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sum-max graph partitioning

Input: a connected graph G = (V ,E ), w : E → N, k ∈ N

Output: a k-partition (V1, ...,Vk) of V

Goal: minimize

k∑

i,j=1
i>j

max
u∈Vi

v∈Vj

w(u, v)
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Output: a k-partition (V1, ...,Vk) of V

Goal: minimize

k∑

i,j=1
i>j

max
u∈Vi

v∈Vj

w(u, v)

In this talk:

simple k
2
-approximation algorithm

cannot be approximated with a factor in O(n1−ǫ) (unless P = NP)
(and NP-hardness, W [1]-hardness with parameter k)
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Algorithm:
For i from 1 to k − 1 do:

A1
Ai−1

At
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Algorithm:
For i from 1 to k − 1 do:

while G has i connected components do:
remove the lightest edge in G

A1
Ai−1
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Algorithm:
For i from 1 to k − 1 do:

while G has i connected components do:
remove the lightest edge in G

end while. // let wi be the weight of the last removed edge
end for

A1
Ai−1

wi
At1

wi

At2

i-1 "unexpected edges"
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Algorithm:
For i from 1 to k − 1 do:

while G has i connected components do:
remove the lightest edge in G

end while. // let wi be the weight of the last removed edge
end for

A1
Ai−1

wi
At1

wi

At2

i-1 "unexpected edges"

At the end:

Solution value =
∑k−1

i=1 wi +
∑

unexpected edges
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Algorithm:
For i from 1 to k − 1 do:

while G has i connected components do:
remove the lightest edge in G

end while. // let wi be the weight of the last removed edge
end for

Lemma 1

At each step i : sum of edges of maximum weight outgoing from each cluster is
bounded by above by

∑i−1

j=1 wj

Proof by induction over i :
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2
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Lemma 2

k−1∑

j=1

wj ≤ OPT

Watrigant, Bougeret, Giroudeau, König On the approximability of the Sum-Max graph partitioning problem 8/16



Algorithm:
For i from 1 to k − 1 do:

while G has i connected components do:
remove the lightest edge in G

end while. // let wi be the weight of the last removed edge
end for

Lemma 1

At each step i : sum of edges of maximum weight outgoing from each cluster is
bounded by above by

∑i−1

j=1 wj

Thus: A ≤ k
2

∑k−1

j=1 wj

Lemma 2

k−1∑

j=1

wj ≤ OPT

⇒ A ≤ k
2
OPT

(can be improved using the gap between edge weights)
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Unweighted version of the problem
w(e) = 1 ∀e ∈ E

Example, k = 4
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NP , W [1] hardnesses, inapproximability
Reduction from independent set:
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NP , W [1] hardnesses, inapproximability
Reduction from independent set:
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α(G) < k ⇒ any (k + 1)-partition of G ′ has cost ≥ k + 1
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NP , W [1] hardnesses, inapproximability
Reduction from independent set:

Theorem

sum-max graph partitioning is NP-hard, and even W [1]-hard for the
parameter k
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Theorem

sum-max graph partitioning cannot be approximated within O(n1−ǫ)

Proof: gap preserving reduction:
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Turan’s theorem
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2m+n
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Turan’s theorem

Given G on n vertices and m edges : α(G) ≥ n2

2m+n

We have:

OPT (G ′) ≥
1

2r
k

⇒ gap preserved :
O(n1−ǫ) non approximable unless P = NP
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Conclusion, future work

About the unweighted version of the problem:

no O(poly(n)) algorithm, no O(f (k)poly(n)) algorithm...
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no O(poly(n)) algorithm, no O(f (k)poly(n)) algorithm...
what about a O(nf (k)) algorithm ?

restricted graph classes :
◮ Polynomially solvable in interval graphs (for fixed k)
◮ NP-hard in split graphs

⇒ chordal graphs ?

links with graph homomorphisms, edge modification problems...

applications in software engineering:
adding/relaxing constraints ?
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Thank you for your attention!
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