
On the satisfiability of workflows with release points

Jason Crampton
Royal Holloway

University of London
jason.crampton@rhul.ac.uk

Gregory Gutin
Royal Holloway

University of London
gutin@cs.rhul.ac.uk

Rémi Watrigant
Inria Sophia Antipolis -

Méditerranée
remi.watrigant@inria.fr

ABSTRACT
There has been a considerable amount of interest in recent
years in the problem of workflow satisfiability, which asks
whether the existence of constraints in a workflow speci-
fication means that it is impossible to allocate authorized
users to each step in the workflow. Recent developments
have seen the workflow satisfiability problem (WSP) stud-
ied in the context of workflow specifications in which the
set of steps may vary from one instance of the workflow to
another. This, in turn, means that some constraints may
only apply to certain workflow instances. Inevitably, WSP
becomes more complex for such workflow specifications. In
this paper, we present the first fixed parameter algorithms
to solve WSP for workflow specifications of this type. More-
over, we significantly extend the range of constraints that
can be used in workflow specifications of this type.

1. INTRODUCTION
Many businesses use computerized systems to manage

their business processes. A common example of such a sys-
tem is a workflow management system which is responsible
for the co-ordination and execution of steps in a business
process. A business process may be executed many times
and by different users. However, the structure of the pro-
cess is fixed and may be defined by a set of steps that must
be performed in a particular sequence. In addition, we may
wish to impose some form of access control on the execu-
tion of a business process, limiting which users may perform
which steps. This control may take the form of an autho-
rization policy, which defines which users are authorized to
perform which steps, and authorization constraints, which
limit the combinations of users that may perform certain
sets of steps in the business process. A simple form of con-
straint could prohibit the same user from performing two
(or more) particular security-sensitive steps.

The structure of a business process or workflow need not
be linear. There may be subprocesses that can be performed
in parallel, or there may be subprocesses that are mutually

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
. . .
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 000-0-0000-0000-0/00/00 ...$15.00.
http://dx.doi.org/00.0000/0000000.0000000.

exclusive (and only of the subprocesses is executed in a par-
ticular instance of the workflow). Thus, the steps executed
in a workflow may vary from one instance to another. More-
over, there may be constraints that only apply when certain
subprocesses are executed. Basin, Burri and Karjoth in-
troduced a mechanism for modeling such constraints using
release points [3].

Determining whether a workflow specification is satisfiable
– in the sense that there exists an allocation of authorized
users to steps such that all constraints are satisfied – is an
important question. An algorithm for deciding the so-called
workflow satisfiability question (WSP) is important from the
point of view of static analysis of workflow specifications
and for workflow management systems in which users select
which steps to execute [9, Section 2.2]. However, most work
on WSP has assumed that the set of steps is the same for all
workflow instances. The exception is the work of Cramp-
ton and Gutin [9], who introduced a simple language for
workflow composition, to model workflows with parallel and
exclusive-or branching. However, their work does not con-
sider the effect of release points on satisfiability. Conversely,
the work of Basin et al. does not provide an exact algorithm
for solving the enforcement process existence (EPE) prob-
lem, a problem essentially equivalent to WSP. The heuristic
algorithm developed by Basin et al. to solve the EPE prob-
lem produces good results “when the set of users is large
and the static authorizations are equally distributed among
them”. It is unclear whether the requirement that static au-
thorizations be equally distributed is likely to hold in prac-
tical settings.

In this paper, we extend the work of Crampton and
Gutin [9], who introduced a simple language for compos-
ing workflows and solving WSP for workflows specified using
this language, to incorporate release points. We then extend
the definition of constraint satisfaction, relative to a partic-
ular execution of the steps in such a workflow, in the pres-
ence of release points. Finally, we develop fixed-parameter
algorithms that solve WSP for workflows incorporating re-
lease points, thereby providing the first results in this area.
Moreover, our notion of constraints with release points is a
significant generalization of that used by Basin et al.

