On the approximability of the Sum-Max graph partitioning problem

Rémi Watrigant, Marin Bougeret, Rodolphe Giroudeau and Jean-Claude König

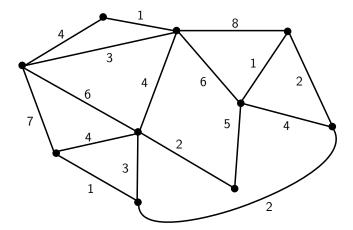
LIRMM, Montpellier, France

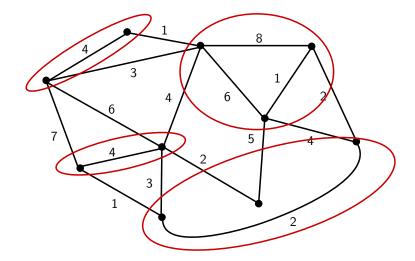
International Workshop on Approximation, Parameterized and EXact algorithms February 28-29, 2012, Paris, France

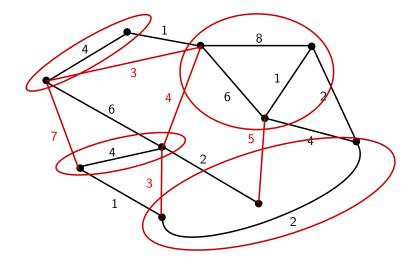
Contents

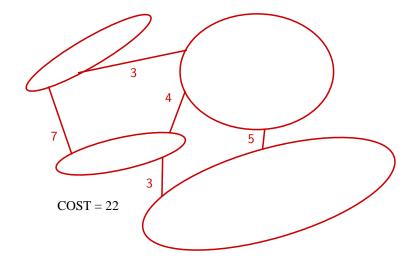
Description of the problem

- 2 Simple $\frac{k}{2}$ -approximation algorithm
 - 3 Negative results
- 4 Conclusion, future work









Input: a connected graph G = (V, E), $w : E \to \mathbb{N}$, $k \in \mathbb{N}$ **Output:** a *k*-partition $(V_1, ..., V_k)$ of *V* **Goal:** minimize $\sum_{\substack{i,j=1\\i>j}}^{k} \max_{\substack{u \in V_i\\v \in V_j}} w(u, v)$

Input: a connected graph G = (V, E), $w : E \to \mathbb{N}$, $k \in \mathbb{N}$ **Output:** a *k*-partition $(V_1, ..., V_k)$ of V**Goal:** minimize $\sum_{\substack{i,j=1\\i>j}}^k \max_{v \in V_j} w(u, v)$

In this talk:

Input: a connected graph G = (V, E), $w : E \to \mathbb{N}$, $k \in \mathbb{N}$ **Output:** a *k*-partition $(V_1, ..., V_k)$ of *V* **Goal:** minimize $\sum_{\substack{i,j=1\\i>j}}^{k} \max_{\substack{u \in V_i\\v \in V_j}} w(u, v)$

In this talk:

• simple $\frac{k}{2}$ -approximation algorithm

Input: a connected graph G = (V, E), $w : E \to \mathbb{N}$, $k \in \mathbb{N}$ **Output:** a *k*-partition $(V_1, ..., V_k)$ of *V* **Goal:** minimize $\sum_{\substack{i,j=1\\i>j}}^k \max_{\substack{u \in V_i\\v \in V_j}} w(u, v)$

In this talk:

- simple $\frac{k}{2}$ -approximation algorithm
- cannot be approximated with a factor in O(n^{1-ε}) (unless P = NP) (and NP-hardness, W[1]-hardness with parameter k)

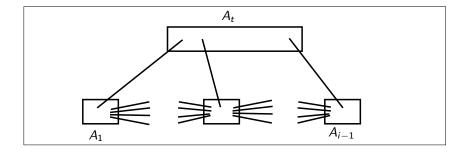
Contents

Description of the problem

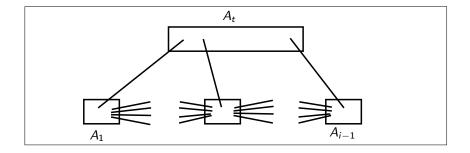
2 Simple $\frac{k}{2}$ -approximation algorithm

- 3 Negative results
- 4 Conclusion, future work

Algorithm: For *i* from 1 to k - 1 do:



Algorithm: For *i* from 1 to k - 1 do: while *G* has *i* connected components do:

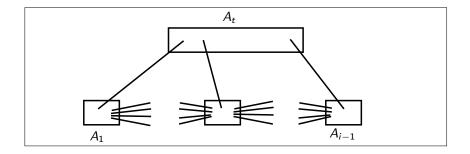


```
Algorithm:

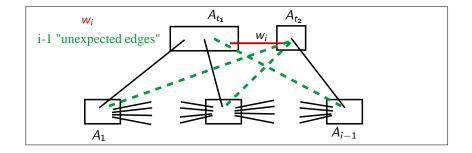
For i from 1 to k - 1 do:

while G has i connected components do:

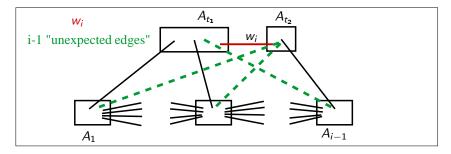
remove the lightest edge in G
```



Algorithm: For *i* from 1 to k - 1 do: while *G* has *i* connected components do: remove the lightest edge in *G* end while. // let w_i be the weight of the last removed edge end for



Algorithm: For *i* from 1 to k - 1 do: while *G* has *i* connected components do: remove the lightest edge in *G* end while. // let w_i be the weight of the last removed edge end for



At the end:

Solution value = $\sum_{i=1}^{k-1} w_i + \sum$ unexpected edges

For *i* from 1 to k - 1 do:

while G has i connected components do:

remove the lightest edge in G

end while. // let w_i be the weight of the last removed edge end for

Lemma 1

At each step *i*: sum of edges of maximum weight outgoing from each cluster is bounded by above by $\sum_{j=1}^{i-1} w_j$

For *i* from 1 to k - 1 do:

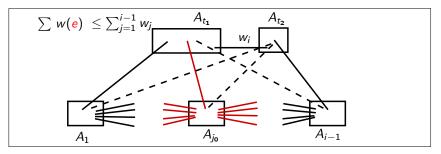
while *G* has *i* connected components do:

remove the lightest edge in G

end while. // let w_i be the weight of the last removed edge end for

Lemma 1

At each step *i*: sum of edges of maximum weight outgoing from each cluster is bounded by above by $\sum_{j=1}^{i-1} w_j$



For *i* from 1 to k - 1 do:

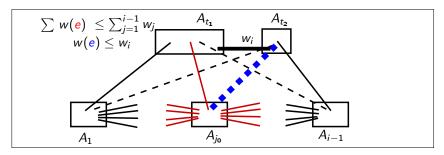
while *G* has *i* connected components do:

remove the lightest edge in G

end while. // let w_i be the weight of the last removed edge end for

Lemma 1

At each step *i*: sum of edges of maximum weight outgoing from each cluster is bounded by above by $\sum_{j=1}^{i-1} w_j$



For *i* from 1 to k - 1 do:

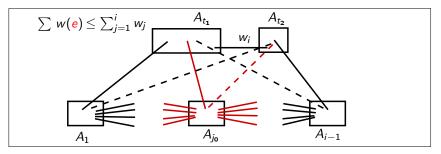
while *G* has *i* connected components do:

remove the lightest edge in G

end while. // let w_i be the weight of the last removed edge end for

Lemma 1

At each step *i*: sum of edges of maximum weight outgoing from each cluster is bounded by above by $\sum_{j=1}^{i-1} w_j$



For *i* from 1 to k - 1 do:

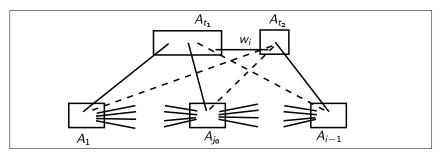
while *G* has *i* connected components do:

remove the lightest edge in G

end while. // let w_i be the weight of the last removed edge end for

Lemma 1

At each step *i*: sum of edges of maximum weight outgoing from each cluster is bounded by above by $\sum_{j=1}^{i-1} w_j$



For *i* from 1 to k - 1 do:

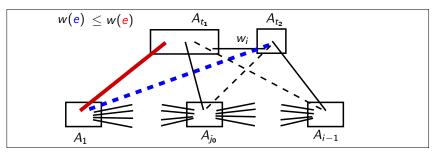
while *G* has *i* connected components do:

remove the lightest edge in G

end while. // let w_i be the weight of the last removed edge end for

Lemma 1

At each step *i*: sum of edges of maximum weight outgoing from each cluster is bounded by above by $\sum_{j=1}^{i-1} w_j$



For *i* from 1 to k - 1 do:

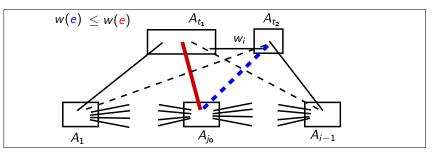
while *G* has *i* connected components do:

remove the lightest edge in G

end while. // let w_i be the weight of the last removed edge end for

Lemma 1

At each step *i*: sum of edges of maximum weight outgoing from each cluster is bounded by above by $\sum_{j=1}^{i-1} w_j$



For *i* from 1 to k - 1 do:

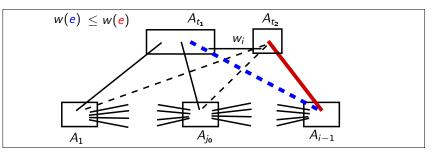
while *G* has *i* connected components do:

remove the lightest edge in G

end while. // let w_i be the weight of the last removed edge end for

Lemma 1

At each step *i*: sum of edges of maximum weight outgoing from each cluster is bounded by above by $\sum_{j=1}^{i-1} w_j$



For *i* from 1 to k - 1 do:

while G has i connected components do:

remove the lightest edge in G

A

end while. // let w_i be the weight of the last removed edge end for

Lemma 1

At each step *i*: sum of edges of maximum weight outgoing from each cluster is bounded by above by $\sum_{j=1}^{i-1} w_j$

Thus:

$$\leq rac{k}{2}\sum_{j=1}^{k-1}w_j$$

For *i* from 1 to k - 1 do:

while G has i connected components do:

remove the lightest edge in G

end while. // let w_i be the weight of the last removed edge end for

Lemma 1

At each step *i*: sum of edges of maximum weight outgoing from each cluster is bounded by above by $\sum_{j=1}^{i-1} w_j$

Thus: $\mathcal{A} \leq \frac{k}{2} \sum_{j=1}^{k-1} w_j$

Lemma 2

$$\sum_{j=1}^{k-1} w_j \le OPT$$

For *i* from 1 to k - 1 do:

while *G* has *i* connected components do:

remove the lightest edge in G

end while. // let w_i be the weight of the last removed edge end for

Lemma 1

At each step i: sum of edges of maximum weight outgoing from each cluster is bounded by above by $\sum_{j=1}^{i-1} w_j$

Thus: $\mathcal{A} \leq rac{k}{2} \sum_{j=1}^{k-1} w_j$

Lemma 2

$$\sum_{j=1}^{k-1} w_j \le OPT$$

$$\Rightarrow \mathcal{A} \leq \frac{k}{2} OPT$$

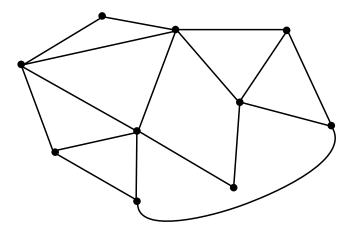
(can be improved using the gap between edge weights)

