
On a Parameterized Problem in Access Control

Rémi Watrigant

Royal Holloway University of London

Joint work with: Jason Crampton and Gregory Gutin

Séminaire COATI - Sophia Antipolis
March 15th, 2016.

R. Watrigant On a Parameterized Problem in Access Control 1/15

1 Definition of the problem

2 Appetizer: easy observations

3 FPT algorithms

4 Efficient algorithms and implementation

5 Conclusion

R. Watrigant On a Parameterized Problem in Access Control 2/15

Resiliency Checking Problem (RCP)
Input: an authorization policy: UP ⊆ U × P

s, d , t ∈ N

P

U

Permissions

Users

R. Watrigant On a Parameterized Problem in Access Control 3/15

Resiliency Checking Problem (RCP)
Input: an authorization policy: UP ⊆ U × P

s, d , t ∈ N

P

U

Permissions

Users

t t

Set of teams: d mutually disjoint sets of t users having collectively all permissions.

R. Watrigant On a Parameterized Problem in Access Control 3/15

Resiliency Checking Problem (RCP)
Input: an authorization policy: UP ⊆ U × P

s, d , t ∈ N

Output: decide whether upon removal of any set of s users, there still exists a set
of d teams of size t

P

U

Permissions

Users

t t

Set of teams: d mutually disjoint sets of t users having collectively all permissions.

R. Watrigant On a Parameterized Problem in Access Control 3/15

Resiliency Checking Problem (RCP)
Input: an authorization policy: UP ⊆ U × P

s, d , t ∈ N

Output: decide whether upon removal of any set of s users, there still exists a set
of d teams of size t

P

U

Permissions

Users

d = 2
t = 2

s = 1

Set of teams: d mutually disjoint sets of t users having collectively all permissions.

R. Watrigant On a Parameterized Problem in Access Control 3/15

Resiliency Checking Problem (RCP)
Input: an authorization policy: UP ⊆ U × P

s, d , t ∈ N

Output: decide whether upon removal of any set of s users, there still exists a set
of d teams of size t

P

U

Permissions

Users

d = 2
t = 2

s = 1

Set of teams: d mutually disjoint sets of t users having collectively all permissions.

R. Watrigant On a Parameterized Problem in Access Control 3/15

Resiliency Checking Problem (RCP)
Input: an authorization policy: UP ⊆ U × P

s, d , t ∈ N

Output: decide whether upon removal of any set of s users, there still exists a set
of d teams of size t

P

U

Permissions

Users

d = 2
t = 2

s = 1

Set of teams: d mutually disjoint sets of t users having collectively all permissions.

R. Watrigant On a Parameterized Problem in Access Control 3/15

Resiliency Checking Problem (RCP)
Input: an authorization policy: UP ⊆ U × P

s, d , t ∈ N

Output: decide whether upon removal of any set of s users, there still exists a set
of d teams of size t

P

U

Permissions

Users

d = 2
t = 2

s = 1

Set of teams: d mutually disjoint sets of t users having collectively all permissions.

R. Watrigant On a Parameterized Problem in Access Control 3/15

Resiliency Checking Problem (RCP)
Input: an authorization policy: UP ⊆ U × P

s, d , t ∈ N

Output: decide whether upon removal of any set of s users, there still exists a set
of d teams of size t

P

U

Permissions

Users

d = 2
t = 2

s = 1

Set of teams: d mutually disjoint sets of t users having collectively all permissions.

R. Watrigant On a Parameterized Problem in Access Control 3/15

Resiliency Checking Problem (RCP)
Input: an authorization policy: UP ⊆ U × P

s, d , t ∈ N

Output: decide whether upon removal of any set of s users, there still exists a set
of d teams of size t

P

U

Permissions

Users

d = 2
t = 2

s = 1

Set of teams: d mutually disjoint sets of t users having collectively all permissions.

R. Watrigant On a Parameterized Problem in Access Control 3/15

Resiliency Checking Problem (RCP)
Input: an authorization policy: UP ⊆ U × P

s, d , t ∈ N

Output: decide whether upon removal of any set of s users, there still exists a set
of d teams of size t

P

U

Permissions

Users

d = 2
t = 2

s = 2

Set of teams: d mutually disjoint sets of t users having collectively all permissions.
Blocker set: set of users which intersects every set of teams.