In the remainder of this section we introduced relevant
notation, terminology and background material. In Sec-
tion 2.1, we define the notion of a compositional workflow
with release points, extending the notion of constraint sat-
isfaction accordingly. In Section 3, we describe our method
for solving WSP and provide an analysis of its complexity.
We briefly discuss related work in Section 4. The paper con-

cludes with a summary of our contributions and our ideas
for future research in this area.

1.1 Notation and Terminology
A directed graph (digraph for short) is a pair G = (V,E),

where V is the set of vertices, and E ⊆ V × V is the set of
edges. A directed acyclic graph (DAG for short) is a digraph
which does not contain any directed cycle, i.e. no sequence
(u0, u1 . . . , uk−1, u0) such that each pair of consecutive ver-
tices belongs to E. For u ∈ V , we define the in-neighborhood
of u to be the set N−(u) = {t ∈ V |(t, u) ∈ E}; the in-degree
of u is the size of its in-neighborhood. Similarly, the out-
neighborhood of u is the set N+(u) = {w ∈ V |(u,w) ∈ E}
and the out-degree of u is the size of its out-neighborhood.
A vertex of in-degree 0 is called a source, while a vertex of
out-degree 0 is called a sink. For S ⊆ V , we denote by G[S]
the induced subgraph (S,E∩ (S×S)). By abuse of notation,
we will sometimes write G \ S as a shortcut for G[V \ S].
For more information about graphs and DAGs, we refer the
reader to [2, 12].

Sometimes, it is convenient to represent a DAG with a
partial order on its vertices. Indeed, we may write u ≤ v
for u, v ∈ V whenever u = v or there exists a directed path
from u to v. By extension, we may write u < v if u ≤ v and
u 6= v.

For any positive integer n, let [n] = {1, . . . , n}. An or-
dered sequence σ = (v1, . . . , vq) of distinct vertices of V
is called a linear subextension of G iff for every i, j ∈ [q],
vi ≤ vj implies i ≤ j. If σ contains all vertices of V , then
we say that σ is a linear extension of G.

Many decision problems take several parameters as input.
It can be instructive to consider how the complexity of the
problem may change if we assume one or more of those pa-
rameters is small relative to the others. The purpose of
multivariate analysis of the complexity of a problem is to
obtain efficient algorithms when the chosen parameters take
small values in practice. We say that a decision problem is
fixed-parameter tractable (FPT) if there exists an algorithm
that decides if an instance is positive in O(f(k)p(n)) time for
some computable function f and some polynomial p, where
n denotes the size of an instance, and is k a parameter of
the instance. Accordingly, we will call such an algorithm an
FPT algorithm. For more details about parameterized com-
plexity, we refer the reader to the monographs of Downey
and Fellows [13] and Cygan et al. [11].

1.2 The workflow satisfiability problem
A workflow specification is defined by a directed acyclic

graph G = (S,E), where S is the set of steps to be exe-
cuted, and E ⊆ S×S defines a partial ordering on the set of
steps in the workflow, in the sense that (s1, s2) ∈ E means
that step s1 must be executed before s2 in every instance
of the workflow. Note that the order is not required to be
total, so the exact sequence of steps may vary from instance
to instance. In addition, we are also given a set of users U
and an authorization policy A ⊆ S × U , where (s, u) ∈ A
means that user u is authorized to execute step s. A work-
flow specification G = (S,E) together with an authorization
policy is called a workflow schema. Throughout the paper,
we will assume that for every step s ∈ S, there exists some
user u ∈ U such that (s, u) ∈ A.

A workflow constraint (T,Θ) limits the users that are al-
lowed to perform a set of steps T in any execution of the

workflow. In particular, Θ identifies authorized (partial) as-
signments of users to steps in T . A (partial) plan is a func-
tion π : S′ → U , where S′ ⊆ S. A plan π : S → U represents
an allocation of steps to users. The workflow satisfiability
problem (WSP) is concerned with the existence or otherwise
of a plan that is authorized and satisfies all constraints.

