Kernel lower bound for the k-DOMATIC PARTITION problem

Rémi Watrigant
joint work with Sylvain Guillemot and Christophe Paul
LIRMM, Montpellier, France

AGAPE Workshop, February 6-10, 2012, Montpellier, France

Contents

(1) Kernels, domatic partition
(2) hypergraph-2-colorability
(3) Transformation to k-DOMATIC PARTITION

4 Conclusion, open question

Kernels, domatic partition

Kernels, domatic partition

Kernel

Given a parameterized problem $Q \subseteq \Sigma^{*} \times \mathbb{N}$, a kernel for Q is a polynomial algorithm with:

- input: an instance (x, k) of Q
- output: an instance (x^{\prime}, k^{\prime}) of Q
such that:
- $(x, k) \in Q \Leftrightarrow\left(x^{\prime}, k^{\prime}\right) \in Q$
- $\left|x^{\prime}\right|, k^{\prime} \leq f(k)$ for some function f

Kernels, domatic partition

Kernel

Given a parameterized problem $Q \subseteq \Sigma^{*} \times \mathbb{N}$, a kernel for Q is a polynomial algorithm with:

- input: an instance (x, k) of Q
- output: an instance (x^{\prime}, k^{\prime}) of Q
such that:
- $(x, k) \in Q \Leftrightarrow\left(x^{\prime}, k^{\prime}\right) \in Q$
- $\left|x^{\prime}\right|, k^{\prime} \leq f(k)$ for some function f

```
Theorem
\(Q \in F P T \Leftrightarrow Q\) has a kernel
```


k-DOMATIC PARTITION (for fixed $k \in \mathbb{N}$)

Input : a graph $G=(V, E)$
Question: Is there a k-partition of $V:\left\{V_{1}, \ldots, V_{k}\right\}$ such that each V_{i} is a dominating set of G ?

k-DOMATIC PARTITION (for fixed $k \in \mathbb{N}$)

Input : a graph $G=(V, E)$
Question: Is there a k-partition of $V:\left\{V_{1}, \ldots, V_{k}\right\}$ such that each V_{i} is a dominating set of G ?
$k=3$

k-DOMATIC PARTITION (for fixed $k \in \mathbb{N}$)

Input : a graph $G=(V, E)$
Question : Is there a k-partition of $V:\left\{V_{1}, \ldots, V_{k}\right\}$ such that each V_{i} is a dominating set of G ?
$k=3$

k-DOMATIC PARTITION (for fixed $k \in \mathbb{N}$)

Input : a graph $G=(V, E)$
Question : Is there a k-partition of $V:\left\{V_{1}, \ldots, V_{k}\right\}$ such that each V_{i} is a dominating set of G ?

Known results:

k-DOMATIC PARTITION (for fixed $k \in \mathbb{N}$)

Input : a graph $G=(V, E)$
Question: Is there a k-partition of $V:\left\{V_{1}, \ldots, V_{k}\right\}$ such that each V_{i} is a dominating set of G ?

Known results:

- Any graph admits a 1-domatic partition and a 2-domatic partition

k-DOMATIC PARTITION (for fixed $k \in \mathbb{N}$)

Input : a graph $G=(V, E)$
Question : Is there a k-partition of $V:\left\{V_{1}, \ldots, V_{k}\right\}$ such that each V_{i} is a dominating set of G ?

Known results:

- Any graph admits a 1-domatic partition and a 2-domatic partition
- for any fixed $k \geq 3$, the problem is $\mathcal{N} \mathcal{P}$-complete [Garey, Johnson, Tarjan, 76] $\Rightarrow k$ is useless as a parameter (for FPT, kernels...)

k-DOMATIC PARTITION (for fixed $k \in \mathbb{N}$)

Input : a graph $G=(V, E)$
Question : Is there a k-partition of $V:\left\{V_{1}, \ldots, V_{k}\right\}$ such that each V_{i} is a dominating set of G ?

Known results:

- Any graph admits a 1-domatic partition and a 2-domatic partition
- for any fixed $k \geq 3$, the problem is $\mathcal{N} \mathcal{P}$-complete [Garey, Johnson, Tarjan, 76] $\Rightarrow k$ is useless as a parameter (for FPT, kernels...)
- FPT when parameterized by treewidth(G) (MSO formula)

k-DOMATIC PARTITION (for fixed $k \in \mathbb{N}$)

Input : a graph $G=(V, E)$
Question : Is there a k-partition of $V:\left\{V_{1}, \ldots, V_{k}\right\}$ such that each V_{i} is a dominating set of G ?

