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Densest k-Subgraph in chordal graphs

if G has a clique of size k (polynomial)
⇒ optimal solution

otherwise: treewidth ≤ k
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FPT algorithm for Max k-Cover in bipartite graphs
Input: G = (V ,E ), k ∈ N, a set V ′ ⊆ V in which we have to pick the solution
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R. Watrigant Cardinality constrained subgraph problems 8/18



FPT algorithm for Max k-Cover in bipartite graphs
Input: G = (V ,E ), k ∈ N, a set V ′ ⊆ V in which we have to pick the solution

Lemma 1

Let S ⊆ V be of size k − 1, and u, v /∈ S .
If d(u) ≥ d(v) + k then S ∪ {u} is strictly better than S ∪ {v}

R. Watrigant Cardinality constrained subgraph problems 8/18



FPT algorithm for Max k-Cover in bipartite graphs
Input: G = (V ,E ), k ∈ N, a set V ′ ⊆ V in which we have to pick the solution

Lemma 1

Let S ⊆ V be of size k − 1, and u, v /∈ S .
If d(u) ≥ d(v) + k then S ∪ {u} is strictly better than S ∪ {v}

Proof:

b

b

u

v

k − 1 ≥

S

R. Watrigant Cardinality constrained subgraph problems 8/18



FPT algorithm for Max k-Cover in bipartite graphs
Input: G = (V ,E ), k ∈ N, a set V ′ ⊆ V in which we have to pick the solution

Lemma 1

Let S ⊆ V be of size k − 1, and u, v /∈ S .
If d(u) ≥ d(v) + k then S ∪ {u} is strictly better than S ∪ {v}

Proof:

b

b

u

v

k − 1 ≥

S

R. Watrigant Cardinality constrained subgraph problems 8/18



FPT algorithm for Max k-Cover in bipartite graphs
Input: G = (V ,E ), k ∈ N, a set V ′ ⊆ V in which we have to pick the solution

Lemma 1

Let S ⊆ V be of size k − 1, and u, v /∈ S .
If d(u) ≥ d(v) + k then S ∪ {u} is strictly better than S ∪ {v}

Proof:

b

b

u

v

k − 1 ≥

S

R. Watrigant Cardinality constrained subgraph problems 8/18



FPT algorithm for Max k-Cover in bipartite graphs
Input: G = (V ,E ), k ∈ N, a set V ′ ⊆ V in which we have to pick the solution

Lemma 1

Let S ⊆ V be of size k − 1, and u, v /∈ S .
If d(u) ≥ d(v) + k then S ∪ {u} is strictly better than S ∪ {v}

Lemma 2

For all v ∈ V ′, d(v) ∈ [∆− 2k ,∆] (∆ = max. degree of G [V ′])

R. Watrigant Cardinality constrained subgraph problems 8/18



FPT algorithm for Max k-Cover in bipartite graphs
Input: G = (V ,E ), k ∈ N, a set V ′ ⊆ V in which we have to pick the solution

Lemma 1

Let S ⊆ V be of size k − 1, and u, v /∈ S .
If d(u) ≥ d(v) + k then S ∪ {u} is strictly better than S ∪ {v}

Lemma 2

For all v ∈ V ′, d(v) ∈ [∆− 2k ,∆] (∆ = max. degree of G [V ′])

Proof: d(v1)
d(v2)

d(vi )

d(vk )

d(vj)

d(vn)

k ≥

k ≥

= ∆
sort vertices by non-increasing degrees

R. Watrigant Cardinality constrained subgraph problems 8/18



FPT algorithm for Max k-Cover in bipartite graphs
Input: G = (V ,E ), k ∈ N, a set V ′ ⊆ V in which we have to pick the solution

Lemma 1

Let S ⊆ V be of size k − 1, and u, v /∈ S .
If d(u) ≥ d(v) + k then S ∪ {u} is strictly better than S ∪ {v}

Lemma 2

For all v ∈ V ′, d(v) ∈ [∆− 2k ,∆] (∆ = max. degree of G [V ′])

Proof: d(v1)
d(v2)

d(vi )

d(vk )

d(vj)

d(vn)

k ≥

k ≥

= ∆
sort vertices by non-increasing degrees

if d(vj) + k ≤ d(vk) then vj /∈ opt

R. Watrigant Cardinality constrained subgraph problems 8/18



FPT algorithm for Max k-Cover in bipartite graphs
Input: G = (V ,E ), k ∈ N, a set V ′ ⊆ V in which we have to pick the solution

