On a Parameterized Problem in Access Control

Rémi Watrigant

Royal Holloway University of London

Joint work with: Jason Crampton and Gregory Gutin

Séminaire COATI - Sophia Antipolis March 15th, 2016.

- 2 Appetizer: easy observations
- **③** FPT algorithms
- 4 Efficient algorithms and implementation
- 5 Conclusion

Resiliency Checking Problem (RCP) Input: an authorization policy: $UP \subseteq U \times P$ $s, d, t \in \mathbb{N}$

Resiliency Checking Problem (RCP) <u>Input:</u> an authorization policy: $UP \subseteq U \times P$ $s, d, t \in \mathbb{N}$

Input: an authorization policy: $\textit{UP} \subseteq \textit{U} \times \textit{P}$

 $s, d, t \in \mathbb{N}$

<u>Output:</u> decide whether upon removal of any set of s users, there still exists a set of d teams of size t

Input: an authorization policy: $\textit{UP} \subseteq \textit{U} \times \textit{P}$

 $s, d, t \in \mathbb{N}$

<u>Output:</u> decide whether upon removal of any set of s users, there still exists a set of d teams of size t

Input: an authorization policy: $\textit{UP} \subseteq \textit{U} \times \textit{P}$

 $s, d, t \in \mathbb{N}$

<u>Output:</u> decide whether upon removal of any set of s users, there still exists a set of d teams of size t

Input: an authorization policy: $\textit{UP} \subseteq \textit{U} \times \textit{P}$

 $s, d, t \in \mathbb{N}$

<u>Output:</u> decide whether upon removal of any set of s users, there still exists a set of d teams of size t

Input: an authorization policy: $\textit{UP} \subseteq \textit{U} \times \textit{P}$

 $s, d, t \in \mathbb{N}$

<u>Output:</u> decide whether upon removal of any set of s users, there still exists a set of d teams of size t

Input: an authorization policy: $\textit{UP} \subseteq \textit{U} \times \textit{P}$

 $s, d, t \in \mathbb{N}$

<u>Output:</u> decide whether upon removal of any set of s users, there still exists a set of d teams of size t

Input: an authorization policy: $\textit{UP} \subseteq \textit{U} \times \textit{P}$

 $s, d, t \in \mathbb{N}$

<u>Output:</u> decide whether upon removal of any set of s users, there still exists a set of d teams of size t

Input: an authorization policy: $\textit{UP} \subseteq \textit{U} \times \textit{P}$

 $s, d, t \in \mathbb{N}$

<u>Output:</u> decide whether upon removal of any set of s users, there still exists a set of d teams of size t

Set of teams: d mutually disjoint sets of t users having collectively all permissions. Blocker set: set of users which intersects every set of teams.

Input: an authorization policy: $\textit{UP} \subseteq \textit{U} \times \textit{P}$

 $s, d, t \in \mathbb{N}$

<u>Output:</u> decide whether upon removal of any set of s users, there still exists a set of d teams of size t

Set of teams: d mutually disjoint sets of t users having collectively all permissions. Blocker set: set of users which intersects every set of teams.

For a problem instance x coming with its parameter k:

• XP if you can solve it in $O(|x|^{f(k)})$

For a problem instance x coming with its parameter k:

• XP if you can solve it in $O(|x|^{f(k)})$

• FPT if you can solve it in $O(f(k)|x|^{O(1)})$

- XP if you can solve it in $O(|x|^{f(k)})$
- para-NP-hard: NP-hard when k is fixed to some constant \implies no XP algorithm unless P = NP
- FPT if you can solve it in $O(f(k)|x|^{O(1)})$

- XP if you can solve it in $O(|x|^{f(k)})$
- para-NP-hard: NP-hard when k is fixed to some constant \implies no XP algorithm unless P = NP
- FPT if you can solve it in $O(f(k)|x|^{O(1)})$
- W[1]-hardness: parameter-preserving reduction from a W[1]-hard problem \implies no *FPT* algorithm unless *FPT* = W[1]

- XP if you can solve it in $O(|x|^{f(k)})$
- para-NP-hard: NP-hard when k is fixed to some constant \implies no XP algorithm unless P = NP
- FPT if you can solve it in $O(f(k)|x|^{O(1)})$
- W[1]-hardness: parameter-preserving reduction from a W[1]-hard problem \implies no *FPT* algorithm unless *FPT* = W[1]

$\frac{\mathsf{RCP}}{\mathsf{Input:}} \quad U\mathsf{P} \subseteq U \times \mathsf{P}, \, \mathsf{s}, \mathsf{d}, \mathsf{t} \in \mathbb{N}$

Output: upon removal of any set of s users, are there still d teams of size t?