More formally, let π : S′ → U , where S′ ⊆ S, be a plan.
Given T ⊆ S′, we write π|T to denote the function π re-
stricted to domain T ; that is π|T : T → U is defined by
π|T (s) = π(s) for all s ∈ T . Then we say π : S′ → U
satisfies a workflow constraint (T,Θ) if T 6⊆ S′ or π|T ∈ Θ.

In practice, we do not define a constraint by giving the
family of functions Θ extensionally, as the size of such set
might be exponential in the number of users and steps. In-
stead, we will assume that constraints have “compact” de-
scriptions, in the sense that it takes polynomial time to test
whether a given plan satisfies a constraint. This is a reason-
able assumption, as all constraints of relevance in practice
satisfy such a property. For instance, the two most well-
known constraints are perhaps binding-of-duty (BoD) and
separation-of-duty (SoD). The scope of these constraints is
binary: a plan π satisfies a BoD constraint ({s1, s2},=) iff
π(s1) = π(s2); and π satisfies an SoD constraint ({s1, s2}, 6=)
iff π(s1) 6= π(s2). A natural generalization of these con-
straints are atmost and atleast constraints, in which the
scope may be of arbitrary size, and both constraints come
with an additional integer k. Given T ⊆ S, a plan satis-
fies atmost(T, k) (resp. atleast(T, k)) iff |π(T)| ≤ k (resp.
|π(T)| ≥ k).

User-independent constraints generalize all these forms of
constraints [5]. Informally, such a constraint limits the exe-
cution of steps in a workflow, but is indifferent to the par-
ticular users that execute the steps. More formally, a con-
straint (T,Θ) is user-independent if whenever θ ∈ Θ and
ψ : U → U is a permutation then ψ ◦ θ ∈ Θ (where ◦
denotes function composition). A separation of duty con-
straint, on two steps for example, simply requires that two
different users execute the steps, not that, say, Alice and
Bob must execute them. Similarly, a binding of duty con-
straint on two steps only requires that the same user ex-
ecutes the steps. More generally, atleast and atmost con-
straints are user-independent. It appears most constraints
that are useful in practice are user-independent: all con-
straints defined in the ANSI-RBAC standard [1], for exam-
ple, are user-independent.

A constrained workflow authorization schema is a tuple
(G = (S,E), U,A,C), where (G,U,A) is a workflow schema,
and C is a set of constraints. We say that a plan π : S → U
is authorized if (s, π(s)) ∈ A for every s ∈ S, and we say
that π is valid if it is valid and if it satisfies all c ∈ C. We
are now ready to introduce the Workflow Satisfiability
Problem, as defined by Wang and Li [24]:

Workflow Satisfiability Problem (WSP)
Input: A constrained workflow authorization schema

W = (G = (S,E), U,A,C)
Question: Is there a valid plan π : S → U ?

We present as a running example a simple purchase-order
workflow [7] in Figure 1. We will extend this example in
subsequent sections in order to illustrate the concepts intro-
duced in this paper. In the first step of this workflow, the
purchase order is created and approved (and then dispatched

to the supplier). The supplier will submit an invoice for the
goods ordered, which is processed by the create payment
step. When the supplier delivers the goods, a goods re-
ceived note (GRN) must be signed and countersigned. Only
then may the payment be approved and sent to the sup-
plier. Observe that this workflow specification contains par-
allel branches, in the sense that the processing of both s3
and s4 must occur before s6, but the relative ordering of s3
and s4 is of no importance. We will extend this example to
include mutually exclusive branches.

The workflow specification also includes constraints (each
having binary scope), mainly in order to reduce the pos-
sibility of fraud. Such constraints may be depicted as an
undirected, labeled graph, in which the vertices represent
steps and edges denote constraints, as illustrated in Fig-
ure 1(b). One requirement, for example, is that the steps to
create and approve a purchase order are executed by differ-
ent users. We will extend the example to include constraints
having release points.

s1 s2

s3

s4

s5

s6

(a) Ordering on steps

s1

s2

s3 s4s5 s6=6= 6=

6=

6=
(b) Constraints

s1 create purchase order
s2 approve purchase order
s3 sign GRN
s4 create payment
s5 countersign GRN
s6 approve payment

6= different users must perform steps
= same user must perform steps

(c) Legend

Figure 1: A simple constrained workflow for purchase order
processing

2. COMPOSITIONAL WORKFLOWS AND
RELEASE POINTS

We now extend the definitions of workflow specification
and workflow schema to a compositional variant. We also
extend the constraints model to introduce release points.

