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SUM-MAX GRAPH PARTITIONING

Input: a connected graph G = (V,E), w: E - N, ke N
Output: a k-partition (V4, ..., Vi) of V
K

Goal: minimize E max w(u, v)
ueV;

ij=1veV;
1>J
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In this talk:
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SUM-MAX GRAPH PARTITIONING

Input: a connected graph G = (V,E), w: E - N, ke N
Output: a k-partition (V4, ..., Vi) of V
K

Goal: minimize E max w(u, v)
ueV;

i=lvey;
1>J

In this talk:

@ simple g-approximation algorithm
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SUM-MAX GRAPH PARTITIONING

Input: a connected graph G = (V,E), w: E - N, ke N
Output: a k-partition (V4, ..., Vi) of V
K

Goal: minimize E max w(u, v)
ueV;

iJ=1vev,
1>J

In this talk:
@ simple g-approximation algorithm

@ cannot be approximated with a factor in O(n'~¢) (unless P = N'P)
(and N'P-hardness, W([1]-hardness with parameter k)
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Algorithm:
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Algorithm:
For i from 1 to k — 1 do:
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Algorithm:
For i from 1 to k — 1 do:
while G has i connected components do:

A
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Algorithm:
For i from 1 to k — 1 do:
while G has i connected components do:
remove the lightest edge in G

A
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=_\— 75 7:
A1 Ai—l

Watrigant, Bougeret, Giroudeau, K&nig  On the approximability of the Sum-Max graph partitioning problem



Algorithm:
For i from 1 to k — 1 do:

while G has i connected components do:
remove the lightest edge in G

end while. // let w; be the weight of the last removed edge
end for

Wi

i-1 "unexpected edges’

- - -
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Ar

Watrigant, Bougeret, Giroudeau, Kénig

On the approximability of the Sum-Max graph partitioning problem



Algorithm:
For i from 1 to k — 1 do:

while G has i connected components do:
remove the lightest edge in G

end while. // let w; be the weight of the last removed edge
end for

Wi

i-1 "unexpected edges’

i

II\\\

Ar

At the end:

Solution value = Zf;ll w; + > unexpected edges
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Algorithm:
For i from 1 to k — 1 do:
while G has i connected components do:
remove the lightest edge in G
end while. // let w; be the weight of the last removed edge
end for

Lemma 1

At each step i: sum of edges of maximum weight outgoing from each cluster is
i=1
bounded by above by 3.7 w;

Proof by induction over i
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while G has i connected components do:
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end while. // let w; be the weight of the last removed edge
end for

Lemma 1

At each step /: sum of edges of maximum weight outgoing from each cluster is
bounded by above by Z W

Proof by induction over i:
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Algorithm:
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while G has i connected components do:
remove the lightest edge in G
end while. // let w; be the weight of the last removed edge
end for
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Algorithm:
For i from 1 to k — 1 do:
while G has i connected components do:
remove the lightest edge in G
end while. // let w; be the weight of the last removed edge
end for

Lemma 1

At each step /: sum of edges of maximum weight outgoing from each cluster is
bounded by above by Z W

Proof by induction over i:
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Algorithm:
For i from 1 to k — 1 do:
while G has i connected components do:
remove the lightest edge in G
end while. // let w; be the weight of the last removed edge
end for

Lemma 1

At each step /: sum of edges of maximum weight outgoing from each cluster is
bounded by above by Z W

Proof by induction over i:
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Algorithm:
For i from 1 to k — 1 do:
while G has i connected components do:
remove the lightest edge in G
end while. // let w; be the weight of the last removed edge
end for

Lemma 1

At each step /: sum of edges of maximum weight outgoing from each cluster is
bounded by above by Z W
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Algorithm:
For i from 1 to k — 1 do:
while G has i connected components do:
remove the lightest edge in G

end while. // let w; be the weight of the last removed edge
end for

Lemma 1

At each step /: sum of edges of maximum weight outgoing from each cluster is
bounded by above by Z W

Proof by induction over i:
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Algorithm:
For i from 1 to k — 1 do:
while G has i connected components do:
remove the lightest edge in G
end while. // let w; be the weight of the last removed edge
end for

Lemma 1

At each step i: sum of edges of maximum weight outgoing from each cluster is
bounded by above by Z W

Thus: A< ’2‘ _1 wj
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Algorithm:
For i from 1 to k — 1 do:
while G has i connected components do:
remove the lightest edge in G
end while. // let w; be the weight of the last removed edge
end for

Lemma 1

At each step i: sum of edges of maximum weight outgoing from each cluster is
bounded by above by Z W

Thus: A< ’2‘ _1 wj
Lemma 2
k—1
w; < OPT
j=1
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Algorithm:
For i from 1 to k — 1 do:
while G has i connected components do:
remove the lightest edge in G
end while. // let w; be the weight of the last removed edge
end for

