Kernel lower bound for the *k*-DOMATIC PARTITION problem

Rémi Watrigant joint work with Sylvain Guillemot and Christophe Paul

LIRMM, Montpellier, France

AGAPE Workshop, February 6-10, 2012, Montpellier, France

Contents

1) Kernels, domatic partition

- 2 hypergraph-2-colorability
- **3** Transformation to *k*-DOMATIC PARTITION
- 4 Conclusion, open question

Kernels, domatic partition

Kernels, domatic partition

Kernel

Given a parameterized problem $Q \subseteq \Sigma^* \times \mathbb{N}$, a **kernel** for Q is a **polynomial algorithm** with:

- input: an instance (x, k) of Q
- output: an instance (x', k') of Q

such that:

•
$$(x,k) \in Q \Leftrightarrow (x',k') \in Q$$

• $|x'|, k' \leq f(k)$ for some function f

Kernels, domatic partition

Kernel

Given a parameterized problem $Q \subseteq \Sigma^* \times \mathbb{N}$, a **kernel** for Q is a **polynomial algorithm** with:

- input: an instance (x, k) of Q
- output: an instance (x', k') of Q

such that:

- $(x,k) \in Q \Leftrightarrow (x',k') \in Q$
- $|x'|, k' \leq f(k)$ for some function f

Theorem

 $Q \in FPT \Leftrightarrow Q$ has a kernel

Input : a graph G = (V, E)Question : Is there a k-partition of V: $\{V_1, ..., V_k\}$ such that each V_i is a dominating set of G ?

Input : a graph G = (V, E)Question : Is there a k-partition of V: $\{V_1, ..., V_k\}$ such that each V_i is a dominating set of G?

k = 3

Input : a graph G = (V, E)<u>Question</u> : Is there a *k*-partition of *V*: $\{V_1, ..., V_k\}$ such that each V_i is a dominating set of *G* ?

k = 3

Input : a graph G = (V, E)Question : Is there a k-partition of V: $\{V_1, ..., V_k\}$ such that each V_i is a dominating set of G ?

Input : a graph G = (V, E)Question : Is there a k-partition of V: $\{V_1, ..., V_k\}$ such that each V_i is a dominating set of G?

Known results:

• Any graph admits a 1-domatic partition and a 2-domatic partition

Input : a graph G = (V, E)Question : Is there a k-partition of V: $\{V_1, ..., V_k\}$ such that each V_i is a dominating set of G ?

- Any graph admits a 1-domatic partition and a 2-domatic partition
- for any fixed k ≥ 3, the problem is NP-complete [Garey, Johnson, Tarjan, 76]
 ⇒ k is useless as a parameter (for FPT, kernels...)

Input : a graph G = (V, E)Question : Is there a k-partition of V: $\{V_1, ..., V_k\}$ such that each V_i is a dominating set of G ?

- Any graph admits a 1-domatic partition and a 2-domatic partition
- for any fixed k ≥ 3, the problem is NP-complete [Garey, Johnson, Tarjan, 76]
 ⇒ k is useless as a parameter (for FPT, kernels...)
- FPT when parameterized by *treewidth*(*G*) (MSO formula)

Input : a graph G = (V, E)Question : Is there a k-partition of V: $\{V_1, ..., V_k\}$ such that each V_i is a dominating set of G ?

- Any graph admits a 1-domatic partition and a 2-domatic partition
- for any fixed k ≥ 3, the problem is NP-complete [Garey, Johnson, Tarjan, 76]
 ⇒ k is useless as a parameter (for FPT, kernels...)
- FPT when parameterized by *treewidth*(*G*) (MSO formula)
- 3-DOMATIC PARTITION does **not** admit a polynomial kernel when parameterized by *treewidth*(*G*) [Bodlaender et al. 2009] (unless all coNP problems have a distillation algorithm...)

Theorem [Bodlaender et al. 2009]

3-DOMATIC PARTITION does **not** admit a polynomial kernel when parameterized by treewidth(G) (unless all coNP problems have a distillation algorithm...)