2.1 Workflow composition
We now introduce a convenient way to represent situations

where, at some points of a workflow execution, one would
like to branch into several subworkflows independently, a no-
tion also known as OR-forks [22] or exclusive gateways [25].
To that end, we use the model defined by Crampton and
Gutin [9] called Workflow Composition.

A compositional workflow specification is defined recur-
sively using three operations: serial composition, parallel
branching and xor branching. Like a “classical” workflow
specification, it can be represented as a DAG G = (V,E).
However, in the case of a compositional workflow, not all
vertices represent steps. In addition to the set of (classical)
steps, V also contains R, the set of release points, and O,
the set of orchestration points. Orchestration points will be
introduced shortly, and release points in Section 2.3. We will
sometimes directly define a compositional workflow specifi-
cation as G = (S,R,O,E).

The DAG of a compositional workflow always contains
two special orchestration points: a source vertex α, called
input and a sink vertex ω, called output. Moreover, an
atomic compositional workflow (i.e. the base case for con-
structing such a workflow) is composed of a single step
or release point v, and can be represented by the DAG
G = ({α, v, ω}, {(α, v), (v, ω)}. Given two compositional
workflows G1 = (V1, E1) and G2 = (V2, E2) with respective
input and output vertices α1, ω1 and α2, ω2, respectively,
we may construct new compositional workflows using serial
composition, and parallel and xor branchings, denoted by
G1;G2, G1 ‖ G2 and G1⊗G2, respectively. We assume that
V1 ∩ V2 = ∅.

For serial composition, all the steps in G1 must be com-
pleted before the steps in G2. Hence, the DAG of G1;G2 is
formed by taking the union of V1 and V2, the union of E1

and E2, and the addition of a single edge from ω1 to α2.
Thus, α1 (resp. ω2) is the input (resp. output) vertex of
G1;G2.

For parallel composition, the execution of the steps in G1

and G2 may be interleaved. Hence, the DAG of G1 ‖ G2 is
formed by taking the union of V1 and V2, the union of E1

and E2, the addition of new input and output vertices α‖
and ω‖, and the addition of edges (α‖, α1), (α‖, α2), (ω1, ω‖)
and (ω2, ω‖). This form of composition is sometimes known
as an AND-fork [22] or a parallel gateway [25].

In both serial and parallel compositions, all steps in G1

and G2 are executed. In xor composition, either the steps
in G1 are executed or the steps in G2, but not both. In
other words, xor composition represents non-deterministic
choice in a workflow specification. The DAG G1 ⊗ G2 is
formed by taking the union of V1 and V2, the union of E1 and
E2, the addition of new input and output vertices α⊗ and
ω⊗, and the addition of edges (α⊗, α1), (α⊗, α2), (ω1, ω⊗)
and (ω2, ω⊗). Given G1 ⊗ G2, we will say that every pair
of vertices (v, v′) ∈ V1 × V2 are exclusive. We say that a
compositional workflow is xor-free if it can be constructed
with only serial and parallel operations.

For the sake of readability, we will sometimes simplify
the representation of a compositional workflow by replacing
an orchestration point having a single in-neighbor u and a
single out-neighbor v by the edge (u, v) (for instance, a path
(α1, s1, ω1, α2, s2, ω2) will be replaced by (α1, s1, s2, ω2)).