R. Watrigant On a Parameterized Problem in Access Control 3/15

Resiliency Checking Problem (RCP)
Input: an authorization policy: UP ⊆ U × P

s, d , t ∈ N

Output: decide whether upon removal of any set of s users, there still exists a set
of d teams of size t

P

U

Permissions

Users

d = 2
t = 2

s = 2

p

Set of teams: d mutually disjoint sets of t users having collectively all permissions.
Blocker set: set of users which intersects every set of teams.

R. Watrigant On a Parameterized Problem in Access Control 3/15

Parameterized algorithms

For a problem instance x coming with its parameter k :

R. Watrigant On a Parameterized Problem in Access Control 4/15

Parameterized algorithms

For a problem instance x coming with its parameter k :

XP if you can solve it in O(|x |f (k))

R. Watrigant On a Parameterized Problem in Access Control 4/15

Parameterized algorithms

For a problem instance x coming with its parameter k :

XP if you can solve it in O(|x |f (k))

FPT if you can solve it in O(f (k)|x |O(1))

R. Watrigant On a Parameterized Problem in Access Control 4/15

Parameterized algorithms

For a problem instance x coming with its parameter k :

XP if you can solve it in O(|x |f (k))

para-NP-hard: NP-hard when k is fixed to some constant
=⇒ no XP algorithm unless P = NP

FPT if you can solve it in O(f (k)|x |O(1))

R. Watrigant On a Parameterized Problem in Access Control 4/15

Parameterized algorithms

For a problem instance x coming with its parameter k :

XP if you can solve it in O(|x |f (k))

para-NP-hard: NP-hard when k is fixed to some constant
=⇒ no XP algorithm unless P = NP

FPT if you can solve it in O(f (k)|x |O(1))

W [1]-hardness: parameter-preserving reduction from a W [1]-hard problem
=⇒ no FPT algorithm unless FPT = W [1]

R. Watrigant On a Parameterized Problem in Access Control 4/15

Parameterized algorithms

For a problem instance x coming with its parameter k :

XP if you can solve it in O(|x |f (k))

para-NP-hard: NP-hard when k is fixed to some constant
=⇒ no XP algorithm unless P = NP

FPT if you can solve it in O(f (k)|x |O(1))

W [1]-hardness: parameter-preserving reduction from a W [1]-hard problem
=⇒ no FPT algorithm unless FPT = W [1]

XP

FPT W[1]-hard

para-NP-hard

TRACTABLE INTRACTABLE

R. Watrigant On a Parameterized Problem in Access Control 4/15

Related work
RCP
Input: UP ⊆ U × P , s, d , t ∈ N

Output: upon removal of any set of s users, are there still d teams of size t ?

R. Watrigant On a Parameterized Problem in Access Control 5/15

Related work
RCP
Input: UP ⊆ U × P , s, d , t ∈ N

Output: upon removal of any set of s users, are there still d teams of size t ?

Li, Tripunitara, Wang, 2009

RCP<>, RCP<d = 1> and RCP<t = ∞> are NP-hard and in coNPNP .

RCP<s = 0, d = 1> and RCP<s = 0, t = ∞> are NP-hard.

RCP<d = 1, t = ∞> is linear-time solvable.

And they present an implementation of an algorithm relying on a SAT formulation.

R. Watrigant On a Parameterized Problem in Access Control 5/15

Related work
RCP
Input: UP ⊆ U × P , s, d , t ∈ N

Output: upon removal of any set of s users, are there still d teams of size t ?

p, s, d , t

p, s, dp, s, t p, d , t

p, s p, dp, t s, d s, t d , t

p s dt

s, d , t

R. Watrigant On a Parameterized Problem in Access Control 5/15

Related work
RCP
Input: UP ⊆ U × P , s, d , t ∈ N

Output: upon removal of any set of s users, are there still d teams of size t ?

RCP<s = 0, d = 1> is equivalent to the Hitting Set problem

p, s, d , t

p, s, dp, s, t p, d , t

p, s p, dp, t s, d s, t d , t

p s dt
para-NP-hard

s, d , t

W[2]-hard

R. Watrigant On a Parameterized Problem in Access Control 5/15

Related work
RCP
Input: UP ⊆ U × P , s, d , t ∈ N

Output: upon removal of any set of s users, are there still d teams of size t ?