Known results:

- Any graph admits a 1-domatic partition and a 2-domatic partition
- for any fixed $k \geq 3$, the problem is $\mathcal{N} \mathcal{P}$-complete [Garey, Johnson, Tarjan, 76] $\Rightarrow k$ is useless as a parameter (for FPT, kernels...)
- FPT when parameterized by treewidth(G) (MSO formula)
- 3-DOMATIC PARTition does not admit a polynomial kernel when parameterized by treewidth (G) [Bodlaender et al. 2009] (unless all coNP problems have a distillation algorithm...)

Hierarchy of parameters

Theorem [Bodlaender et al. 2009]

3-DOMATIC PARTITION does not admit a polynomial kernel when parameterized by treewidth (G)
(unless all coNP problems have a distillation algorithm...)
What about larger parameters ?

Hierarchy of parameters

Theorem [Bodlaender et al. 2009]

3-DOMATIC PARTITION does not admit a polynomial kernel when parameterized by treewidth (G)
(unless all coNP problems have a distillation algorithm...)
What about larger parameters ?
treewidth(G)

Hierarchy of parameters

Theorem [Bodlaender et al. 2009]

3-DOMATIC PARTITION does not admit a polynomial kernel when parameterized by treewidth (G)
(unless all coNP problems have a distillation algorithm...)
What about larger parameters ?
treewidth(G) \leq $\operatorname{poly}(\mathrm{VC}(\mathrm{G}))$

Hierarchy of parameters

Theorem [Bodlaender et al. 2009]

3-DOMATIC PARTITION does not admit a polynomial kernel when parameterized by treewidth (G)
(unless all coNP problems have a distillation algorithm...)
What about larger parameters ?
treewidth(G) \leq $\operatorname{poly}(\mathrm{FVS}(\mathrm{G})) \leq \operatorname{poly}(\mathrm{VC}(\mathrm{G}))$

Hierarchy of parameters

Theorem [Bodlaender et al. 2009]

3-DOMATIC PARTITION does not admit a polynomial kernel when parameterized by treewidth (G)
(unless all coNP problems have a distillation algorithm...)
What about larger parameters ?

Hierarchy of parameters

Theorem [Bodlaender et al. 2009]

3-DOMATIC PARTITION does not admit a polynomial kernel when parameterized by treewidth (G)
(unless all coNP problems have a distillation algorithm...)
What about larger parameters ?

Hierarchy of parameters

Theorem [Bodlaender et al. 2009]

3-DOMATIC PARTITION does not admit a polynomial kernel when parameterized by treewidth (G)
(unless all coNe problems have a distillation algorithm...)
What about larger parameters ?

$$
\text { treewidth }(\mathrm{G}) \leq \text { treewidth } \leq t+k v \leq \operatorname{poly}(\mathrm{FVS}(\mathrm{G})) \leq \operatorname{poly}(\mathrm{VC}(\mathrm{G}))
$$

Hierarchy of parameters

Theorem [Bodlaender et al. 2009]

3-DOMATIC PARTITION does not admit a polynomial kernel when parameterized by treewidth (G)
(unless all coNP problems have a distillation algorithm...)
What about larger parameters ?

$$
\operatorname{treewidth}(\mathrm{G}) \leq \text { treewidth } \leq t+k v \leq \quad \operatorname{poly}(\mathrm{FVS}(\mathrm{G})) \leq \operatorname{poly}(\mathrm{VC}(\mathrm{G}))
$$

Our result:

For any fixed $k \geq 3, k$-DOMATIC PARTITION does not admit a polynomial kernel when parameterized by the size of a vertex cover of G (unless coNP $\subseteq N P /$ Poly)

Our result:

For any fixed $k \geq 3$, k-DOMATIC PARTITION does not admit a polynomial kernel when parameterized by the size of a vertex cover of G (unless coNP $\subseteq N P /$ Poly)

Sketch of proof:

- cross-composition of HYPERGRAPH-2-COLORABILITY to itself \Rightarrow no polynomial kernel for HYPERGRAPH-2-COLORABILITY (parameterized by the number of vertices)
- polynomial time and parameter transformation to k-DOMATIC partition