 $\frac{\mathsf{RCP}}{\mathsf{Input:}} \ UP \subseteq U \times P, \ s, d, t \in \mathbb{N}$

Output: upon removal of any set of s users, are there still d teams of size t?

Li, Tripunitara, Wang, 2009

- RCP<>, RCP<d = 1> and RCP< $t = \infty$ > are NP-hard and in *coNP*^{NP}.
- RCP<s = 0, d = 1> and RCP<s = 0, t = ∞ > are NP-hard.
- RCP<d = 1, $t = \infty$ > is linear-time solvable.

And they present an implementation of an algorithm relying on a SAT formulation.

$\frac{\mathsf{RCP}}{\mathsf{Input:}} \quad \textit{UP} \subseteq \textit{U} \times \textit{P}, \textit{s}, \textit{d}, t \in \mathbb{N}$

Output: upon removal of any set of s users, are there still d teams of size t?

<u>RCP</u>

 $\boxed{\mathsf{Input:}} UP \subseteq U \times P, \, s, d, t \in \mathbb{N}$

Output: upon removal of any set of s users, are there still d teams of size t?

RCP<*s* = 0, *d* = 1> is equivalent to the Hitting Set problem

$\frac{\mathsf{RCP}}{\mathsf{Input:}} \quad UP \subseteq U \times P, \, s, d, t \in \mathbb{N}$

Output: upon removal of any set of s users, are there still d teams of size t?

Results obtained for RCP<> [Crampton, Gutin, W.]

$$\frac{RCP}{\text{Input:} \quad UP \subseteq U \times P, \ s, d, t \in \mathbb{N}$$

Output: upon removal of any set of s users, are there still d teams of size t?

Results obtained for RCP < s = 0 > [Crampton, Gutin, W.]

Easy Observations <u>RCP</u>

 $\underbrace{\mathsf{Input:}} UP \subseteq U \times P, \, s, d, t \in \mathbb{N}$

Output: upon removal of any set of s users, are there still d teams of size t?

• RCP<*s* = 0> is in *XP* parameterized by (*d*, *t*) (brute force)

RCP

 $\boxed{\mathsf{Input:}} UP \subseteq U \times P, \, s, d, t \in \mathbb{N}$

Output: upon removal of any set of s users, are there still d teams of size t?

- RCP<*s* = 0> is in *XP* parameterized by (*d*, *t*) (brute force)
- \Rightarrow RCP<> is in *XP* parameterized by (*s*, *d*, *t*) (branching)

Easy, but:

RCP

 $\boxed{\mathsf{Input:}} UP \subseteq U \times P, \, s, d, t \in \mathbb{N}$

Output: upon removal of any set of s users, are there still d teams of size t?

- RCP<*s* = 0> is in *XP* parameterized by (*d*, *t*) (brute force)
- \Rightarrow RCP<> is in *XP* parameterized by (*s*, *d*, *t*) (branching)

Easy, but:

• W[2]-hard parameterized by (s, d, t)

RCP

 $\boxed{\mathsf{Input:}} UP \subseteq U \times P, \, s, d, t \in \mathbb{N}$

Output: upon removal of any set of s users, are there still d teams of size t?

- RCP<*s* = 0> is in *XP* parameterized by (*d*, *t*) (brute force)
- \Rightarrow RCP<> is in XP parameterized by (s, d, t) (branching)

Easy, but:

- W[2]-hard parameterized by (s, d, t)
- para-NP-hard parameterized by (s, d), (d, t) (s, t)

RCP

 $\boxed{\mathsf{Input:}} UP \subseteq U \times P, \, s, d, t \in \mathbb{N}$

Output: upon removal of any set of s users, are there still d teams of size t?