Results obtained for RCP<> [Crampton, Gutin, W.]

p, s, d , t

p, s, dp, s, t p, d , t

p, s p, dp, t s, d s, t d , t

p s dt
para-(co)NP-hard

s, d , t

W[2]-hard

FPT XP

R. Watrigant On a Parameterized Problem in Access Control 5/15

Related work
RCP
Input: UP ⊆ U × P , s, d , t ∈ N

Output: upon removal of any set of s users, are there still d teams of size t ?

Results obtained for RCP<s = 0> [Crampton, Gutin, W.]

para-NP-hard

p, d , t

p, d p, t

p d t

W[2]-hard

FPT

XP

d , t

R. Watrigant On a Parameterized Problem in Access Control 5/15

Easy Observations
RCP
Input: UP ⊆ U × P , s, d , t ∈ N

Output: upon removal of any set of s users, are there still d teams of size t ?

RCP<s = 0> is in XP parameterized by (d , t) (brute force)

R. Watrigant On a Parameterized Problem in Access Control 6/15

Easy Observations
RCP
Input: UP ⊆ U × P , s, d , t ∈ N

Output: upon removal of any set of s users, are there still d teams of size t ?

RCP<s = 0> is in XP parameterized by (d , t) (brute force)
⇒ RCP<> is in XP parameterized by (s, d , t) (branching)

Easy, but:

R. Watrigant On a Parameterized Problem in Access Control 6/15

Easy Observations
RCP
Input: UP ⊆ U × P , s, d , t ∈ N

Output: upon removal of any set of s users, are there still d teams of size t ?

RCP<s = 0> is in XP parameterized by (d , t) (brute force)
⇒ RCP<> is in XP parameterized by (s, d , t) (branching)

Easy, but:

W [2]-hard parameterized by (s, d , t)

R. Watrigant On a Parameterized Problem in Access Control 6/15

Easy Observations
RCP
Input: UP ⊆ U × P , s, d , t ∈ N

Output: upon removal of any set of s users, are there still d teams of size t ?

RCP<s = 0> is in XP parameterized by (d , t) (brute force)
⇒ RCP<> is in XP parameterized by (s, d , t) (branching)

Easy, but:

W [2]-hard parameterized by (s, d , t)
para-NP-hard parameterized by (s, d), (d , t) (s, t)

R. Watrigant On a Parameterized Problem in Access Control 6/15

Easy Observations
RCP
Input: UP ⊆ U × P , s, d , t ∈ N

Output: upon removal of any set of s users, are there still d teams of size t ?

RCP<s = 0> is in XP parameterized by (d , t) (brute force)
⇒ RCP<> is in XP parameterized by (s, d , t) (branching)

Easy, but:

W [2]-hard parameterized by (s, d , t)
para-NP-hard parameterized by (s, d), (d , t) (s, t)

What about replacing t by p ? (we may assume t ≤ p)

R. Watrigant On a Parameterized Problem in Access Control 6/15

Easy Observations
RCP
Input: UP ⊆ U × P , s, d , t ∈ N

Output: upon removal of any set of s users, are there still d teams of size t ?

RCP<s = 0> is in XP parameterized by (d , t) (brute force)
⇒ RCP<> is in XP parameterized by (s, d , t) (branching)

Easy, but:

W [2]-hard parameterized by (s, d , t)
para-NP-hard parameterized by (s, d), (d , t) (s, t)

What about replacing t by p ? (we may assume t ≤ p)

RCP<> is FPT parameterized by (p,min{s, d})

R. Watrigant On a Parameterized Problem in Access Control 6/15

Easy Observations
RCP
Input: UP ⊆ U × P , s, d , t ∈ N

Output: upon removal of any set of s users, are there still d teams of size t ?