What about larger parameters ?

Theorem [Bodlaender et al. 2009]

3-DOMATIC PARTITION does **not** admit a polynomial kernel when parameterized by treewidth(G) (unless all coNP problems have a distillation algorithm...)

What about larger parameters ?

treewidth(G)

Theorem [Bodlaender et al. 2009]

3-DOMATIC PARTITION does **not** admit a polynomial kernel when parameterized by treewidth(G) (unless all coNP problems have a distillation algorithm...)

What about larger parameters ?

treewidth(G)

 \leq

poly(VC(G))

Theorem [Bodlaender et al. 2009]

3-DOMATIC PARTITION does **not** admit a polynomial kernel when parameterized by treewidth(G) (unless all coNP problems have a distillation algorithm...)

What about larger parameters ?

treewidth(G) \leq poly(FVS(G)) \leq poly(VC(G))

Theorem [Bodlaender et al. 2009]

3-DOMATIC PARTITION does **not** admit a polynomial kernel when parameterized by treewidth(G) (unless all coNP problems have a distillation algorithm...)

What about larger parameters ?

treewidth(G) \leq poly(FVS(G)) \leq poly(VC(G))

treewidth $\leq 0 + kv$

Theorem [Bodlaender et al. 2009]

3-DOMATIC PARTITION does **not** admit a polynomial kernel when parameterized by treewidth(G) (unless all coNP problems have a distillation algorithm...)

What about larger parameters ?

treewidth(G) \leq poly(FVS(G)) \leq poly(VC(G)) \downarrow \downarrow \downarrow treewidth $\leq 1 + kv$ treewidth $\leq 0 + kv$

Theorem [Bodlaender et al. 2009]

3-DOMATIC PARTITION does **not** admit a polynomial kernel when parameterized by treewidth(G) (unless all coNP problems have a distillation algorithm...)

What about larger parameters ?

treewidth(G) \leq *treewidth* \leq *t* + *kv* <

Theorem [Bodlaender et al. 2009]

3-DOMATIC PARTITION does **not** admit a polynomial kernel when parameterized by treewidth(G) (unless all coNP problems have a distillation algorithm...)

What about larger parameters ?

 $treewidth(G) \leq treewidth \leq t + kv \leq poly(FVS(G)) \leq poly(VC(G))$ $\downarrow \qquad \downarrow \qquad \qquad \downarrow \\ treewidth \leq 1 + kv \qquad treewidth \leq 0 + kv$

Our result:

For any fixed $k \ge 3$, k-DOMATIC PARTITION does **not** admit a polynomial kernel when parameterized by the size of a **vertex cover** of G (unless $coNP \subseteq NP/Poly$)

Our result:

```
For any fixed k \ge 3, k-DOMATIC PARTITION does not admit a polynomial kernel when parameterized by the size of a vertex cover of G (unless coNP \subseteq NP/Poly)
```

Sketch of proof:

- cross-composition of HYPERGRAPH-2-COLORABILITY to itself
 ⇒ no polynomial kernel for HYPERGRAPH-2-COLORABILITY (parameterized by the number of vertices)
- polynomial time and parameter transformation to *k*-DOMATIC PARTITION

Contents

Kernels, domatic partition

2 hypergraph-2-colorability

Transformation to *k*-DOMATIC PARTITION

HYPERGRAPH-2-COLORABILITY

Input : a hypergraph H = (V, E)Question : Is there a bipartition of V into (V_1, V_2) such that each hyperedge has at least one vertex in V_1 and one vertex in V_2 ? Parameter : n = |V|

HYPERGRAPH-2-COLORABILITY

Input : a hypergraph H = (V, E)Question : Is there a bipartition of V into (V_1, V_2) such that each hyperedge has at least one vertex in V_1 and one vertex in V_2 ? Parameter : n = |V|

Theorem [Bodlaender, Jansen, Kratsch, 2011]