Contents

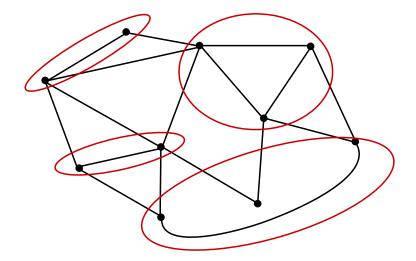
Description of the problem

- 2 Simple $\frac{k}{2}$ -approximation algorithm
- 3 Negative results

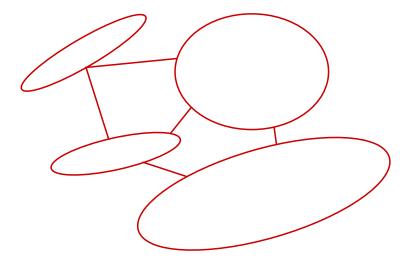
4 Conclusion, future work

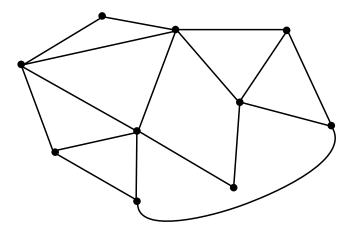


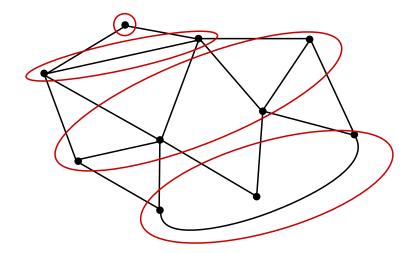
Example, k = 4

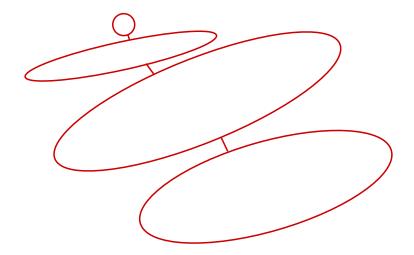


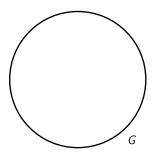
Example, k = 4

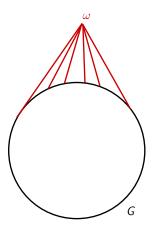


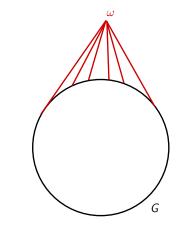




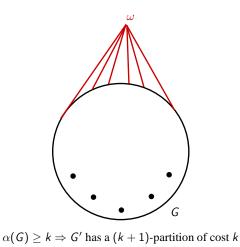


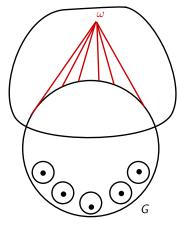




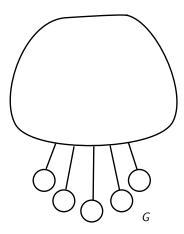


 $\alpha(G) \ge k \Rightarrow G'$ has a (k + 1)-partition of cost k

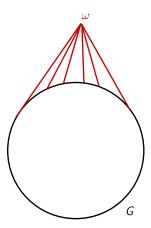




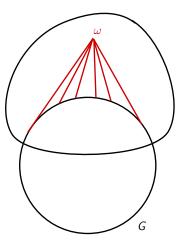
 $\alpha(G) \ge k \Rightarrow G'$ has a (k + 1)-partition of cost k



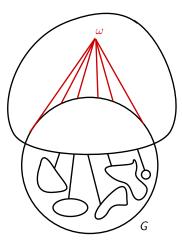
 $\alpha(G) \ge k \Rightarrow G'$ has a (k + 1)-partition of cost k



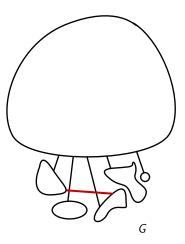
 $\alpha(G) < k \Rightarrow any (k + 1)$ -partition of G' has $cost \ge k + 1$



 $\alpha(G) < k \Rightarrow \text{any } (k+1)\text{-partition of } G' \text{ has } \text{cost} \ge k+1$



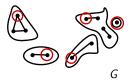
 $\alpha(G) < k \Rightarrow any (k + 1)$ -partition of G' has $cost \ge k + 1$



 $\alpha(G) < k \Rightarrow \text{any } (k+1)\text{-partition of } G' \text{ has cost} \ge k+1$

 $\alpha(G) < k \Rightarrow \text{any } (k+1)\text{-partition of } G' \text{ has } \text{cost} \ge k+1$

independent set of size k



 $\alpha(G) < k \Rightarrow any (k + 1)$ -partition of G' has $cost \ge k + 1$

Theorem

SUM-MAX GRAPH PARTITIONING is \mathcal{NP} -hard, and even W[1]-hard for the parameter k

SUM-MAX GRAPH PARTITIONING cannot be approximated within $O(n^{1-\epsilon})$

<u>Proof</u>: gap preserving reduction:

SUM-MAX GRAPH PARTITIONING cannot be approximated within $O(n^{1-\epsilon})$

<u>Proof</u>: gap preserving reduction: given $k \le |V|$ and $r \le 1$: Same reduction, we ask for a (k + 1)-partition

SUM-MAX GRAPH PARTITIONING cannot be approximated within $O(n^{1-\epsilon})$

<u>Proof</u>: gap preserving reduction: given $k \le |V|$ and $r \le 1$: Same reduction, we ask for a (k + 1)-partition

• if $\alpha(G) \geq k$ then $OPT(G') \leq k$

SUM-MAX GRAPH PARTITIONING cannot be approximated within $O(n^{1-\epsilon})$

<u>Proof</u>: gap preserving reduction: given $k \le |V|$ and $r \le 1$: Same reduction, we ask for a (k + 1)-partition

- if $\alpha(G) \ge k$ then $OPT(G') \le k$
- if $\alpha(G) \leq r.k$ then $OPT(G') \geq k + x$
 - where x = minimum number of edges of any graph with k nodes that does not contain an independent set of size r.k