Lemma 1

Let S ⊆ V be of size k − 1, and u, v /∈ S .
If d(u) ≥ d(v) + k then S ∪ {u} is strictly better than S ∪ {v}

Lemma 2

For all v ∈ V ′, d(v) ∈ [∆− 2k ,∆] (∆ = max. degree of G [V ′])

Proof: d(v1)
d(v2)

d(vi )

d(vk )

d(vj)

d(vn)

k ≥

k ≥

= ∆
sort vertices by non-increasing degrees

if d(vj) + k ≤ d(vk) then vj /∈ opt

Proof: suppose vj ∈ opt

R. Watrigant Cardinality constrained subgraph problems 8/18



FPT algorithm for Max k-Cover in bipartite graphs
Input: G = (V ,E ), k ∈ N, a set V ′ ⊆ V in which we have to pick the solution

Lemma 1

Let S ⊆ V be of size k − 1, and u, v /∈ S .
If d(u) ≥ d(v) + k then S ∪ {u} is strictly better than S ∪ {v}

Lemma 2

For all v ∈ V ′, d(v) ∈ [∆− 2k ,∆] (∆ = max. degree of G [V ′])

Proof: d(v1)
d(v2)

d(vi )

d(vk )

d(vj)

d(vn)

k ≥

k ≥

= ∆
sort vertices by non-increasing degrees

if d(vj) + k ≤ d(vk) then vj /∈ opt

Proof: suppose vj ∈ opt

then vi /∈ opt for some i ∈ {1, · · · , k}

R. Watrigant Cardinality constrained subgraph problems 8/18



FPT algorithm for Max k-Cover in bipartite graphs
Input: G = (V ,E ), k ∈ N, a set V ′ ⊆ V in which we have to pick the solution

Lemma 1

Let S ⊆ V be of size k − 1, and u, v /∈ S .
If d(u) ≥ d(v) + k then S ∪ {u} is strictly better than S ∪ {v}

Lemma 2

For all v ∈ V ′, d(v) ∈ [∆− 2k ,∆] (∆ = max. degree of G [V ′])

Proof: d(v1)
d(v2)

d(vi )

d(vk )

d(vj)

d(vn)

k ≥

k ≥

= ∆
sort vertices by non-increasing degrees

if d(vj) + k ≤ d(vk) then vj /∈ opt

Proof: suppose vj ∈ opt

then vi /∈ opt for some i ∈ {1, · · · , k}
but d(vi ) ≥ d(vk ) ≥ d(vj) + k

⇒ vi is better than vj !

R. Watrigant Cardinality constrained subgraph problems 8/18



FPT algorithm for Max k-Cover in bipartite graphs
Input: G = (V ,E ), k ∈ N, a set V ′ ⊆ V in which we have to pick the solution

Lemma 1

Let S ⊆ V be of size k − 1, and u, v /∈ S .
If d(u) ≥ d(v) + k then S ∪ {u} is strictly better than S ∪ {v}

Lemma 2

For all v ∈ V ′, d(v) ∈ [∆− 2k ,∆] (∆ = max. degree of G [V ′])

Proof: d(v1)
d(v2)

d(vi )

d(vk )

d(vj)

d(vn)

k ≥

k ≥

= ∆
sort vertices by non-increasing degrees

if d(vj) + k ≤ d(vk) then vj /∈ opt

if d(vk) + k ≤ d(v1) then v1 ∈ opt

R. Watrigant Cardinality constrained subgraph problems 8/18



FPT algorithm for Max k-Cover in bipartite graphs
Input: G = (V ,E ), k ∈ N, a set V ′ ⊆ V in which we have to pick the solution

Lemma 1

Let S ⊆ V be of size k − 1, and u, v /∈ S .
If d(u) ≥ d(v) + k then S ∪ {u} is strictly better than S ∪ {v}

Lemma 2

For all v ∈ V ′, d(v) ∈ [∆− 2k ,∆] (∆ = max. degree of G [V ′])