If there exists a **cross-composition** from an \mathcal{NP} -complete problem A to a parameterized problem Q, then Q does not admit a polynomial kernel unless $coNP \subseteq NP/Poly$

Definition : cross-composition [Bodlaender, Jansen, Kratsch, 2011]

Definition : cross-composition [Bodlaender, Jansen, Kratsch, 2011]

A cross-composition from a problem $A \subseteq \Sigma^*$ to a parameterized problem $Q \subseteq \Sigma^* \times \mathbb{N}$ is a polynomial algorithm with:

• input: a sequence of **equivalent** instances of A: $\{x_1, ..., x_t\}$

• output : an instance of Q: (x^*, k^*)

such that:

Definition : cross-composition [Bodlaender, Jansen, Kratsch, 2011]

A cross-composition from a problem $A \subseteq \Sigma^*$ to a parameterized problem $Q \subseteq \Sigma^* \times \mathbb{N}$ is a polynomial algorithm with:

- input: a sequence of **equivalent** instances of A: $\{x_1, ..., x_t\}$
- output : an instance of Q: (x^*, k^*)

such that:

• x^* is a positive instance of $Q \Leftrightarrow \exists i \in \{1, ..., t\}$ such that x_i is a positive instance of A

•
$$k^* \le poly(\max_{i=1...t} |x_i| + \log t)$$

Definition : cross-composition [Bodlaender, Jansen, Kratsch, 2011]

A cross-composition from a problem $A \subseteq \Sigma^*$ to a parameterized problem $Q \subseteq \Sigma^* \times \mathbb{N}$ is a polynomial algorithm with:

- input: a sequence of **equivalent** instances of A: $\{x_1, ..., x_t\}$
- output : an instance of Q: (x^*, k^*)

such that:

• x^* is a positive instance of $Q \Leftrightarrow \exists i \in \{1, ..., t\}$ such that x_i is a positive instance of A

•
$$k^* \leq poly(\max_{i=1...t} |x_i| + \log t)$$

Equivalence relation:

- computable in polynomial time
- partition a set S into less than $\max_{x \in S} |x|^{O(1)}$ classes

Lower bound for HYPERGRAPH-2-COLORABILITY Let $(H_1, ..., H_t)$ be a sequence of instances of HYPERGRAPH-2-COLORABILITY

Let $(H_1, ..., H_t)$ be a sequence of instances of HYPERGRAPH-2-COLORABILITY

• Equivalence relation: $|V_i| = n$ for all i = 1...t

Let $(H_1, ..., H_t)$ be a sequence of instances of HYPERGRAPH-2-COLORABILITY

- Equivalence relation: $|V_i| = n$ for all i = 1...t
- Suppose that $t = 2^p$ $(p = \log_2 t)$

Let $(H_1, ..., H_t)$ be a sequence of instances of HYPERGRAPH-2-COLORABILITY

- Equivalence relation: $|V_i| = n$ for all i = 1...t
- Suppose that $t = 2^p$ $(p = \log_2 t)$

Let $(H_1, ..., H_t)$ be a sequence of instances of HYPERGRAPH-2-COLORABILITY

- Equivalence relation: $|V_i| = n$ for all i = 1...t
- Suppose that $t = 2^p$ $(p = \log_2 t)$

Let $(H_1, ..., H_t)$ be a sequence of instances of HYPERGRAPH-2-COLORABILITY

- Equivalence relation: $|V_i| = n$ for all i = 1...t
- Suppose that $t = 2^p$ $(p = \log_2 t)$

Let $(H_1, ..., H_t)$ be a sequence of instances of HYPERGRAPH-2-COLORABILITY

- Equivalence relation: $|V_i| = n$ for all i = 1...t
- Suppose that $t = 2^p$ $(p = \log_2 t)$

Let $(H_1, ..., H_t)$ be a sequence of instances of HYPERGRAPH-2-COLORABILITY

- Equivalence relation: $|V_i| = n$ for all i = 1...t
- Suppose that $t = 2^p$ $(p = \log_2 t)$