RCP<s = 0> is in XP parameterized by (d , t) (brute force)
⇒ RCP<> is in XP parameterized by (s, d , t) (branching)

Easy, but:

W [2]-hard parameterized by (s, d , t)
para-NP-hard parameterized by (s, d), (d , t) (s, t)

What about replacing t by p ? (we may assume t ≤ p)

RCP<> is FPT parameterized by (p,min{s, d})
first: let us show that RCP<s = 0> is FPT parameterized by p only

R. Watrigant On a Parameterized Problem in Access Control 6/15

RCP<s = 0> is FPT parameterized by p

R. Watrigant On a Parameterized Problem in Access Control 7/15

RCP<s = 0> is FPT parameterized by p

Theorem [Lenstra, 1983]+[Kannan, 1987]+[Frank and Tardos, 1987]

Whether a given ILP has a non-empty solution set can be decided in
O∗(n2.5n+o(n)) time and polynomial space, where n is the number of variables.

R. Watrigant On a Parameterized Problem in Access Control 7/15

RCP<s = 0> is FPT parameterized by p

P

U

Permissions

Users

p

b b b b b b b b b

R. Watrigant On a Parameterized Problem in Access Control 7/15

RCP<s = 0> is FPT parameterized by p
partition U into at most 2p groups of users of same neighborhood

P

U

Permissions

Users

p

b b b b b b b b b

at most 2p classes of neighborhood

R. Watrigant On a Parameterized Problem in Access Control 7/15

RCP<s = 0> is FPT parameterized by p
partition U into at most 2p groups of users of same neighborhood
a team ≡ a set of ≤ t subsets of P , called configurations:

P

U

Permissions

Users

p

b b b b b b b b b

at most 2p classes of neighborhood

b b b b

R. Watrigant On a Parameterized Problem in Access Control 7/15

RCP<s = 0> is FPT parameterized by p
partition U into at most 2p groups of users of same neighborhood
a team ≡ a set of ≤ t subsets of P , called configurations:

C =

{

{N1, . . . ,Nb} : b ≤ t,Ni ⊆ P s.t.

b
⋃

i=1

Ni = P

}

P

U

Permissions

Users

p

b b b b b b b b b

at most 2p classes of neighborhood

b b b b

R. Watrigant On a Parameterized Problem in Access Control 7/15

RCP<s = 0> is FPT parameterized by p
partition U into at most 2p groups of users of same neighborhood
a team ≡ a set of ≤ t subsets of P , called configurations:

C =

{

{N1, . . . ,Nb} : b ≤ t,Ni ⊆ P s.t.

b
⋃

i=1

Ni = P

}

variables of the ILP:
for c ∈ C, xc ∈ [0, d] is the number of teams with configuration c

R. Watrigant On a Parameterized Problem in Access Control 7/15

RCP<s = 0> is FPT parameterized by p
partition U into at most 2p groups of users of same neighborhood
a team ≡ a set of ≤ t subsets of P , called configurations:

C =

{

{N1, . . . ,Nb} : b ≤ t,Ni ⊆ P s.t.

b
⋃

i=1

Ni = P

}

variables of the ILP:
for c ∈ C, xc ∈ [0, d] is the number of teams with configuration c

First constraint:
∑

c∈C

xc = d

R. Watrigant On a Parameterized Problem in Access Control 7/15

RCP<s = 0> is FPT parameterized by p
partition U into at most 2p groups of users of same neighborhood
a team ≡ a set of ≤ t subsets of P , called configurations:

C =

{

{N1, . . . ,Nb} : b ≤ t,Ni ⊆ P s.t.

b
⋃

i=1

Ni = P

}

variables of the ILP:
for c ∈ C, xc ∈ [0, d] is the number of teams with configuration c

First constraint:
∑

c∈C

xc = d

Second constraint:
∑

c∈C[N]

xc ≤ |U[N]| ∀N ⊆ P

where:
◮ C[N] are the configurations involving N
◮ U[N] users having neighborhood N

R. Watrigant On a Parameterized Problem in Access Control 7/15

RCP<> is FPT parameterized by (p,min{s, d})

P

U

Permissions

Users

p

b b b b b b b b b

at most 2p classes of neighborhood

R. Watrigant On a Parameterized Problem in Access Control 8/15

RCP<> is FPT parameterized by (p,min{s, d})
partition U into at most 2p groups of users of same neighborhood