A compositional workflow specification G = (V,E) to-
gether with an authorization policy A ⊆ S×U will be called
a compositional workflow schema. An example of a composi-
tional workflow specification is shown in Figure 2. It extends
the example in Figure 1 by including orchestration steps and
an xor branching. We model the fact that orders below a cer-
tain value will not require a countersignature on the GRN.
Thus, one branch includes steps to sign and countersign the
GRN (which is taken when the value of the order exceeds a

α

s1

s2 α‖

α⊗

s3 s5

s′3

ω⊗

s4

ω‖ s6

ω

(a) Ordering on steps

s1

s2

s3 s4s5 s6

s′3

=6= 6=

6=

6=
=

(b) Constraints

s1 create purchase order
s2 approve purchase order
s3 sign GRN
s′3 sign GRN
s4 create payment
s5 countersign GRN
s6 approve payment

6= different users must perform steps
= same user must perform steps

(c) Legend

Figure 2: Example of a compositional workflow specifica-
tion; vertices with no border represent orchestration points

certain value), while the other branch contains only the sign
GRN step.

2.2 Execution sequences
In a compositional workflow having an xor branching,

there exists more than one set of steps that could comprise a
workflow instance. And in a compositional workflow having
only parallel branching, two different workflow instances will
contain the same steps but they may occur in different or-
ders. Here, we introduce the idea of an execution sequence,
which is an ordered sequence of steps and release points. An
execution sequence may be empty. For execution sequences
σ = (a1, . . . , ak) and σ′ = (b1, . . . , bk), we define the follow-
ing two sets of execution sequences:

σ + σ′ = {(a1, . . . , ak, b1, . . . , b`)}
σ ∗ σ′ = {(a1) + σ′′ : σ′′ ∈ (a2, . . . , ak) ∗ (b1, . . . , b`)} ∪

{(b1) + σ′′ : σ′′ ∈ (a1, . . . , ak) ∗ (b2, . . . , b`)}
σ ∗ () = () ∗ σ = σ

In other words, σ + σ′ represents concatenation of σ and
σ′; and σ ∗ σ′ represents all possible interleavings of σ and
σ′ that preserve the ordering of elements in both σ and σ′.
Given sets of execution sequences Σ and Σ′, we write Σ+Σ′

to denote {σ + σ′ : σ ∈ Σ, σ′ ∈ Σ′} and Σ ∗ Σ′ to denote
{σ ∗ σ′ : σ ∈ Σ, σ′ ∈ Σ′}.

For a compositional workflow G, we write Σ(G) to denote
the set of execution sequences for G. Then:

• for workflow specification G comprising a single step
or release point v, Σ(G) = {(v)};

• Σ(G1;G2) = Σ(G1) + Σ(G2);

• Σ(G1 ‖ G2) = Σ(G1) ∗ Σ(G2); and

• Σ(G1 ⊗G2) = Σ(G1) ∪ Σ(G2).

The possible execution sequences for the example in Fig-
ure 2 are:

• (s1, s2, s4, s3, s5, s6)

• (s1, s2, s3, s4, s5, s6)

• (s1, s2, s3, s5, s4, s6)

• (s1, s2, s4, s
′
3, s6)

• (s1, s2, s
′
3, s4, s6)

For an execution sequence σ, let σS and σR be the restric-
tion of σ to the set of steps and release points, respectively.
Similarly, let V (σ), S(σ) and R(σ) be respectively the set of
vertices, steps and release points contained in σ.1

Given an execution sequence σ of G and v ∈ σ, we define
leftσ(v) (resp. rightσ(v)) to be the subsequence of σ com-
posed of all steps or release points v′ ∈ σ such that v′ < v
(resp. v < v′). Given two steps or release points v, v′ ∈ σ
such that v < v′, we define btwσ(v, v′) to be the subsequence
of σ composed of all steps or release points v′′ ∈ σ such that
v < v′′ < v′. We will omit the σ subscript from leftσ, rightσ
and btwσ when it is obvious from context.

2.3 Constraints with release points
Let W = (S,R,O,E,U,A) be a compositional workflow

schema. A constraint with release points has the form c =
(T,Θ, P), where T ⊆ S is the scope of the constraint, P ⊆ R
represents the release points of the constraints, and Θ is a
family of functions with domain T and range U . For Q ⊆ S,
we denote by Θ|Q = {f |Q : f ∈ Θ} the restriction of the
family Θ to Q.