SUM-MAX GRAPH PARTITIONING cannot be approximated within $O(n^{1-\epsilon})$

<u>Proof</u>: gap preserving reduction: given $k \le |V|$ and $r \le 1$: Same reduction, we ask for a (k + 1)-partition

- if $\alpha(G) \ge k$ then $OPT(G') \le k$
- if $\alpha(G) \leq r.k$ then $OPT(G') \geq k + x$

where x = minimum number of edges of any graph with k nodes that does not contain an independent set of size r.k

Turan's theorem

Given G on *n* vertices and *m* edges : $\alpha(G) \ge \frac{n^2}{2m+n}$

SUM-MAX GRAPH PARTITIONING cannot be approximated within $O(n^{1-\epsilon})$

<u>Proof</u>: gap preserving reduction: given $k \le |V|$ and $r \le 1$: Same reduction, we ask for a (k + 1)-partition

- if $\alpha(G) \ge k$ then $OPT(G') \le k$
- if $\alpha(G) \leq r.k$ then $OPT(G') \geq k + x$

where x = minimum number of edges of any graph with k nodes that does not contain an independent set of size r.k

Turan's theorem

Given G on *n* vertices and *m* edges : $\alpha(G) \ge \frac{n^2}{2m+n}$

We have:

$$OPT(G') \ge \frac{1}{2r}k$$

SUM-MAX GRAPH PARTITIONING cannot be approximated within $O(n^{1-\epsilon})$

<u>Proof</u>: gap preserving reduction: given $k \le |V|$ and $r \le 1$: Same reduction, we ask for a (k + 1)-partition

- if $\alpha(G) \ge k$ then $OPT(G') \le k$
- if $\alpha(G) \leq r.k$ then $OPT(G') \geq k + x$

where x = minimum number of edges of any graph with k nodes that does not contain an independent set of size r.k

Turan's theorem

Given G on n vertices and m edges : $\alpha(G) \geq \frac{n^2}{2m+n}$

We have:

$$OPT(G') \geq \frac{1}{2r}k$$

 \Rightarrow gap preserved : $O(n^{1-\epsilon})$ non approximable unless $\mathcal{P} = \mathcal{NP}$

Contents

Description of the problem

- 2 Simple $\frac{k}{2}$ -approximation algorithm
 - 3 Negative results

About the unweighted version of the problem:

• no O(poly(n)) algorithm, no O(f(k)poly(n)) algorithm...

About the unweighted version of the problem:

no O(poly(n)) algorithm, no O(f(k)poly(n)) algorithm...
 what about a O(n^{f(k)}) algorithm ?

- no O(poly(n)) algorithm, no O(f(k)poly(n)) algorithm...
 what about a O(n^{f(k)}) algorithm ?
- restricted graph classes :

- no O(poly(n)) algorithm, no O(f(k)poly(n)) algorithm...
 what about a O(n^{f(k)}) algorithm ?
- restricted graph classes :
 - Polynomially solvable in interval graphs (for fixed k)
 - *NP*-hard in split graphs

- no O(poly(n)) algorithm, no O(f(k)poly(n)) algorithm...
 what about a O(n^{f(k)}) algorithm ?
- restricted graph classes :
 - Polynomially solvable in interval graphs (for fixed k)
 - *NP*-hard in split graphs
 - \Rightarrow chordal graphs ?

- no O(poly(n)) algorithm, no O(f(k)poly(n)) algorithm...
 what about a O(n^{f(k)}) algorithm ?
- restricted graph classes :
 - Polynomially solvable in interval graphs (for fixed k)
 - \mathcal{NP} -hard in split graphs
 - \Rightarrow chordal graphs ?
- links with graph homomorphisms, edge modification problems...

- no O(poly(n)) algorithm, no O(f(k)poly(n)) algorithm...
 what about a O(n^{f(k)}) algorithm ?
- restricted graph classes :
 - Polynomially solvable in interval graphs (for fixed k)
 - *NP*-hard in split graphs
 - \Rightarrow chordal graphs ?
- links with graph homomorphisms, edge modification problems...
- applications in software engineering:

- no O(poly(n)) algorithm, no O(f(k)poly(n)) algorithm...
 what about a O(n^{f(k)}) algorithm ?
- restricted graph classes :
 - Polynomially solvable in interval graphs (for fixed k)
 - *NP*-hard in split graphs
 - \Rightarrow chordal graphs ?
- links with graph homomorphisms, edge modification problems...
- applications in software engineering: adding/relaxing constraints ?

Thank you for your attention!