P

U

Permissions

Users

p

b b b b b b b b b

at most 2p classes of neighborhood

R. Watrigant On a Parameterized Problem in Access Control 8/15

RCP<> is FPT parameterized by (p,min{s, d})
partition U into at most 2p groups of users of same neighborhood
let S ⊆ U be a blocker set

P

U

Permissions

Users

p

b b b b b b b b b

at most 2p classes of neighborhood

R. Watrigant On a Parameterized Problem in Access Control 8/15

RCP<> is FPT parameterized by (p,min{s, d})
partition U into at most 2p groups of users of same neighborhood
let S ⊆ U be a blocker set

class U[N] (users of neighborhood N)
R. Watrigant On a Parameterized Problem in Access Control 8/15

RCP<> is FPT parameterized by (p,min{s, d})
partition U into at most 2p groups of users of same neighborhood
let S ⊆ U be a blocker set

Claim: ∀N ⊆ P , U[N] ∩ S 6= ∅ =⇒ |U[N] \ S | ≤ d − 1

class U[N] (users of neighborhood N)

S ∩ U[N]

R. Watrigant On a Parameterized Problem in Access Control 8/15

RCP<> is FPT parameterized by (p,min{s, d})
partition U into at most 2p groups of users of same neighborhood
let S ⊆ U be a blocker set

Claim: ∀N ⊆ P , U[N] ∩ S 6= ∅ =⇒ |U[N] \ S | ≤ d − 1

For all u ∈ U[N] ∩ S , there exists a set of teams V1, . . . ,Vt such that:
◮ (∪Vi) ∩ S = {u}
◮ | (∪Vi) ∩ U[N]| ≤ d

class U[N] (users of neighborhood N)

S ∩ U[N]

u

R. Watrigant On a Parameterized Problem in Access Control 8/15

RCP<> is FPT parameterized by (p,min{s, d})
partition U into at most 2p groups of users of same neighborhood
let S ⊆ U be a blocker set

Claim: ∀N ⊆ P , U[N] ∩ S 6= ∅ =⇒ |U[N] \ S | ≤ d − 1

For all u ∈ U[N] ∩ S , there exists a set of teams V1, . . . ,Vt such that:
◮ (∪Vi) ∩ S = {u}
◮ | (∪Vi) ∩ U[N]| ≤ d

class U[N] (users of neighborhood N)

S ∩ U[N]

u

≤ d

R. Watrigant On a Parameterized Problem in Access Control 8/15

RCP<> is FPT parameterized by (p,min{s, d})
partition U into at most 2p groups of users of same neighborhood
let S ⊆ U be a blocker set

Claim: ∀N ⊆ P , U[N] ∩ S 6= ∅ =⇒ |U[N] \ S | ≤ d − 1

Now, if |U[N] \ S | ≥ d there exists v ∈ U[N] \ S such that v /∈ ∪Vi

class U[N] (users of neighborhood N)

S ∩ U[N]

u

v

≤ d

R. Watrigant On a Parameterized Problem in Access Control 8/15

RCP<> is FPT parameterized by (p,min{s, d})
partition U into at most 2p groups of users of same neighborhood
let S ⊆ U be a blocker set

Claim: ∀N ⊆ P , U[N] ∩ S 6= ∅ =⇒ |U[N] \ S | ≤ d − 1

Now, if |U[N] \ S | ≥ d there exists v ∈ U[N] \ S such that v /∈ ∪Vi

Replacing u by v creates another set of teams which does not intersect S :
impossible!

class U[N] (users of neighborhood N)

S ∩ U[N]

u

v

≤ d

R. Watrigant On a Parameterized Problem in Access Control 8/15

RCP<> is FPT parameterized by (p,min{s, d})
partition U into at most 2p groups of users of same neighborhood
let S ⊆ U be a blocker set

Claim: ∀N ⊆ P , U[N] ∩ S 6= ∅ =⇒ |U[N] \ S | ≤ d − 1

Conclusion: it is sufficient to enumerate:

d − 1

R. Watrigant On a Parameterized Problem in Access Control 9/15

RCP<> is FPT parameterized by (p,min{s, d})
partition U into at most 2p groups of users of same neighborhood
let S ⊆ U be a blocker set