Proof: d(v1)
d(v2)

d(vi )

d(vk )

d(vj)

d(vn)

k ≥

k ≥

= ∆
sort vertices by non-increasing degrees

if d(vj) + k ≤ d(vk) then vj /∈ opt

if d(vk) + k ≤ d(v1) then v1 ∈ opt

Proof: suppose v1 /∈ opt

R. Watrigant Cardinality constrained subgraph problems 8/18



FPT algorithm for Max k-Cover in bipartite graphs
Input: G = (V ,E ), k ∈ N, a set V ′ ⊆ V in which we have to pick the solution

Lemma 1

Let S ⊆ V be of size k − 1, and u, v /∈ S .
If d(u) ≥ d(v) + k then S ∪ {u} is strictly better than S ∪ {v}

Lemma 2

For all v ∈ V ′, d(v) ∈ [∆− 2k ,∆] (∆ = max. degree of G [V ′])

Proof: d(v1)
d(v2)

d(vi )

d(vk )

d(vj)

d(vn)

k ≥

k ≥

= ∆
sort vertices by non-increasing degrees

if d(vj) + k ≤ d(vk) then vj /∈ opt

if d(vk) + k ≤ d(v1) then v1 ∈ opt

Proof: suppose v1 /∈ opt

then vj ∈ opt for some j > k

R. Watrigant Cardinality constrained subgraph problems 8/18



FPT algorithm for Max k-Cover in bipartite graphs
Input: G = (V ,E ), k ∈ N, a set V ′ ⊆ V in which we have to pick the solution

Lemma 1

Let S ⊆ V be of size k − 1, and u, v /∈ S .
If d(u) ≥ d(v) + k then S ∪ {u} is strictly better than S ∪ {v}

Lemma 2

For all v ∈ V ′, d(v) ∈ [∆− 2k ,∆] (∆ = max. degree of G [V ′])

Proof: d(v1)
d(v2)

d(vi )

d(vk )

d(vj)

d(vn)

k ≥

k ≥

= ∆
sort vertices by non-increasing degrees

if d(vj) + k ≤ d(vk) then vj /∈ opt

if d(vk) + k ≤ d(v1) then v1 ∈ opt

Proof: suppose v1 /∈ opt

then vj ∈ opt for some j > k

but d(vj ) ≤ d(vk) ≤ d(v1)− k

⇒ v1 is better than vj !

R. Watrigant Cardinality constrained subgraph problems 8/18



FPT algorithm for Max k-Cover in bipartite graphs
Input: G = (V ,E ), k ∈ N, a set V ′ ⊆ V in which we have to pick the solution

Lemma 2

For all v ∈ V ′, d(v) ∈ [∆− 2k ,∆] (∆ = max. degree of G [V ′])

Let us consider V∆ ⊆ V ′ the set of vertices of degree ∆
Algorithm:

planar graphs,

⇒

r -partite (r fixed)

implies bounded size

bounded indep. set

b

efficiently

can be computed

b large independent set

V ′ V \ V ′

V∆

Restricted graph class:

R. Watrigant Cardinality constrained subgraph problems 8/18



FPT algorithm for Max k-Cover in bipartite graphs
Input: G = (V ,E ), k ∈ N, a set V ′ ⊆ V in which we have to pick the solution

Lemma 2

For all v ∈ V ′, d(v) ∈ [∆− 2k ,∆] (∆ = max. degree of G [V ′])

Let us consider V∆ ⊆ V ′ the set of vertices of degree ∆
Algorithm:

if V∆ has an independent set of size ≥ k

⇒ we are done

bounded indep. set

b

implies bounded size⇒ planar graphs,r -partite (r fixed)V ′ V \ V ′

V∆

Restricted graph class:large independent set
can be computedefficiently

b

b
b

b
b

R. Watrigant Cardinality constrained subgraph problems 8/18



FPT algorithm for Max k-Cover in bipartite graphs
Input: G = (V ,E ), k ∈ N, a set V ′ ⊆ V in which we have to pick the solution

Lemma 2

For all v ∈ V ′, d(v) ∈ [∆− 2k ,∆] (∆ = max. degree of G [V ′])

Let us consider V∆ ⊆ V ′ the set of vertices of degree ∆
Algorithm:

if V∆ has an independent set of size ≥ k

⇒ we are done
otherwise |V∆| ≤ f (k)
⇒ branch on opt ∩ V∆:

⇒ planar graphs,r -partite (r fixed)V ′ V \ V ′

V∆

Restricted graph class:large independent set
can be computedefficiently

b

bounded indep. set

b

implies bounded size

f (k) ≥

R. Watrigant Cardinality constrained subgraph problems 8/18



FPT algorithm for Max k-Cover in bipartite graphs
Input: G = (V ,E ), k ∈ N, a set V ′ ⊆ V in which we have to pick the solution

Lemma 2

For all v ∈ V ′, d(v) ∈ [∆− 2k ,∆] (∆ = max. degree of G [V ′])

Let us consider V∆ ⊆ V ′ the set of vertices of degree ∆
Algorithm:

if V∆ has an independent set of size ≥ k

⇒ we are done
otherwise |V∆| ≤ f (k)
⇒ branch on opt ∩ V∆:

◮ if opt ∩ V∆ 6= ∅ ⇒ guess intersection
and decrease k

⇒ planar graphs,r -partite (r fixed)V ′ V \ V ′

V∆

Restricted graph class:large independent set
can be computedefficiently

b

bounded indep. set

b

implies bounded size

R. Watrigant Cardinality constrained subgraph problems 8/18



FPT algorithm for Max k-Cover in bipartite graphs
Input: G = (V ,E ), k ∈ N, a set V ′ ⊆ V in which we have to pick the solution

Lemma 2

For all v ∈ V ′, d(v) ∈ [∆− 2k ,∆] (∆ = max. degree of G [V ′])

Let us consider V∆ ⊆ V ′ the set of vertices of degree ∆
Algorithm:

if V∆ has an independent set of size ≥ k

⇒ we are done
otherwise |V∆| ≤ f (k)
⇒ branch on opt ∩ V∆:

◮ if opt ∩ V∆ 6= ∅ ⇒ guess intersection
and decrease k

◮ if opt ∩ V∆ = ∅ ⇒ delete V∆ from V ′

number of 6= degrees decreases ⇒ planar graphs,r -partite (r fixed)V ′ V \ V ′

V∆

Restricted graph class:large independent set
can be computedefficiently

b

bounded indep. set

b

implies bounded size

R. Watrigant Cardinality constrained subgraph problems 8/18



FPT algorithm for Max k-Cover in bipartite graphs
Input: G = (V ,E ), k ∈ N, a set V ′ ⊆ V in which we have to pick the solution

Lemma 2

For all v ∈ V ′, d(v) ∈ [∆− 2k ,∆] (∆ = max. degree of G [V ′])

Let us consider V∆ ⊆ V ′ the set of vertices of degree ∆
Algorithm:

if V∆ has an independent set of size ≥ k

⇒ we are done
otherwise |V∆| ≤ f (k)
⇒ branch on opt ∩ V∆:

◮ if opt ∩ V∆ 6= ∅ ⇒ guess intersection
and decrease k

◮ if opt ∩ V∆ = ∅ ⇒ delete V∆ from V ′

number of 6= degrees decreases ⇒ planar graphs,r -partite (r fixed)V ′ V \ V ′

V∆

Restricted graph class:large independent set
can be computedefficiently

b

bounded indep. set

b

implies bounded size

R. Watrigant Cardinality constrained subgraph problems 8/18



FPT algorithm for Max k-Cover in bipartite graphs
Input: G = (V ,E ), k ∈ N, a set V ′ ⊆ V in which we have to pick the solution

Lemma 2

For all v ∈ V ′, d(v) ∈ [∆− 2k ,∆] (∆ = max. degree of G [V ′])

Let us consider V∆ ⊆ V ′ the set of vertices of degree ∆
Algorithm:

if V∆ has an independent set of size ≥ k

⇒ we are done
otherwise |V∆| ≤ f (k)
⇒ branch on opt ∩ V∆:

◮ if opt ∩ V∆ 6= ∅ ⇒ guess intersection
and decrease k

◮ if opt ∩ V∆ = ∅ ⇒ delete V∆ from V ′

number of 6= degrees decreases

⇒ bounded search tree

⇒ planar graphs,r -partite (r fixed)

V ′

V \ V ′

V∆

Restricted graph class:large independent set
can be computedefficiently

b

bounded indep. set

b

implies bounded size

R. Watrigant Cardinality constrained subgraph problems 8/18



FPT algorithm for Max k-Cover in bipartite graphs
Input: G = (V ,E ), k ∈ N, a set V ′ ⊆ V in which we have to pick the solution

Lemma 2

For all v ∈ V ′, d(v) ∈ [∆− 2k ,∆] (∆ = max. degree of G [V ′])