- RCP<*s* = 0> is in *XP* parameterized by (*d*, *t*) (brute force)
- \Rightarrow RCP<> is in XP parameterized by (s, d, t) (branching)

Easy, but:

- W[2]-hard parameterized by (s, d, t)
- para-NP-hard parameterized by (s, d), (d, t) (s, t)

What about replacing t by p? (we may assume $t \leq p$)

RCP

 $\boxed{\mathsf{Input:}} UP \subseteq U \times P, \, s, d, t \in \mathbb{N}$

Output: upon removal of any set of s users, are there still d teams of size t?

- RCP<*s* = 0> is in *XP* parameterized by (*d*, *t*) (brute force)
- \Rightarrow RCP<> is in XP parameterized by (s, d, t) (branching)

Easy, but:

- W[2]-hard parameterized by (s, d, t)
- para-NP-hard parameterized by (s, d), (d, t) (s, t)

What about replacing t by p? (we may assume $t \leq p$)

• RCP<> is *FPT* parameterized by (*p*, *min*{*s*, *d*})

<u>RCP</u>

 $\boxed{\mathsf{Input:}} UP \subseteq U \times P, \, s, d, t \in \mathbb{N}$

Output: upon removal of any set of s users, are there still d teams of size t?

- RCP<*s* = 0> is in *XP* parameterized by (*d*, *t*) (brute force)
- \Rightarrow RCP<> is in XP parameterized by (s, d, t) (branching)

Easy, but:

- W[2]-hard parameterized by (s, d, t)
- para-NP-hard parameterized by (s, d), (d, t) (s, t)

What about replacing t by p? (we may assume $t \leq p$)

- RCP<> is FPT parameterized by (p, min{s, d})
- first: let us show that RCP < s = 0 is *FPT* parameterized by *p* only

RCP < s = 0 is FPT parameterized by p

RCP < s = 0 is FPT parameterized by p

Theorem [Lenstra, 1983]+[Kannan, 1987]+[Frank and Tardos, 1987]

Whether a given ILP has a non-empty solution set can be decided in $O^*(n^{2.5n+o(n)})$ time and polynomial space, where *n* is the number of variables.

RCP<s = 0> is FPT parameterized by p

RCP < s = 0 is FPT parameterized by p

• partition U into at most 2^p groups of users of same neighborhood

RCP < s = 0 is FPT parameterized by p

- partition U into at most 2^p groups of users of same neighborhood
- a team \equiv a set of $\leq t$ subsets of *P*, called configurations:

RCP<*s* = 0> is FPT parameterized by *p*

- partition U into at most 2^p groups of users of same neighborhood
- a team \equiv a set of $\leq t$ subsets of *P*, called configurations:

$$C = \left\{ \{N_1, \ldots, N_b\} : b \le t, N_i \subseteq P \text{ s.t. } \bigcup_{i=1}^b N_i = P \right\}$$

RCP<*s* = 0> is FPT parameterized by *p*

- partition U into at most 2^p groups of users of same neighborhood
- a team \equiv a set of $\leq t$ subsets of *P*, called configurations:

$$\mathcal{C} = \left\{ \{N_1, \ldots, N_b\} : b \le t, N_i \subseteq P \text{ s.t. } \bigcup_{i=1}^b N_i = P \right\}$$

 variables of the ILP: for c ∈ C, x_c ∈ [0, d] is the number of teams with configuration c

RCP<*s* = 0> is FPT parameterized by *p*

- partition U into at most 2^p groups of users of same neighborhood
- a team \equiv a set of $\leq t$ subsets of *P*, called configurations:

$$\mathcal{C} = \left\{ \{N_1, \ldots, N_b\} : b \le t, N_i \subseteq P \text{ s.t. } \bigcup_{i=1}^b N_i = P \right\}$$