Let σ be an execution sequence σ of W , and σP =
(r1, . . . , rq) be the ordering of release points of P in σ. For
every i ∈ {1, . . . , q − 1}, define

T0 = T ∩ S(left(r1));

Ti = T ∩ S(btw(ri, ri+1)), for i ∈ [q − 1];

Tq = T ∩ S(right(rq)).

In other words, for i ∈ [q − 1], Ti is the set of steps of T
occurring between ri and ri+1 in σ.

Given a constraint c = (T,Θ, P) and an execution se-
quence σ, we define the restriction of c to Ti to be the con-
straint ci = (Ti,Θ|Ti). (That is, a constraint with scope

1Hence, the difference between σS and S(σ) (resp. σR and
R(σ)) is that the former is an ordered sequence, while the
latter is a set. In particular, it might be the case, for two
ordered sequences σ, σ′, that, say, S(σ) = S(σ′) while σS 6=
σ′S , in the case where σ and σ′ are two different orderings of
a same set of steps.

limited to Ti and having no release points.) We say that a
plan π : S(σ) → U satisfies c iff for all i ∈ {0, . . . , q}, π|Ti

satisfies ci, i.e. if π|Ti ∈ Θ|Ti . Informally, a plan satisfies c
iff its restriction to each subscope Ti, i ∈ {0, . . . , q}, can be
extended to a valid tuple (i.e. a tuple which belongs to Θ).
We say σ satisfies c if there exists a plan π : S(σ)→ U that
satisfies c.

For constraints with a binary scope, such as classical
binding-of-duty or separation-of-duty constraints, the addi-
tion of release points is a natural generalization. Indeed, a
separation-of-duty constraint with two steps s1, s2 as scope
and P as the set of release points will be satisfied (i) by any
plan π if some r ∈ P occurs between s1 and s2, or (ii) by
any plan π such that π(s1) 6= π(s2).

For constraints with a larger scope, the meaning of release
points is less transparent. Consider, for example, the con-
straint atleast({s1, s2, s3, s4}, 3, {r}), where r is the release
point, and the following assignment:

π(s1) = π(s3) = u1, π(s2) = π(s4) = u2.

If r occurs before or after all steps in the scope of the
constraint in the execution sequence, then this assignment
violates the constraint, as only two different users are as-
signed to these steps. If, however, the execution sequence
is (s1, s2, s3, r, s4), then the constraint is satisfied. Indeed,
the restriction of this assignment to {s1, s2, s3} can be ex-
tended to a valid assignment (by assigning, say, u3 to s4).
Similarly, the restriction of this assignment to {s4} can also
be extended to a valid assignment (assigning, say, u1 to s1,
u3 to s2, and any user to s3).

We extend our running example by modifying the SoD
constraint defined between s1 and s4 in order to illustrate
how execution sequences and release points might affect the
satisfiability of an instance. The resulting workflow specifi-
cation is illustrated in Figure 3.) Specifically, the constraint
is released by r positioned between ω⊗ and ω‖. The intuition
is to prevent the same person from creating the purchase or-
der and the payment, except when the GRN has been signed
(and countersigned, if the upper branch of the xor branch-
ing is chosen). Hence, if the “create payment” is processed
before the signature/countersignature of the GRN, then the
user which has created the purchase order cannot create the
payment. Otherwise, if the “create payment” is processed
after the signature/countersignature of the GRN, then the
SoD constraint is released. In the case where the autho-
rization policy is such that only one user is authorized to
execute steps s1 and s4, then some execution sequences will
be satisfiable, whereas some others will not be satisfiable.