Let us consider V∆ ⊆ V ′ the set of vertices of degree ∆
Algorithm:

if V∆ has an independent set of size ≥ k

⇒ we are done
otherwise |V∆| ≤ f (k)
⇒ branch on opt ∩ V∆:

◮ if opt ∩ V∆ 6= ∅ ⇒ guess intersection
and decrease k

◮ if opt ∩ V∆ = ∅ ⇒ delete V∆ from V ′

number of 6= degrees decreases

⇒ bounded search tree
planar graphs,

⇒

r -partite (r fixed)

V ′

V \ V ′

V∆

Restricted graph class:large independent set
can be computedefficiently

b

bounded indep. set

b

implies bounded size

R. Watrigant Cardinality constrained subgraph problems 8/18



FPT algorithm for Max k-Cover in bipartite graphs
Input: G = (V ,E ), k ∈ N, a set V ′ ⊆ V in which we have to pick the solution

Lemma 2

For all v ∈ V ′, d(v) ∈ [∆− 2k ,∆] (∆ = max. degree of G [V ′])

Let us consider V∆ ⊆ V ′ the set of vertices of degree ∆
Algorithm:

if V∆ has an independent set of size ≥ k

⇒ we are done
otherwise |V∆| ≤ f (k)
⇒ branch on opt ∩ V∆:

◮ if opt ∩ V∆ 6= ∅ ⇒ guess intersection
and decrease k

◮ if opt ∩ V∆ = ∅ ⇒ delete V∆ from V ′

number of 6= degrees decreases

⇒ bounded search tree
planar graphs,

⇒

r -partite (r fixed)

V ′

V \ V ′

V∆

Restricted graph class:large independent set
can be computedefficiently

b

bounded indep. set

b

implies bounded size

A similar algorithm can be designed for Max-(k , n − k)-Cut

R. Watrigant Cardinality constrained subgraph problems 8/18



Summary

Covering Inducing
Graphs Max Min Max Min

Max-k-Cover Min-k-Cover Densest Sparsest
General NP-h (generalization of Clique, Independent Set)

W [1]-h (k) [Cai ’08]
FPT (std. param.) [Blaser’03]

Bipartite NP-h [CK’14] NP-h (dual) NP-h [CP’84] NP-h (dual)
FPT (k) W [1]-h W [1]-h [CP’84] FPT (k)[trivial]

[BBPSW’14] [BBPSW’14]
Chordal NP-h (dual) NP-h (dual) NP-h [CP’84] NP-h [BBGW’14]

FPT (k) [trivial] FPT (k) [BBBGW’14]

R. Watrigant Cardinality constrained subgraph problems 9/18



Summary

Covering Inducing
Graphs Max Min Max Min

Max-k-Cover Min-k-Cover Densest Sparsest
General NP-h (generalization of Clique, Independent Set)

W [1]-h (k) [Cai ’08]
FPT (std. param.) [Blaser’03]

Bipartite NP-h [CK’14] NP-h (dual) NP-h [CP’84] NP-h (dual)
FPT (k) W [1]-h W [1]-h [CP’84] FPT (k)[trivial]

[BBPSW’14] [BBPSW’14]
Chordal NP-h (dual) NP-h (dual) NP-h [CP’84] NP-h [BBGW’14]

FPT (k) [trivial] FPT (k) [BBBGW’14]

R. Watrigant Cardinality constrained subgraph problems 9/18
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Densest k-Subgraph is NP-h in chordal graphs [Corneil,Perl,’84]
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What about Sparsest k-Subgraph now..?
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Sparsest k-Subgraph is NP-hard in chordal graphs [B. G. W., ’14]
Idea: gadget
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Sparsest k-Subgraph is NP-hard in chordal graphs [B. G. W., ’14]
Construction: reduction from k-Clique in general graphs
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e1 em
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(

k
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)
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gadgets

n − k
(clique)
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Sparsest k-Subgraph is NP-hard in chordal graphs [B. G. W., ’14]
Extension to cross-composition ⇒ no polynomial kernel (unless...)
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Sparsest k-Subgraph is FPT in chordal graphs [BBBGW’14]
Main arguments:

tree decomposition T with (nodes of T ↔ maximal cliques of G)

partial solution
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domination rule: N(•) ⊆ N(•) ⇒•is cheaper than•*

partial solution
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General NP-h (generalization of Clique, Independent Set)