- variables of the ILP: for $c \in C$, $x_c \in [0, d]$ is the number of teams with configuration c
- First constraint:

$$\sum_{c\in\mathcal{C}}x_c=d$$

$\mathsf{RCP} < s = 0$ is FPT parameterized by p

- partition U into at most 2^p groups of users of same neighborhood
- a team \equiv a set of $\leq t$ subsets of *P*, called configurations:

$$\mathcal{C} = \left\{ \{N_1, \ldots, N_b\} : b \le t, N_i \subseteq P \text{ s.t. } \bigcup_{i=1}^b N_i = P \right\}$$

- variables of the ILP: for $c \in C$, $x_c \in [0, d]$ is the number of teams with configuration c
- First constraint:

$$\sum_{c\in\mathcal{C}}x_c=d$$

Second constraint:

 $\sum_{c \in \mathcal{C}[N]} x_c \le |U[N]| \quad \forall N \subseteq P$

where:

- C[N] are the configurations involving N
- U[N] users having neighborhood N

• partition U into at most 2^p groups of users of same neighborhood

- partition U into at most 2^p groups of users of same neighborhood
- let $S \subseteq U$ be a blocker set

- partition U into at most 2^p groups of users of same neighborhood
- let $S \subseteq U$ be a blocker set

- partition U into at most 2^p groups of users of same neighborhood
- let $S \subseteq U$ be a blocker set

 $\underline{\text{Claim:}} \ \forall N \subseteq P, \ U[N] \cap S \neq \emptyset \implies |U[N] \setminus S| \leq d-1$

- partition U into at most 2^p groups of users of same neighborhood
- let $S \subseteq U$ be a blocker set

 $\underline{\text{Claim:}} \ \forall N \subseteq P, \ U[N] \cap S \neq \emptyset \implies |U[N] \setminus S| \leq d-1$

- For all $u \in U[N] \cap S$, there exists a set of teams V_1, \ldots, V_t such that:
 - $(\cup V_i) \cap S = \{u\}$
 - $|(\cup V_i) \cap U[N]| \leq d$

- partition U into at most 2^p groups of users of same neighborhood
- let $S \subseteq U$ be a blocker set

<u>Claim</u>: $\forall N \subseteq P, U[N] \cap S \neq \emptyset \implies |U[N] \setminus S| \le d-1$

- For all $u \in U[N] \cap S$, there exists a set of teams V_1, \ldots, V_t such that:
 - $\blacktriangleright (\cup V_i) \cap S = \{u\}$
 - ► $|(\cup V_i) \cap U[N]| \leq d$

- partition U into at most 2^p groups of users of same neighborhood
- let $S \subseteq U$ be a blocker set

<u>Claim</u>: $\forall N \subseteq P, U[N] \cap S \neq \emptyset \implies |U[N] \setminus S| \leq d-1$

• Now, if $|U[N] \setminus S| \ge d$ there exists $v \in U[N] \setminus S$ such that $v \notin \bigcup V_i$

- partition U into at most 2^p groups of users of same neighborhood
- let $S \subseteq U$ be a blocker set

<u>Claim</u>: $\forall N \subseteq P, U[N] \cap S \neq \emptyset \implies |U[N] \setminus S| \le d-1$

- Now, if $|U[N] \setminus S| \ge d$ there exists $v \in U[N] \setminus S$ such that $v \notin \cup V_i$
- Replacing *u* by *v* creates another set of teams which does not intersect *S*: impossible!

- partition U into at most 2^p groups of users of same neighborhood
- let $S \subseteq U$ be a blocker set

<u>Claim</u>: $\forall N \subseteq P, U[N] \cap S \neq \emptyset \implies |U[N] \setminus S| \leq d-1$

• Conclusion: it is sufficient to enumerate:

- partition U into at most 2^p groups of users of same neighborhood
- let $S \subseteq U$ be a blocker set

<u>Claim</u>: $\forall N \subseteq P, U[N] \cap S \neq \emptyset \implies |U[N] \setminus S| \leq d-1$

- Conclusion: it is sufficient to enumerate:
 - which classes S intersects $\implies O(2^{2^{p}})$