Notice that our definitions of constraints with release
points allow us to model the SoD and BoD constraints as
defined by Basin et al. [3]. In their work, a SoD constraint
is defined by two sets of steps T1 and T2 together with a set
of release points P . Then, whenever a user u executes some
step s1 ∈ T1, this constraint prohibits u from executing any
step s2 ∈ T2 unless a release point is reached. One can ob-
serve that this constraint can be transformed into |T1| · |T2|
binary SoD constraints with scope (s1, s2) ∈ T1 × T2 and
release points P . Basin et al. define a BoD constraint to
be a set of steps T and a set of release points P . Once a
user u has executed some step in T , u must execute the re-
maining steps in T unless a release point is reached. Again,
we may transform this into an equivalent set of constraints
with binary scope by specify

(|T |
2

)
binary BoD constraints

α

s1

s2 α‖

α⊗

s3 s5

s′3

ω⊗

s4

ω‖ s6

ω

r

(a) Ordering on steps

s1

s2

s3 s4s5 s6

s′3

=6= 6=r

6=

6=
=

(b) Constraints

s1 create purchase order
s2 approve purchase order
s3 sign GRN
s′3 sign GRN
s4 create payment
s′4 commit payment
s5 countersign GRN
s6 approve payment

r release point of the constraint (s4, s
′
4, 6=)

6= different users must perform steps
= same user must perform steps
6=r same as 6= but released by r

(c) Legend

Figure 3: A constrained compositional workflow specifica-
tion with release points; vertices bordered by a rectangle
(resp. circle) represent steps (resp. release points); vertices
with no border are orchestration points.

with scope (s, s′) ∈ T × T (with s 6= s′) and release points
P . Thus our definition of constraints with release points is
considerably more general than existing ones.

A constrained compositional workflow schema (c.c.w.s.
for short) is a tuple (G = (S,R,O,E), U,A,C), where
(G,U,A) is a compositional workflow schema, and C is a
set of constraints with release points. We assume the scope
of a constraint does not contain two exclusive steps. This
is a reasonable assumption since two exclusive steps never
occur in the same execution sequence. We say constraint
c = (T,Θ, P) is user-independent (UI) iff for every θ ∈ Θ
and every permutation φ : U → U , we have φ ◦ θ ∈ Θ.

2.4 WSP with release points
Given a constrained c.c.w.s. W = (S,R,O,E,U,A,C), we

say that an execution sequence σ is satisfied if there exists an
authorized plan π : S(σ) → U that satisfies all constraints
in C. We say that W is strongly satisfiable (resp. weakly
satisfiable) iff every (resp. at least one) execution sequence
of W is satisfiable. We are now able to define the following
decision problem which is the main subject of this paper:

WSP with Release Points
Input: A constrained compositional workflow schema

W = (S,R,O,E, U,A,C)
Question: Is W strongly satisfiable ?

Clearly WSP with Release Points is a generalization
of WSP (indeed, a WSP with Release Points with no
xor branching and whose all constraints have no release
point is equivalent to a WSP instance), and is thus NP -
hard and W [1]-hard when parameterized by k = |S| [24].
Moreover, it has been shown that if all considered con-
straints are user-independent, then WSP can be solved in
time O(2k log2 k|W |O(1)), where k is the number of steps [17]

(|W |O(1) means a polynomial in the size of the workflow in-
stance), and that this is the best possible: WSP cannot be

solved in time O(ck log2 k|W |O(1)) for any constant c < 2 [14]
unless the Strong Exponential Time Hypothesis2 is false,
which is unlikely. This lower bound directly transfers to
WSP with Release Points. Despite the seeming difficulty
of the problem (since all execution sequences have to be con-
sidered), we will be able to show that WSP with Release
Points is FPT parameterized by the number of vertices
of the DAG (i.e. number of steps, release points and or-
chestration points) if only user-independent constraints are
considered.

3. SOLVING THE COMPOSITIONAL WSP
WITH RELEASE POINTS

Our aim is thus to provide an algorithm to solve the
WSP with Release Points. Recall that the problem
asks whether every execution sequence is satisfiable. Hence,
a naive approach would be to enumerate all execution se-
quences, and test whether each of them is satisfiable. In the
next section, we show that such an exhaustive enumeration
is wasteful. More precisely, we define an equivalence rela-
tion over execution sequences, and show that all execution
sequences which belong to the same equivalence class behave
the same with respect to satisfiability.

