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Densest k-Subgraph in chordal graphs

o if G has a clique of size k (polynomial)
= optimal solution

@ otherwise: treewidth < k
= classical dynamic programming gives O*(2*) algorithm
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Lemma 1
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If d(u) > d(v) + k then S U {u} is strictly better than S U {v}

Lemma 2
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Proof: d(w) =A ) ) )
d(va) @ sort vertices by non-increasing degrees
: o if d(vj) + k < d(vk) then v; ¢ opt
d(vi) Proof: suppose vj € opt
: then v; ¢ opt for some i € {1,--- , k}
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Input: G = (V,E), k€N, aset V/ C V in which we have to pick the solution

Lemma 1

Let SC V be of size k — 1, and u,v ¢ S.
If d(u) > d(v) + k then S U {u} is strictly better than S U {v}

Lemma 2
Forallv e V/, d(v) € [A -2k, A] (A = max. degree of G[V'])

Proof: d(w) =A : . .
d(v2) @ sort vertices by non-increasing degrees

e if d(vj) + k < d(v) then v; ¢ opt
d(V;)
o if d(vk)+ k < d(v1) then vy € opt
d(vk)
k> d(v)

R. Watrigant Cardinality constrained subgraph problems



FPT algorithm for Max k-Cover in bipartite graphs

Input: G = (V,E), k€N, aset V/ C V in which we have to pick the solution

Lemma 1

Let SC V be of size k — 1, and u,v ¢ S.
If d(u) > d(v) + k then S U {u} is strictly better than S U {v}

Lemma 2
Forallv e V/, d(v) € [A -2k, A] (A = max. degree of G[V'])

Proof: d(w) =A : . .
d(v2) @ sort vertices by non-increasing degrees

e if d(vj) + k < d(v) then v; ¢ opt
d(vi)
. o if d(vk)+ k < d(v1) then vy € opt
d(v) Proof: suppose v ¢ opt
k> d(v))

R. Watrigant Cardinality constrained subgraph problems



FPT algorithm for Max k-Cover in bipartite graphs
Input: G = (V,E), k€N, aset V/ C V in which we have to pick the solution
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FPT algorithm for Max k-Cover in bipartite graphs
Input: G = (V,E), k€N, aset V/ C V in which we have to pick the solution

Lemma 1

Let SC V be of size k — 1, and u,v ¢ S.
If d(u) > d(v) + k then S U {u} is strictly better than S U {v}

Lemma 2
Forallve V', d

v) € [A -2k, A] (A = max. degree of G[V'])

d(
Proof: d(w) =A : . .
d(v2) @ sort vertices by non-increasing degrees

. e if d(vj) + k < d(v) then v; ¢ opt
k> ;
- d(vi)
. o if d(vk)+ k < d(v1) then vy € opt
d(vi) Proof: suppose v ¢ opt
: then v; € opt for some j > k
K> d(v) but d(v;) < d(wvk) < d(wv1) — k
- L = v is better than v; !
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FPT algorithm for Max k-Cover in bipartite graphs

Input: G = (V,E), k €N, aset V/ C V in which we have to pick the solution

Lemma 2
Forall v e V/, d(v) € [A —2k, A] (A = max. degree of G[V’])J
Let us consider Va C V' the set of vertices of degree A
Algorithm:
ReStIiCt
\ede%:
v/ Va VAV
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FPT algorithm for Max k-Cover in bipartite graphs
Input: G = (V,E), k €N, aset V/ C V in which we have to pick the solution

Lemma 2
Forall v e V/, d(v) € [A —2k, A] (A = max. degree of G[V’])J
Let us consider Va C V' the set of vertices of degree A
Algorithm:
@ if Vo has an independent set of size > k ReStIiCt
= we are done ol cd gra h clags:
@ otherwise |Va| < f(k) arge jp /
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= branch on opt N Va:
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f(k)
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FPT algorithm for Max k-Cover in bipartite graphs
Input: G = (V,E), k €N, aset V/ C V in which we have to pick the solution

Lemma 2

Forall v e V/, d(v) € [A —2k, A] (A = max. degree of G[V’])J
Let us consider Va C V' the set of vertices of degree A
Algorithm:

@ if Vo has an independent set of size > k R

CStricy
= we are done \w‘g@%.
. ]arge i :)

ndepe
can pe ndeny g
efﬁcienf];mp uteq

@ otherwise |Va| < (k)
= branch on opt N Va:
» if opt N Va # () = guess intersection
and decrease k

v/ Va VAV

P
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Min-k-Cover is W([1]-hard in bipartite graphs
Reduction from k-Clique in regular graphs:
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Min-k-Cover is W([1]-hard in bipartite graphs
Reduction from k-Clique in regular graphs:
Let G = (V,E), k € N, and A =degree of G

k' = k + (£) vertices covering kA — 2(%) edges ?
< equivalent to find a k’-densest subgraph
& equivalent to find a k-clique in G

A — 2 vertices
A
complete (k)
2
¥
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Summary

Covering Inducing
Graphs Max Min Max Min
Max-k-Cover | Min-k-Cover Densest Sparsest
General NP-h (generalization of Clique, Independent Set)
WI[1]-h (k) [Cai '08]
FPT(std. param.) [Blaser'03]
Bipartite | NP-h [CK'14] | NP-h (dual) | NP-h [CP'84] NP-h (dual)
FPT (k) WI1]-h WI[1]-h [CP'84] FPT (k)[trivial]
[BBPSW'14] | [BBPSW'14]
Chordal | NP-h (dual) | NP-h (dual) | NP-h[CP'84] | NP-h [BBGW'14]
FPT(K) [trivial] | FPT (k) [BBBGW'14]
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Densest k-Subgraph is NP-h in chordal graphs [Corneil,Perl,'84]
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Densest k-Subgraph is NP-h in chordal graphs [Corneil,Perl,'84]
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inducing (§) + n(§) +2n(%) edges
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Densest k-Subgraph is NP-h in chordal graphs [Corneil,Perl,'84]

o
inducing (§) + n(§) +2n(%) edges

Nelelele

%
(clique)

What about Sparsest k-Subgraph now..?
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Sparsest k-Subgraph is NP-hard in chordal graphs [B. G. W., '14]
Idea: gadget
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Sparsest k-Subgraph is NP-hard in chordal graphs [B. G. W., '14]

Idea: gadget

p
D < XuZz

= (5) edges

I ] Y

XUuY
= (§) + 1 edges

Z
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Sparsest k-Subgraph is NP-hard in chordal graphs [B. G. W., '14]

Construction: reduction from k-Clique in general graphs

€1 €j em
X1 Xm
— [ ] [ ] [ ]
edge selector Y, /""" I 1 I 1 - 1 Ym
7 [ S S— —
1 m
vertex selector v
(clique)
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Construction: reduction from k-Clique in general graphs
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Sparsest k-Subgraph is NP-hard in chordal graphs [B. G. W., '14]

Construction: reduction from k-Clique in general graphs

m— (’2‘) gadgets (g) gadgets
— A A
€1 €j €m X
X1 I . | | i
edgeselector Yy, Do DEmmm ——J ---C—23 Ym
Z; Zn
vertex selector 4

(clique) n—k K
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Sparsest k-Subgraph is NP-hard in chordal graphs [B. G. W., '14]

Extension to cross-composition = no polynomial kernel (unless...)

m— (’2‘) gadgets (’2‘) gadgets

edge selector

vertex selector

instance selector
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Sparsest k-Subgraph is FPT in chordal graphs [BBBGW'14]

Main arguments:
@ tree decomposition T with (nodes of 7 <+ maximal cliques of G)
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Sparsest k-Subgraph is FPT in chordal graphs [BBBGW'14]

Main arguments:

@ tree decomposition T with (nodes of 7 <+ maximal cliques of G)
@ domination rule: N(@) C N(@) = @is cheaper than @*
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Sparsest k-Subgraph is FPT in chordal graphs [BBBGW'14]

Main arguments:

@ tree decomposition T with (nodes of 7 <+ maximal cliques of G)
@ domination rule: N(@) C N(@) = @is cheaper than @*
*true if @and @ are modules w.r.t. the partial solution

Invariants:
Q % Q Q @ nodes of 7 are modules w.r.t. S

partial solutlon
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Sparsest k-Subgraph is FPT in chordal graphs [BBBGW'14]

Main arguments:
@ tree decomposition T with (nodes of 7 <+ maximal cliques of G)
@ domination rule: N(@) C N(@) = @is cheaper than @*