Lemma 1

At each step i: sum of edges of maximum weight outgoing from each cluster is
bounded by above by Z W

Thus: A< ’2‘ _1 wj
Lemma 2
k—1
w; < OPT
j=1
= A< §OPT

(can be improved using the gap between edge weights)
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Unweighted version of the problem
w(e)=1Vec E
Example, k =4
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NP, WI1] hardnesses, inapproximability

Reduction from INDEPENDENT SET:

Watrigant, Bougeret, Giroudeau, K&nig  On the approximability of the Sum-Max graph partitioning problem



NP, WI1] hardnesses, inapproximability

Reduction from INDEPENDENT SET:

Watrigant, Bougeret, Giroudeau, K&nig  On the approximability of the Sum-Max graph partitioning problem



NP, WI1] hardnesses, inapproximability

Reduction from INDEPENDENT SET:

Watrigant, Bougeret, Giroudeau, K&nig  On the approximability of the Sum-Max graph partitioning problem



NP, W(1] hardnesses, inapproximability

Reduction from INDEPENDENT SET:

G

a(G) > k = G' hasa(k + 1)-partition of cost k
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Reduction from INDEPENDENT SET:
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NP, W(1] hardnesses, inapproximability

Reduction from INDEPENDENT SET:

a(G) < k= any (k + 1)-partition of G’ hascost > k + 1
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NP, W(1] hardnesses, inapproximability

Reduction from INDEPENDENT SET:

independent set of size k

a(G) < k= any (k + 1)-partitionof G’ hascost > k + 1
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NP, WI1] hardnesses, inapproximability

Reduction from INDEPENDENT SET:

Theorem

SUM-MAX GRAPH PARTITIONING is N'P-hard, and even W/[1]-hard for the
parameter k
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Proof: gap preserving reduction:
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SUM-MAX GRAPH PARTITIONING cannot be approximated within O(n'~¢)

Proof: gap preserving reduction: given k < |V| and r < 1:
Same reduction, we ask for a (k + 1)-partition

o if a(G) > k then OPT(G') < k
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Proof: gap preserving reduction: given k < |V| and r < 1:
Same reduction, we ask for a (k + 1)-partition

o if a(G) > k then OPT(G') < k

o if (G) < r.k then OPT(G’) > k + x
where x = minimum number of edges of any graph with k nodes that does
not contain an independent set of size r.k
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Theorem J

SUM-MAX GRAPH PARTITIONING cannot be approximated within O(n'~¢)

Proof: gap preserving reduction: given k < |V| and r < 1:
Same reduction, we ask for a (k + 1)-partition

o if a(G) > k then OPT(G') < k

o if (G) < r.k then OPT(G’) > k + x
where x = minimum number of edges of any graph with k nodes that does
not contain an independent set of size r.k

Turan's theorem J

o o . n?
Given G on n vertices and m edges : a(G) > 57—
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Theorem J

SUM-MAX GRAPH PARTITIONING cannot be approximated within O(n'~¢)

Proof: gap preserving reduction: given k < |V| and r < 1:
Same reduction, we ask for a (k + 1)-partition

o if a(G) > k then OPT(G') < k

o if (G) < r.k then OPT(G’) > k + x
where x = minimum number of edges of any graph with k nodes that does
not contain an independent set of size r.k

_n*

2m+n

Turan’s theorem
Given G on n vertices and m edges : a(G) > J

We have: )
A
> —
OPT(G") > 2rk
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Theorem J

SUM-MAX GRAPH PARTITIONING cannot be approximated within O(n'~¢)

Proof: gap preserving reduction: given k < |V| and r < 1:
Same reduction, we ask for a (k + 1)-partition

o if a(G) > k then OPT(G') < k

o if (G) < r.k then OPT(G’) > k + x
where x = minimum number of edges of any graph with k nodes that does
not contain an independent set of size r.k

Given G on n vertices and m edges : (G) > 52—

Turan's theorem
2m+n

We have: )
PT(G") > —k
OPT(G") = 2r
= gap preserved :
O(n'~¢) non approximable unless P = N'P
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Conclusion, future work

About the unweighted version of the problem:
@ no O(poly(n)) algorithm, no O(f(k)poly(n)) algorithm...
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Conclusion, future work

About the unweighted version of the problem:
@ no O(poly(n)) algorithm, no O(f(k)poly(n)) algorithm...
what about a O(n(¥)) algorithm ?
@ restricted graph classes :
» Polynomially solvable in interval graphs (for fixed k)
» N'P-hard in split graphs
= chordal graphs ?
@ links with graph homomorphisms, edge modification problems...

@ applications in software engineering:
adding/relaxing constraints ?
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Thank you for your attention!
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