBGW'14]
	?	?	<i>FPT</i> (k) [trivial]	FPT(k) [BBBGW'14]
(Proper)	?	?	?	?
Interval				

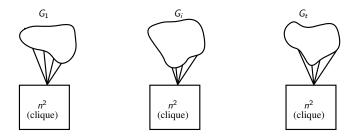
Conclusion, open problems

	Covering		Inducing		
Graphs	Max	Min	Max	Min	
	Max- <i>k</i> -Cover	Min- <i>k</i> -Cover	Densest	Sparsest	
General	NP-h (generalization of Clique, Independent Set)				
	W[1]-h (k) [Cai '08]				
	FPT(std. param.) [Blaser'03]				
Bipartite	<i>NP</i> -h [CK'14]	NP-h (dual)	<i>NP</i> -h [CP'84]	NP-h (dual)	
	FPT(k)	W[1]-h	W[1]-h [CP'84]	FPT(k)[trivial]	
	[BBPSW'14]	[BBPSW'14]			
Chordal	NP-h (dual)	NP-h (dual)	<i>NP</i> -h [CP'84]	<i>NP</i> -h [BBGW'14]	
	?	?	<i>FPT</i> (k) [trivial]	<i>FPT</i> (k) [BBBGW'14]	
(Proper)	?	?	?	?	
Interval					
Planar	NP-h (dual)	?	?	NP-h (indep. set)	

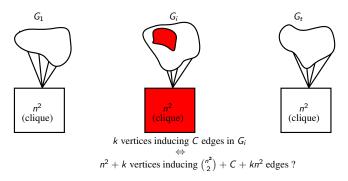
- Densest *k*-Subgraph in chordal graphs is (trivialy FPT and) unlikely to admit a polynomial kernel:
 - easy or-composition:

• Densest *k*-Subgraph in chordal graphs is (trivialy FPT and) unlikely to admit a polynomial kernel: easy or-composition:

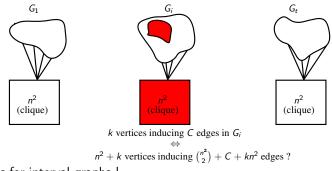
• Densest *k*-Subgraph in chordal graphs is (trivialy FPT and) unlikely to admit a polynomial kernel: easy or-composition:



 Densest k-Subgraph in chordal graphs is (trivialy FPT and) unlikely to admit a polynomial kernel: easy or-composition:

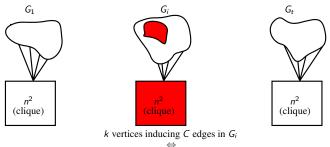


 Densest k-Subgraph in chordal graphs is (trivialy FPT and) unlikely to admit a polynomial kernel: easy or-composition:



also holds for interval graphs !

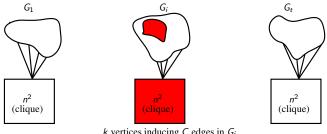
 Densest k-Subgraph in chordal graphs is (trivialy FPT and) unlikely to admit a polynomial kernel: easy or-composition:



 $n^2 + k$ vertices inducing $\binom{n^2}{2} + C + kn^2$ edges ?

- also holds for interval graphs !
- but we don't know if the problem is NP-hard :-(so:

• Densest k-Subgraph in chordal graphs is (trivialy FPT and) unlikely to admit a polynomial kernel: easy or-composition:

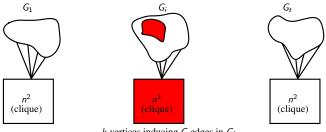


k vertices inducing C edges in Gi

 $n^2 + k$ vertices inducing $\binom{n^2}{2} + C + kn^2$ edges ?

- also holds for interval graphs !
- but we don't know if the problem is NP-hard :-(SO:
 - either it is NP-hard, and has no poly. kernel aswell (unless...) or:

 Densest k-Subgraph in chordal graphs is (trivialy FPT and) unlikely to admit a polynomial kernel: easy or-composition:



k vertices inducing C edges in G_i

 $n^2 + k$ vertices inducing $\binom{n^2}{2} + C + kn^2$ edges ?

- also holds for interval graphs !
- but we don't know if the problem is NP-hard :-(SO:
 - either it is NP-hard, and has no poly. kernel aswell (unless...) or:
 - you believe it is in P ? Show a poly. kernel first !

Merci !