 \Rightarrow we are given a sequence of 2^p sets of hyperedges over $V = \{v_1, ..., v_n\}$

Let $(H_1, ..., H_t)$ be a sequence of instances of HYPERGRAPH-2-COLORABILITY

- Equivalence relation: $|V_i| = n$ for all i = 1...t
- Suppose that $t = 2^p$ $(p = \log_2 t)$

 \Rightarrow we are given a sequence of 2^p sets of hyperedges over $V = \{v_1, ..., v_n\}$

Let $(H_1, ..., H_t)$ be a sequence of instances of HYPERGRAPH-2-COLORABILITY

- Equivalence relation: $|V_i| = n$ for all i = 1...t
- Suppose that $t = 2^p$ $(p = \log_2 t)$

 \Rightarrow we are given a sequence of 2^p sets of hyperedges over $V = \{v_1, ..., v_n\}$

Suppose H_j is a positive instance: there exists a 2-coloring that covers all hyperedges of H_j

Suppose H_j is a positive instance: there exists a 2-coloring that covers all hyperedges of H_j

Suppose H_j is a positive instance: there exists a 2-coloring that covers all hyperedges of H_j

Suppose H^* is a positive instance

Suppose H^* is a positive instance

Suppose H^* is a positive instance

Finally : the number of vertices (parameter) is polynomial in the size of the biggest instance of the sequence $+ \log t$

Contents

Kernels, domatic partition

- 2 hypergraph-2-colorability
- **3** Transformation to *k*-DOMATIC PARTITION

(proof for k = 3, but can be extended for every fixed $k \ge 3$) Let H = (V, E) be an hypergraph, with $V = \{v_1, ..., v_n\}$ and $E = \{e_1, ..., e_m\}$ We build the following graph:

(proof for k = 3, but can be extended for every fixed $k \ge 3$) Let H = (V, E) be an hypergraph, with $V = \{v_1, ..., v_n\}$ and $E = \{e_1, ..., e_m\}$ We build the following graph:

Finally : the clique is a vertex cover (parameter) of size n + 1

Contents

Kernels, domatic partition

2 hypergraph-2-colorability

3 Transformation to *k*-DOMATIC PARTITION

Future work using "hierarchies of parameters":

• not only negative results ! VERTEX COVER

- not only negative results ! VERTEX COVER
 - no poly kernel when parameterized by Treewidth
 - cubic kernel when parameterized by *FeedbackVertexSet* (*Treewidth* \leq 1 + *kv*)

- not only negative results ! VERTEX COVER
 - no poly kernel when parameterized by Treewidth
 - ► cubic kernel when parameterized by *FeedbackVertexSet* (*Treewidth* \leq 1 + *kv*) \Rightarrow open for *Treewidth* \leq t + *kv* (for t \geq 2)

- not only negative results ! VERTEX COVER
 - no poly kernel when parameterized by Treewidth
 - ► cubic kernel when parameterized by *FeedbackVertexSet* (*Treewidth* \leq 1 + *kv*) \Rightarrow open for *Treewidth* \leq t + *kv* (for t \geq 2)
- considering other hierarchies :

- not only negative results ! VERTEX COVER
 - no poly kernel when parameterized by Treewidth
 - ► cubic kernel when parameterized by *FeedbackVertexSet* (*Treewidth* $\leq 1 + kv$) \Rightarrow open for *Treewidth* $\leq t + kv$ (for $t \geq 2$)
- considering other hierarchies :
 - distance to other invariants (CliqueWidth, * width)

- not only negative results ! VERTEX COVER
 - no poly kernel when parameterized by Treewidth
 - ▶ cubic kernel when parameterized by *FeedbackVertexSet* (*Treewidth* \leq 1 + *kv*) \Rightarrow open for *Treewidth* \leq t + *kv* (for t \geq 2)
- considering other hierarchies :
 - distance to other invariants (CliqueWidth, * width)
 - here, distance = set of vertices to remove
 - ★ set of edges to remove
 - ★ set of edges to edit...

Thank you for your attention!