Claim: ∀N ⊆ P , U[N] ∩ S 6= ∅ =⇒ |U[N] \ S | ≤ d − 1

Conclusion: it is sufficient to enumerate:
◮ which classes S intersects =⇒ O(22

p

)

d − 1

R. Watrigant On a Parameterized Problem in Access Control 9/15

RCP<> is FPT parameterized by (p,min{s, d})
partition U into at most 2p groups of users of same neighborhood
let S ⊆ U be a blocker set

Claim: ∀N ⊆ P , U[N] ∩ S 6= ∅ =⇒ |U[N] \ S | ≤ d − 1

Conclusion: it is sufficient to enumerate:
◮ which classes S intersects =⇒ O(22

p

)
◮ how much we take in addition to what we already know

=⇒ ≤ 2p numbers taking value in [0,min{d − 1, s}]

d − 1

R. Watrigant On a Parameterized Problem in Access Control 9/15

RCP<> is FPT parameterized by (p,min{s, d})
partition U into at most 2p groups of users of same neighborhood
let S ⊆ U be a blocker set

Claim: ∀N ⊆ P , U[N] ∩ S 6= ∅ =⇒ |U[N] \ S | ≤ d − 1

Conclusion: it is sufficient to enumerate:
◮ which classes S intersects =⇒ O(22

p

)
◮ how much we take in addition to what we already know

=⇒ ≤ 2p numbers taking value in [0,min{d − 1, s}]

And then: for each candidate S , test whether it is a blocker set by solving
RCP<s = 0> with user set U \ S

d − 1

R. Watrigant On a Parameterized Problem in Access Control 9/15

RCP<> is FPT parameterized by (p,min{s, d})
partition U into at most 2p groups of users of same neighborhood
let S ⊆ U be a blocker set

Claim: ∀N ⊆ P , U[N] ∩ S 6= ∅ =⇒ |U[N] \ S | ≤ d − 1

Conclusion: it is sufficient to enumerate:
◮ which classes S intersects =⇒ O(22

p

)
◮ how much we take in addition to what we already know

=⇒ ≤ 2p numbers taking value in [0,min{d − 1, s}]

And then: for each candidate S , test whether it is a blocker set by solving
RCP<s = 0> with user set U \ S

Theorem [Crampton, Gutin, W.]

RCP<> is FPT parameterized by (p,min{s, d}).

R. Watrigant On a Parameterized Problem in Access Control 9/15

RCP<> is FPT parameterized by (p,min{s, d})
partition U into at most 2p groups of users of same neighborhood
let S ⊆ U be a blocker set

Claim: ∀N ⊆ P , U[N] ∩ S 6= ∅ =⇒ |U[N] \ S | ≤ d − 1

Conclusion: it is sufficient to enumerate:
◮ which classes S intersects =⇒ O(22

p

)
◮ how much we take in addition to what we already know

=⇒ ≤ 2p numbers taking value in [0,min{d − 1, s}]

And then: for each candidate S , test whether it is a blocker set by solving
RCP<s = 0> with user set U \ S

Theorem [Crampton, Gutin, W.]

RCP<> is FPT parameterized by (p,min{s, d}).

Open questions:

what about parameterized by p only ?

better running time ? (combinatorial algorithm for RCP<s = 0>)

R. Watrigant On a Parameterized Problem in Access Control 9/15

Contents

1. Definitions

2. Appetizer: easy observations

3. FPT algorithms

4. Efficient algorithms and implementation

5. Conclusion

R. Watrigant On a Parameterized Problem in Access Control 10/15

Efficient algorithms?
Li, Tripunitara, Wang’s approach for solving RCP<>:

R. Watrigant On a Parameterized Problem in Access Control 11/15

Efficient algorithms?
Li, Tripunitara, Wang’s approach for solving RCP<>:

enumerate all subsets of users of size ≤ s

R. Watrigant On a Parameterized Problem in Access Control 11/15

Efficient algorithms?
Li, Tripunitara, Wang’s approach for solving RCP<>:

enumerate all subsets of users of size ≤ s

for each such S , solve RCP<s = 0> with users U \ S (using a SAT solver)