Contents

(1) Kernels, domatic partition
(2) hypergraph-2-colorability

(3) Transformation to k-DOMATIC PARTITION

(4) Conclusion, open question

Lower bound for HYPERGRAPH-2-COLORABILITY

HYPERGRAPH-2-COLORABILITY

Input : a hypergraph $H=(V, E)$
Question : Is there a bipartition of V into $\left(V_{1}, V_{2}\right)$ such that each hyperedge has at least one vertex in V_{1} and one vertex in V_{2} ? Parameter : $n=|V|$

Lower bound for HYPERGRAPH-2-COLORABILITY

HYPERGRAPH-2-COLORABILITY

Input : a hypergraph $H=(V, E)$
Question : Is there a bipartition of V into $\left(V_{1}, V_{2}\right)$ such that each hyperedge has at least one vertex in V_{1} and one vertex in V_{2} ?
Parameter : $n=|V|$

Theorem [Bodlaender, Jansen, Kratsch, 2011]

If there exists a cross-composition from an $\mathcal{N} \mathcal{P}$-complete problem A to a parameterized problem Q, then Q does not admit a polynomial kernel unless coNP $\subseteq N P /$ Poly

Lower bound for HYPERGRAPH-2-COLORABILITY

Definition : cross-composition [Bodlaender, Jansen, Kratsch, 2011]

Lower bound for HYPERGRAPH-2-COLORABILITY

Definition : cross-composition [Bodlaender, Jansen, Kratsch, 2011]
A cross-composition from a problem $A \subseteq \Sigma^{*}$ to a parameterized problem Q $\subseteq \Sigma^{*} \times \mathbb{N}$ is a polynomial algorithm with:

- input: a sequence of equivalent instances of $A:\left\{x_{1}, \ldots, x_{t}\right\}$
- output : an instance of $Q:\left(x^{*}, k^{*}\right)$
such that:

Lower bound for HYPERGRAPH-2-COLORABILITY

Definition : cross-composition [Bodlaender, Jansen, Kratsch, 2011]
A cross-composition from a problem $A \subseteq \Sigma^{*}$ to a parameterized problem Q $\subseteq \Sigma^{*} \times \mathbb{N}$ is a polynomial algorithm with:

- input: a sequence of equivalent instances of $A:\left\{x_{1}, \ldots, x_{t}\right\}$
- output : an instance of $Q:\left(x^{*}, k^{*}\right)$
such that:
- x^{*} is a positive instance of $Q \Leftrightarrow \exists i \in\{1, \ldots, t\}$ such that x_{i} is a positive instance of A
- $k^{*} \leq \operatorname{poly}\left(\max _{i=1 \ldots t}\left|x_{i}\right|+\log t\right)$

Lower bound for HYPERGRAPH-2-COLORABILITY

Definition : cross-composition [Bodlaender, Jansen, Kratsch, 2011]
A cross-composition from a problem $A \subseteq \Sigma^{*}$ to a parameterized problem Q $\subseteq \Sigma^{*} \times \mathbb{N}$ is a polynomial algorithm with:

- input: a sequence of equivalent instances of $A:\left\{x_{1}, \ldots, x_{t}\right\}$
- output : an instance of $Q:\left(x^{*}, k^{*}\right)$
such that:
- x^{*} is a positive instance of $Q \Leftrightarrow \exists i \in\{1, \ldots, t\}$ such that x_{i} is a positive instance of A
- $k^{*} \leq \operatorname{poly}\left(\max _{i=1 \ldots t}\left|x_{i}\right|+\log t\right)$

Equivalence relation:

- computable in polynomial time
- partition a set S into less than $\max _{x \in S}|x|^{O(1)}$ classes

Lower bound for HYPERGRAPH-2-COLORABILITY

Let $\left(H_{1}, \ldots, H_{t}\right)$ be a sequence of instances of hYPERGRAPH-2-COLORABILITY

Lower bound for HYPERGRAPH-2-COLORABILITY

Let $\left(H_{1}, \ldots, H_{t}\right)$ be a sequence of instances of hYPERGRAPh-2-COLORABILITY

- Equivalence relation: $\left|V_{i}\right|=n$ for all $i=1 \ldots t$

Lower bound for HYPERGRAPH-2-COLORABILITY

Let $\left(H_{1}, \ldots, H_{t}\right)$ be a sequence of instances of hYPERGRAPh-2-COLORABILITY

- Equivalence relation: $\left|V_{i}\right|=n$ for all $i=1 \ldots t$
- Suppose that $t=2^{p} \quad\left(p=\log _{2} t\right)$