W [1]-h (k) [Cai ’08]
FPT (std. param.) [Blaser’03]

Bipartite NP-h [CK’14] NP-h (dual) NP-h [CP’84] NP-h (dual)
FPT (k) W [1]-h W [1]-h [CP’84] FPT (k)[trivial]

[BBPSW’14] [BBPSW’14]
Chordal NP-h (dual) NP-h (dual) NP-h [CP’84] NP-h [BBGW’14]

? ? FPT (k) [trivial] FPT (k) [BBBGW’14]
(Proper) ? ? ? ?
Interval
Planar NP-h (dual) ? ? NP-h (indep. set)
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"funny" fact
Densest k-Subgraph in chordal graphs is (trivialy FPT and) unlikely to admit
a polynomial kernel:
easy or-composition:

R. Watrigant Cardinality constrained subgraph problems 17/18



"funny" fact
Densest k-Subgraph in chordal graphs is (trivialy FPT and) unlikely to admit
a polynomial kernel:
easy or-composition:

G1 Gi Gt

n2 + k vertices inducing
(

n2

2

)

+ C + kn2 edges ?

⇔

R. Watrigant Cardinality constrained subgraph problems 17/18



"funny" fact
Densest k-Subgraph in chordal graphs is (trivialy FPT and) unlikely to admit
a polynomial kernel:
easy or-composition:

G1 Gi Gt

n2

(clique)
n2

(clique)
n2

(clique)

n2 + k vertices inducing
(

n2

2

)

+ C + kn2 edges ?

k vertices inducing C edges in Gi

⇔

R. Watrigant Cardinality constrained subgraph problems 17/18



"funny" fact
Densest k-Subgraph in chordal graphs is (trivialy FPT and) unlikely to admit
a polynomial kernel:
easy or-composition:

G1 Gi Gt

n2

(clique)
n2

(clique)
n2

(clique)

n2 + k vertices inducing
(

n2

2

)

+ C + kn2 edges ?

k vertices inducing C edges in Gi

⇔

R. Watrigant Cardinality constrained subgraph problems 17/18



"funny" fact
Densest k-Subgraph in chordal graphs is (trivialy FPT and) unlikely to admit
a polynomial kernel:
easy or-composition:

G1 Gi Gt

n2

(clique)
n2

(clique)
n2

(clique)

n2 + k vertices inducing
(

n2

2

)

+ C + kn2 edges ?

k vertices inducing C edges in Gi

⇔

also holds for interval graphs !

R. Watrigant Cardinality constrained subgraph problems 17/18



"funny" fact
Densest k-Subgraph in chordal graphs is (trivialy FPT and) unlikely to admit
a polynomial kernel:
easy or-composition:

G1 Gi Gt

n2

(clique)
n2

(clique)
n2

(clique)

n2 + k vertices inducing
(

n2

2

)

+ C + kn2 edges ?

k vertices inducing C edges in Gi

⇔

also holds for interval graphs !

but we don’t know if the problem is NP-hard :-(
so:

R. Watrigant Cardinality constrained subgraph problems 17/18



"funny" fact
Densest k-Subgraph in chordal graphs is (trivialy FPT and) unlikely to admit
a polynomial kernel:
easy or-composition:

G1 Gi Gt

n2

(clique)
n2

(clique)
n2

(clique)

n2 + k vertices inducing
(

n2

2

)

+ C + kn2 edges ?

k vertices inducing C edges in Gi

⇔

also holds for interval graphs !

but we don’t know if the problem is NP-hard :-(
so:

◮ either it is NP-hard, and has no poly. kernel aswell (unless...) or:

R. Watrigant Cardinality constrained subgraph problems 17/18



"funny" fact
Densest k-Subgraph in chordal graphs is (trivialy FPT and) unlikely to admit
a polynomial kernel:
easy or-composition:

G1 Gi Gt

n2

(clique)
n2

(clique)
n2

(clique)

n2 + k vertices inducing
(

n2

2

)

+ C + kn2 edges ?

k vertices inducing C edges in Gi

⇔

also holds for interval graphs !

but we don’t know if the problem is NP-hard :-(
so:

◮ either it is NP-hard, and has no poly. kernel aswell (unless...) or:
◮ you believe it is in P ? Show a poly. kernel first !
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Merci !
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