- partition U into at most 2^p groups of users of same neighborhood
- let $S \subseteq U$ be a blocker set

<u>Claim</u>: $\forall N \subseteq P, U[N] \cap S \neq \emptyset \implies |U[N] \setminus S| \leq d-1$

- Conclusion: it is sufficient to enumerate:
 - which classes S intersects $\implies O(2^{2^{p}})$
 - how much we take in addition to what we already know

 $\implies \leq 2^{p}$ numbers taking value in $[0, min\{d-1, s\}]$

- partition U into at most 2^p groups of users of same neighborhood
- let $S \subseteq U$ be a blocker set

<u>Claim</u>: $\forall N \subseteq P, U[N] \cap S \neq \emptyset \implies |U[N] \setminus S| \leq d-1$

- Conclusion: it is sufficient to enumerate:
 - which classes S intersects $\implies O(2^{2^{p}})$
 - how much we take in addition to what we already know
 - $\implies \leq 2^p$ numbers taking value in $[0, min\{d-1, s\}]$
- And then: for each candidate S, test whether it is a blocker set by solving RCP<s = 0> with user set $U \setminus S$

- partition U into at most 2^p groups of users of same neighborhood
- let $S \subseteq U$ be a blocker set

<u>Claim</u>: $\forall N \subseteq P, U[N] \cap S \neq \emptyset \implies |U[N] \setminus S| \leq d-1$

- Conclusion: it is sufficient to enumerate:
 - which classes S intersects $\implies O(2^{2^{p}})$
 - how much we take in addition to what we already know
 - $\implies \leq 2^{\rho}$ numbers taking value in $[0, min\{d-1, s\}]$
- And then: for each candidate S, test whether it is a blocker set by solving RCP<s = 0> with user set $U \setminus S$

Theorem [Crampton, Gutin, W.]

RCP<> is FPT parameterized by $(p, min\{s, d\})$.

- partition U into at most 2^p groups of users of same neighborhood
- let $S \subseteq U$ be a blocker set

<u>Claim</u>: $\forall N \subseteq P, U[N] \cap S \neq \emptyset \implies |U[N] \setminus S| \leq d-1$

- Conclusion: it is sufficient to enumerate:
 - which classes S intersects $\implies O(2^{2^{p}})$
 - how much we take in addition to what we already know
 - $\implies \leq 2^{p}$ numbers taking value in $[0, min\{d-1, s\}]$
- And then: for each candidate S, test whether it is a blocker set by solving RCP<s = 0> with user set $U \setminus S$

Theorem [Crampton, Gutin, W.]

RCP<> is FPT parameterized by $(p, min\{s, d\})$.

Open questions:

- what about parameterized by p only ?
- better running time ? (combinatorial algorithm for RCP < s = 0 >)

Contents

- 1. Definitions
- 2. Appetizer: easy observations
- 3. FPT algorithms
- 4. Efficient algorithms and implementation
- 5. Conclusion

Li, Tripunitara, Wang's approach for solving RCP<>:

• enumerate all subsets of users of size $\leq s$

Li, Tripunitara, Wang's approach for solving RCP<>:

• enumerate all subsets of users of size $\leq s$

• for each such S, solve RCP < s = 0 with users $U \setminus S$ (using a SAT solver)

- enumerate all subsets of users of size $\leq s$
- for each such S, solve RCP < s = 0 with users $U \setminus S$ (using a SAT solver)
- S_1 dominates S_2 : \exists a set of teams in $U \setminus S_1 \implies \exists$ a set of teams in $U \setminus S_2$

- enumerate all subsets of users of size $\leq s$
- for each such S, solve RCP < s = 0 with users $U \setminus S$ (using a SAT solver)
- S_1 dominates S_2 : \exists a set of teams in $U \setminus S_1 \implies \exists$ a set of teams in $U \setminus S_2$
- enough to run RCP < s = 0 > only when removing non-dominated sets

- enumerate all subsets of users of size $\leq s$
- for each such S, solve RCP < s = 0 with users $U \setminus S$ (using a SAT solver)
- S_1 dominates S_2 : \exists a set of teams in $U \setminus S_1 \implies \exists$ a set of teams in $U \setminus S_2$
- enough to run RCP < s = 0 > only when removing non-dominated sets
- the bottleneck comes from the SAT solver \implies what about a fast algorithm for RCP<s = 0> ?