Lower bound for HYPERGRAPH-2-COLORABILITY

Let $\left(H_{1}, \ldots, H_{t}\right)$ be a sequence of instances of hYPERGRAPH-2-COLORABILITY

- Equivalence relation: $\left|V_{i}\right|=n$ for all $i=1 \ldots$...t
- Suppose that $t=2^{p} \quad\left(p=\log _{2} t\right)$
\Rightarrow we are given a sequence of 2^{p} sets of hyperedges over $V=\left\{v_{1}, \ldots, v_{n}\right\}$

Lower bound for HYPERGRAPH-2-COLORABILITY

Let $\left(H_{1}, \ldots, H_{t}\right)$ be a sequence of instances of HYPERGRAPH-2-COLORABILITY

- Equivalence relation: $\left|V_{i}\right|=n$ for all $i=1 \ldots t$
- Suppose that $t=2^{p} \quad\left(p=\log _{2} t\right)$
\Rightarrow we are given a sequence of 2^{p} sets of hyperedges over $V=\left\{v_{1}, \ldots, v_{n}\right\}$
$V_{1} \quad V_{2} \quad V_{3} \quad V_{4} \cdots \cdots \cdots \quad v_{n}$
a_{1}
a_{2}

$$
a_{p+1}
$$

b_{1}
b_{2}

$$
b_{p+1}
$$

Lower bound for HYPERGRAPH-2-COLORABILITY

Let $\left(H_{1}, \ldots, H_{t}\right)$ be a sequence of instances of hYPERGRAPH-2-COLORABILITY

- Equivalence relation: $\left|V_{i}\right|=n$ for all $i=1 \ldots t$
- Suppose that $t=2^{p} \quad\left(p=\log _{2} t\right)$
\Rightarrow we are given a sequence of 2^{p} sets of hyperedges over $V=\left\{v_{1}, \ldots, v_{n}\right\}$

Lower bound for HYPERGRAPH-2-COLORABILITY

Let $\left(H_{1}, \ldots, H_{t}\right)$ be a sequence of instances of HYPERGRAPH-2-COLORABILITY

- Equivalence relation: $\left|V_{i}\right|=n$ for all $i=1 \ldots t$
- Suppose that $t=2^{p} \quad\left(p=\log _{2} t\right)$
\Rightarrow we are given a sequence of 2^{p} sets of hyperedges over $V=\left\{v_{1}, \ldots, v_{n}\right\}$

Lower bound for HYPERGRAPH-2-COLORABILITY

Let $\left(H_{1}, \ldots, H_{t}\right)$ be a sequence of instances of hypergraph-2-colorability

- Equivalence relation: $\left|V_{i}\right|=n$ for all $i=1 \ldots t$
- Suppose that $t=2^{p}$

$$
\left(p=\log _{2} t\right)
$$

\Rightarrow we are given a sequence of 2^{p} sets of hyperedges over $V=\left\{v_{1}, \ldots, v_{n}\right\}$

Lower bound for HYPERGRAPH-2-COLORABILITY

Let $\left(H_{1}, \ldots, H_{t}\right)$ be a sequence of instances of hyPERGRAPH-2-COLORABILITY

- Equivalence relation: $\left|V_{i}\right|=n$ for all $i=1 \ldots t$
- Suppose that $t=2^{p} \quad\left(p=\log _{2} t\right)$
\Rightarrow we are given a sequence of 2^{p} sets of hyperedges over $V=\left\{v_{1}, \ldots, v_{n}\right\}$

binary representation of j

Lower bound for HYPERGRAPH-2-COLORABILITY

Let $\left(H_{1}, \ldots, H_{t}\right)$ be a sequence of instances of hypergraph-2-colorability

- Equivalence relation: $\left|V_{i}\right|=n$ for all $i=1 \ldots t$
- Suppose that $t=2^{p} \quad\left(p=\log _{2} t\right)$
\Rightarrow we are given a sequence of 2^{p} sets of hyperedges over $V=\left\{v_{1}, \ldots, v_{n}\right\}$

Lower bound for HYPERGRAPH-2-COLORABILITY

Lower bound for HYPERGRAPH-2-COLORABILITY

Suppose H_{j} is a positive instance: there exists a 2-coloring that covers all hyperedges of H_{j}

Lower bound for HYPERGRAPH-2-COLORABILITY

Suppose H_{j} is a positive instance: there exists a 2-coloring that covers all hyperedges of H_{j}