R. Watrigant On a Parameterized Problem in Access Control 11/15

Efficient algorithms?
Li, Tripunitara, Wang’s approach for solving RCP<>:

enumerate all subsets of users of size ≤ s

for each such S , solve RCP<s = 0> with users U \ S (using a SAT solver)

S1 dominates S2:
∃ a set of teams in U \ S1 =⇒ ∃ a set of teams in U \ S2

P

U

Permissions

Users

b b b b b b b b b

S1 S2

b b

R. Watrigant On a Parameterized Problem in Access Control 11/15

Efficient algorithms?
Li, Tripunitara, Wang’s approach for solving RCP<>:

enumerate all subsets of users of size ≤ s

for each such S , solve RCP<s = 0> with users U \ S (using a SAT solver)

S1 dominates S2:
∃ a set of teams in U \ S1 =⇒ ∃ a set of teams in U \ S2

enough to run RCP<s = 0> only when removing non-dominated sets

R. Watrigant On a Parameterized Problem in Access Control 11/15

Efficient algorithms?
Li, Tripunitara, Wang’s approach for solving RCP<>:

enumerate all subsets of users of size ≤ s

for each such S , solve RCP<s = 0> with users U \ S (using a SAT solver)

S1 dominates S2:
∃ a set of teams in U \ S1 =⇒ ∃ a set of teams in U \ S2

enough to run RCP<s = 0> only when removing non-dominated sets

the bottleneck comes from the SAT solver
=⇒ what about a fast algorithm for RCP<s = 0> ?

R. Watrigant On a Parameterized Problem in Access Control 11/15

Efficient algorithms?
Li, Tripunitara, Wang’s approach for solving RCP<>:

enumerate all subsets of users of size ≤ s

for each such S , solve RCP<s = 0> with users U \ S (using a SAT solver)

S1 dominates S2:
∃ a set of teams in U \ S1 =⇒ ∃ a set of teams in U \ S2

enough to run RCP<s = 0> only when removing non-dominated sets

the bottleneck comes from the SAT solver
=⇒ what about a fast algorithm for RCP<s = 0> ?

better not to use:
◮ Lenstra’s algorithm/ILP (FPT param. by p only)
◮ dynamic programming (O∗(2dp) time and space)

R. Watrigant On a Parameterized Problem in Access Control 11/15

Efficient algorithms?

Workflow Satisfaction Problem (WSP)

Input: a set of steps S , a set of users U

authorization policy A ⊆ U × S , a set of constraints
Output: a plan π : S → U such that:

(π(s), s) ∈ A for all s ∈ S

π does not violate any constraint

S

U

Steps

Users
b b b b b b b

b b b b b
not-equal equalat most 2

R. Watrigant On a Parameterized Problem in Access Control 12/15

Efficient algorithms?

Workflow Satisfaction Problem (WSP)

Input: a set of steps S , a set of users U

authorization policy A ⊆ U × S , a set of constraints
Output: a plan π : S → U such that:

(π(s), s) ∈ A for all s ∈ S

π does not violate any constraint

S

U

Steps

Users
b b b b b b b

b b b b b
not-equal equalat most 2

R. Watrigant On a Parameterized Problem in Access Control 12/15

Efficient algorithms?

Workflow Satisfaction Problem (WSP)

Input: a set of steps S , a set of users U

authorization policy A ⊆ U × S , a set of constraints
Output: a plan π : S → U such that:

(π(s), s) ∈ A for all s ∈ S

π does not violate any constraint

S

U

Steps

Users
b b b b b b b

b b b b b
not-equal equalat most 2

R. Watrigant On a Parameterized Problem in Access Control 12/15

Efficient algorithms?

Workflow Satisfaction Problem (WSP)

Input: a set of steps S , a set of users U

authorization policy A ⊆ U × S , a set of constraints
Output: a plan π : S → U such that:

(π(s), s) ∈ A for all s ∈ S

π does not violate any constraint

S

U

Steps

Users
b b b b b b b

b b b b b

R. Watrigant On a Parameterized Problem in Access Control 12/15

Efficient algorithms?

Workflow Satisfaction Problem (WSP)

Input: a set of steps S , a set of users U

authorization policy A ⊆ U × S , a set of constraints
Output: a plan π : S → U such that:

(π(s), s) ∈ A for all s ∈ S

π does not violate any constraint

S

U

Steps

Users
b b b b b b b

R. Watrigant On a Parameterized Problem in Access Control 12/15

Efficient algorithms?