*true if @and @ are modules w.r.t. the partial solution
= at the beginning: take one simplicial per leaf. But what next 7
@ a(G) < k, one simplicial per leaf = at most k — 1 leaves

&)
SORORO

Invariants:
Q Q @ nodes of 7" are modules w.r.t. S

@ number of leaves = f(k)

partial solution
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Sparsest k-Subgraph is FPT in chordal graphs [BBBGW'14]
Main arguments:
o tree decomposition T with (nodes of T <> maximat cliques of G)
@ domination rule: N(@) C N(@) = @is cheaper than @*
*true if @and @ are modules w.r.t. the partial solution
= at the beginning: take one simplicial per leaf. But what next 7
@ a(G) < k, one simplicial per leaf = at most k — 1 leaves
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@ Q Q Q Q @ nodes of T are modules w.r.t. S

@ number of leaves = f(k)
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*true if @and @ are modules w.r.t. the partial solution
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° @ no redundancy in internal nodes of T
partial solution
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Sparsest k-Subgraph is FPT in chordal graphs [BBBGW'14]
Main arguments:
o tree decomposition T with (nodes of T <> maximat cliques of G)
@ domination rule: N(@) C N(@) = @is cheaper than @*
*true if @and @ are modules w.r.t. the partial solution
= at the beginning: take one simplicial per leaf. But what next 7
@ a(G) < k, one simplicial per leaf = at most k — 1 leaves
@ add redundancy in the leaves of T

@ domination rule may not apply*
*in leaves!

@ but can apply on predecessors of leaves

Q c ° (here: take @)
Invariants:
@ Q Q Q Q @ nodes of T are modules w.r.t. S

@ number of leaves = f(k)

° @ no redundancy in internal nodes of T
partial solution
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Conclusion, open problems

Covering Inducing
Graphs Max Min Max Min
Max-k-Cover | Min-k-Cover Densest Sparsest
General NP-h (generalization of Clique, Independent Set)
WI1]-h (k) [Cai '08]
FPT (std. param.) [Blaser'03]
Bipartite | NP-h [CK'14] | NP-h (dual) | NP-h [CP’'84] NP-h (dual)
FPT (k) WI[1]-h WI[1]-h [CP'84] FPT (k)[trivial]
[BBPSW'14] | [BBPSW'14]
Chordal | NP-h (dual) | NP-h (dual) NP-h [CP’84] NP-h [BBGW'14]
FPT (k) [BBBGW'14]

7

7 FPT (k) [trivial]
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Covering Inducing
Graphs Max Min Max Min
Max-k-Cover | Min-k-Cover Densest Sparsest
General NP-h (generalization of Clique, Independent Set)
WI1]-h (k) [Cai '08]
FPT (std. param.) [Blaser'03]
Bipartite | NP-h [CK'14] | NP-h (dual) | NP-h [CP’'84] NP-h (dual)

FPT (k) W[i}h | W[i]-h [CP'84] FPT (k)[trivial]
[BBPSW'14] | [BBPSW'14]
Chordal | NP-h (dual) | NP-h (dual) | NP-h [CP'84] | NP-h [BBGW'14]

? FPT(k) [trivial] | FPT (k) [BBBGW'14]
? ?

(Proper)
Interval
Planar NP-h (dual)

? 7 NP-h (indep. set)
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"funny" fact

@ Densest k-Subgraph in chordal graphs is (trivialy FPT and) unlikely to admit

a polynomial kernel:
easy or-composition:

G

n?

(clique)
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"funny" fact

@ Densest k-Subgraph in chordal graphs is (trivialy FPT and) unlikely to admit
a polynomial kernel:
easy or-composition:

Gy G Gt
n? n?
(clique) (clique)

k vertices inducing C edges in G;
&

n? + k vertices inducing ("22) + C + kn? edges ?
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"funny" fact

@ Densest k-Subgraph in chordal graphs is (trivialy FPT and) unlikely to admit
a polynomial kernel:
easy or-composition:

Gy G Gt
n? n?
(clique) (clique)

k vertices inducing C edges in G;
&

n? + k vertices inducing ("22) + C + kn? edges ?
@ also holds for interval graphs !
@ but we don't know if the problem is NP-hard :-(
so:

> either it is NP-hard, and has no poly. kernel aswell (unless...) or:
> you believe it is in P 7 Show a poly. kernel first !
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Merci !
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