Lower bound for HYPERGRAPH-2-COLORABILITY

Suppose H_{j} is a positive instance: there exists a 2-coloring that covers all hyperedges of H_{j}

Lower bound for HYPERGRAPH-2-COLORABILITY

Suppose H^{*} is a positive instance

Lower bound for HYPERGRAPH-2-COLORABILITY

Suppose H^{*} is a positive instance

Lower bound for HYPERGRAPH-2-COLORABILITY

Suppose H^{*} is a positive instance

Lower bound for HYPERGRAPH-2-COLORABILITY

Finally : the number of vertices (parameter) is polynomial in the size of the biggest instance of the sequence $+\log t$

Contents

(1) Kernels, domatic partition
(2) hypergraph-2-colorability
(3) Transformation to k-DOMATIC PARTITION

4 Conclusion, open question

Transformation to k-DOMATIC PARTITION

(proof for $k=3$, but can be extended for every fixed $k \geq 3$)
Let $H=(V, E)$ be an hypergraph, with $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $E=\left\{e_{1}, \ldots, e_{m}\right\}$ We build the following graph:

Transformation to k-DOMATIC PARTITION

(proof for $k=3$, but can be extended for every fixed $k \geq 3$)
Let $H=(V, E)$ be an hypergraph, with $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $E=\left\{e_{1}, \ldots, e_{m}\right\}$ We build the following graph:

Transformation to k-DOMATIC PARTITION

G^{\prime} has a 3-domatic partition $\Leftrightarrow H$ has a proper 2-coloring.

Transformation to k-DOMATIC PARTITION

G^{\prime} has a 3-domatic partition $\Leftrightarrow H$ has a proper 2-coloring.

Transformation to k-DOMATIC PARTITION

G^{\prime} has a 3-domatic partition $\Leftrightarrow H$ has a proper 2-coloring.

Transformation to k-DOMATIC PARTITION

G^{\prime} has a 3 -domatic partition $\Leftrightarrow H$ has a proper 2-coloring.

Transformation to k-DOMATIC PARTITION

Finally : the clique is a vertex cover (parameter) of size $n+1$

Contents

(1) Kernels, domatic partition
(2) hypergraph-2-colorability
(3) Transformation to k-DOMATIC PARTITION

4 Conclusion, open question

Conclusion, open questions

Conclusion, open questions

Future work using "hierarchies of parameters":

- not only negative results !
vertex cover

Conclusion, open questions

Future work using "hierarchies of parameters":

- not only negative results !
vertex cover
- no poly kernel when parameterized by Treewidth
- cubic kernel when parameterized by FeedbackVertexSet (Treewidth $\leq 1+k v$)

Conclusion, open questions

Future work using "hierarchies of parameters":

- not only negative results !

VERTEX COVER

- no poly kernel when parameterized by Treewidth
- cubic kernel when parameterized by FeedbackVertexSet (Treewidth $\leq 1+k v$) \Rightarrow open for Treewidth $\leq t+k v$ (for $t \geq 2$)

Conclusion, open questions

Future work using "hierarchies of parameters":

- not only negative results !

VERTEX COVER

- no poly kernel when parameterized by Treewidth
- cubic kernel when parameterized by FeedbackVertexSet (Treewidth $\leq 1+k v$) \Rightarrow open for Treewidth $\leq t+k v$ (for $t \geq 2$)
- considering other hierarchies :

Conclusion, open questions

Future work using "hierarchies of parameters":

- not only negative results !
vertex cover
- no poly kernel when parameterized by Treewidth
- cubic kernel when parameterized by FeedbackVertexSet (Treewidth $\leq 1+k v$) \Rightarrow open for Treewidth $\leq t+k v$ (for $t \geq 2$)
- considering other hierarchies :
- distance to other invariants (CliqueWidth, $*-$ width)

Conclusion, open questions

Future work using "hierarchies of parameters":

- not only negative results !
vertex cover
- no poly kernel when parameterized by Treewidth
- cubic kernel when parameterized by FeedbackVertexSet (Treewidth $\leq 1+k v$) \Rightarrow open for Treewidth $\leq t+k v$ (for $t \geq 2$)
- considering other hierarchies :
- distance to other invariants (CliqueWidth, * - width)
- here, distance $=$ set of vertices to remove
\star set of edges to remove
\star set of edges to edit...

Thank you for your attention!