Workflow Satisfaction Problem (WSP)

Input: a set of steps S , a set of users U

authorization policy A ⊆ U × S , a set of constraints
Output: a plan π : S → U such that:

(π(s), s) ∈ A for all s ∈ S

π does not violate any constraint

Theorem [Karapetyan, Gagarin, Gutin, 2015]

WSP can be solved in O∗(2k log k), where k is the number of steps.

More importantly: an efficient implementation of the algorithm can solve instances
with up to 60 steps !

R. Watrigant On a Parameterized Problem in Access Control 12/15

Efficient algorithms ?

Theorem [Crampton, Gutin, W.]

There is a reduction from RCP<s = 0> to WSP with dp steps.

R. Watrigant On a Parameterized Problem in Access Control 13/15

Efficient algorithms ?

Theorem [Crampton, Gutin, W.]

There is a reduction from RCP<s = 0> to WSP with dp steps.

P

U

Permissions

Users
b b b b b

R. Watrigant On a Parameterized Problem in Access Control 13/15

Efficient algorithms ?

Theorem [Crampton, Gutin, W.]

There is a reduction from RCP<s = 0> to WSP with dp steps.

duplicate the set of permissions d times

S

U

Steps

Users
b b b b b

R. Watrigant On a Parameterized Problem in Access Control 13/15

Efficient algorithms ?

Theorem [Crampton, Gutin, W.]

There is a reduction from RCP<s = 0> to WSP with dp steps.

duplicate the set of permissions d times

add at-most-t constraints to preserve team sizes

S

U

Steps

Users
b b b b b

at most t
at most tat most t

not equal

R. Watrigant On a Parameterized Problem in Access Control 13/15

Efficient algorithms ?

Theorem [Crampton, Gutin, W.]

There is a reduction from RCP<s = 0> to WSP with dp steps.

duplicate the set of permissions d times

add at-most-t constraints to preserve team sizes

add not-equal constraints to preserve disjointness

S

U

Steps

Users
b b b b b

at most t
at most tat most t

not equal

R. Watrigant On a Parameterized Problem in Access Control 13/15

Efficient algorithms ?

Theorem [Crampton, Gutin, W.]

There is a reduction from RCP<s = 0> to WSP with dp steps.

duplicate the set of permissions d times

add at-most-t constraints to preserve team sizes

add not-equal constraints to preserve disjointness

S

U

Steps

Users

at most t
at most tat most t

not equal

R. Watrigant On a Parameterized Problem in Access Control 13/15

Efficient algorithms ?

Theorem [Crampton, Gutin, W.]

There is a reduction from RCP<s = 0> to WSP with dp steps.

Corollary

RCP<s = 0> can be solved in O∗(2dp log(dp)).

(with an efficient algorithm!)

R. Watrigant On a Parameterized Problem in Access Control 13/15

Efficient algorithms ?

Theorem [Crampton, Gutin, W.]

There is a reduction from RCP<s = 0> to WSP with dp steps.

Corollary

RCP<s = 0> can be solved in O∗(2dp log(dp))O∗(2dp log(p)).

(with an efficient algorithm!)

R. Watrigant On a Parameterized Problem in Access Control 13/15

Conclusion

p, s, d , t

p, s, dp, s, t p, d , t

p, s p, dp, t s, d s, t d , t

p s dt
para-(co)NP-hard

s, d , t

W[2]-hard

FPT XP

RCP<> parameterized by p only ?

R. Watrigant On a Parameterized Problem in Access Control 14/15

Conclusion

p, s, d , t

p, s, dp, s, t p, d , t

p, s p, dp, t s, d s, t d , t

p s dt
para-(co)NP-hard

s, d , t

W[2]-hard

FPT XP

RCP<> parameterized by p only ?

resiliency w.r.t. other problems ?

R. Watrigant On a Parameterized Problem in Access Control 14/15

Merci !

R. Watrigant On a Parameterized Problem in Access Control 15/15

	Definition of the problem
	Appetizer: easy observations
	FPT algorithms
	Efficient algorithms and implementation
	Conclusion