- enumerate all subsets of users of size $\leq s$
- for each such S, solve RCP < s = 0 with users $U \setminus S$ (using a SAT solver)
- S_1 dominates S_2 : \exists a set of teams in $U \setminus S_1 \implies \exists$ a set of teams in $U \setminus S_2$
- enough to run RCP < s = 0 > only when removing non-dominated sets
- the bottleneck comes from the SAT solver \implies what about a fast algorithm for RCP<s = 0> ?
- better not to use:
 - Lenstra's algorithm/ILP (FPT param. by p only)
 - dynamic programming (O^{*}(2^{dp}) time and space)

Workflow Satisfaction Problem (WSP)

- $(\pi(s), s) \in A$ for all $s \in S$
- π does not violate any constraint

Workflow Satisfaction Problem (WSP)

- $(\pi(s), s) \in A$ for all $s \in S$
- π does not violate any constraint

Workflow Satisfaction Problem (WSP)

- $(\pi(s), s) \in A$ for all $s \in S$
- π does not violate any constraint

Workflow Satisfaction Problem (WSP)

- $(\pi(s), s) \in A$ for all $s \in S$
- π does not violate any constraint

Workflow Satisfaction Problem (WSP)

- $(\pi(s),s) \in A$ for all $s \in S$
- π does not violate any constraint

Workflow Satisfaction Problem (WSP)

Input: a set of steps S, a set of users Uauthorization policy $A \subseteq U \times S$, a set of constraints Output: a plan $\pi : S \to U$ such that:

- $(\pi(s),s) \in A$ for all $s \in S$
- π does not violate any constraint

Theorem [Karapetyan, Gagarin, Gutin, 2015]

WSP can be solved in $O^*(2^{k \log k})$, where k is the number of steps.

More importantly: an efficient implementation of the algorithm can solve instances with up to 60 steps !

Theorem [Crampton, Gutin, W.]

There is a reduction from RCP<*s* = 0> to WSP with *dp* steps.

Theorem [Crampton, Gutin, W.]

There is a reduction from RCP<*s* = 0> to WSP with *dp* steps.

P Permissions

R. Watrigant

On a Parameterized Problem in Access Control
Theorem [Crampton, Gutin, W.]

There is a reduction from RCP < s = 0 > to WSP with *dp* steps.

• duplicate the set of permissions *d* times

Theorem [Crampton, Gutin, W.]

There is a reduction from RCP < s = 0 > to WSP with *dp* steps.

- duplicate the set of permissions d times
- add at-most-t constraints to preserve team sizes

Theorem [Crampton, Gutin, W.]

There is a reduction from RCP < s = 0 > to WSP with *dp* steps.

- duplicate the set of permissions d times
- add at-most-t constraints to preserve team sizes
- add not-equal constraints to preserve disjointness

Theorem [Crampton, Gutin, W.]

There is a reduction from RCP < s = 0 > to WSP with *dp* steps.

- duplicate the set of permissions d times
- add at-most-t constraints to preserve team sizes
- add not-equal constraints to preserve disjointness

Theorem [Crampton, Gutin, W.]

There is a reduction from RCP < s = 0 > to WSP with *dp* steps.

Corollary

RCP<s = 0> can be solved in $O^*(2^{dp \log(dp)})$.

(with an efficient algorithm!)

Theorem [Crampton, Gutin, W.]

There is a reduction from RCP < s = 0 > to WSP with *dp* steps.

Corollary

 $\mathsf{RCP} < s = 0 > \mathsf{can} \mathsf{ be solved in } \frac{\mathcal{O}^*(2^{dp \log(dp)})}{\mathcal{O}^*(2^{dp \log(p)})}$

(with an efficient algorithm!)

Conclusion

• RCP<> parameterized by p only ?

Conclusion

- RCP<> parameterized by p only ?
- resiliency w.r.t. other problems ?

Merci !