3.1 Execution arrangements
Let ∼ be the following relation over the set of all execution

sequences of a workflow: σ ∼ σ′ iff (i) σR = σ′R (ii) S(σ) =
S(σ′) and (iii) for all s ∈ S, R(rightσ(s)) = R(rightσ′(s)).
It is easy to see that ∼ defines an equivalence relation. Its
equivalence classes are called execution arrangements. Infor-
mally, all execution sequences of an execution arrangement
have the same set of steps and release points, their release
points are in the same order, and every step occurs between
the same pair of release points.

From this observation, it makes sense to define a “com-
pact” representation of an execution arrangement. More
precisely, we define an execution arrangement as an ordered
sequence (S1, r1, S2, r2, ..., rq−1, Sq) which satisfies the fol-
lowing properties:

1. {S1, ..., Sq} is a partition of S (we may have Si = ∅ for
some i ∈ [q]);

2. (r1, ..., rq−1) is a linear subextension of G containing
all release points;

2The Strong Exponential Time Hypothesis [15] states that
a CNF SAT formula on n variables cannot be solved in cn

time for any c < 2.

3. for all (s1, . . . , sq) ∈ S1× · · ·×Sq, (s1, r1, . . . , rq−1, sq)
is a linear subextension of G.

Notice the abuse of notation in the last property if Si = ∅
for some i ∈ [q]. In this case, we simply omit such steps si
in the sequence (s1, r1, . . . , rq−1, sq). For instance, if S2 = ∅,
then the sequence is actually (s1, r1, r2, s3, . . . , rq−1, sq).

The execution arrangements and the corresponding exe-
cution sequences for the example in Figure 3 are tabulated
below.

Arrangement Sequence
{s1, s2, s3, s5}, r, {s4, s6} (s1, s2, s3, s5, r, s4, s6)
{s1, s2, s3, s4, s5}, r, {s6} (s1, s2, s3, s5, s4, r, s6)

(s1, s2, s3, s4, s5, r, s6)
(s1, s2, s4, s3, s5, r, s6)

{s1, s2, s′3}, r, {s4, s6} (s1, s2, s
′
3, r, s4, s6)

{s1, s2, s′3, s4}, r, {s6} (s1, s2, s
′
3, s4, r, s6)

(s1, s2, s4, s
′
3, r, s6)

As we can see, even with one xor branching and one release
point, the number of execution arrangements (4) is smaller
than the number of execution sequences (7). Naturally, this
difference increases with the number of xor branchings and
release points.

The idea of defining this equivalence relation comes from
the fact that the ordering of steps between two release points
is of no importance for determining the satisfiability of a
given execution sequence. We will exploit this property and
prove that the satisfiability of two execution sequences of an
execution arrangement are equivalent, i.e. one is satisfiable
iff the other is. This is formalized by the following lemma.

Lemma 1. Let W = (G = (S,R,O,E), U,A,C) be a
c.c.w.s.. Given two execution sequences σ, σ′ of W with
σ ∼ σ′, σ is satisfiable if and only if σ′ is.

Proof. Let c = (T,Θ, R) ∈ C. By definition of ∼, we
have σR = σ′R = (r1, . . . , rq). Now, let i ∈ {1, . . . , q − 1},
and denote by Ti the set T ∩ S(btwσ(ri, ri+1)) and by T ′i
the set T ∩ S(btwσ′(ri, ri+1)). Again by definition of ∼, it
holds that R(rightσ(s)) = R(rightσ′(s)) for every s ∈ S(σ),
which implies S(btwσ(ri, ri+1)) = S(btwσ′(ri, ri+1)), and
thus Ti = T ′i . It proves that σ satisfies c iff σ′ satisfies c.
Finally, observe that authorization does not depend on the
ordering of steps or release points. Hence, since S(σ) =
S(σ′) by definition, an authorized plan for σ will also be an
authorized plan for σ′, and conversely.

Lemma 1 states that in order to test the satisfiability of a
c.c.w.s., it is sufficient to test the satisfiability of only one ex-
ecution sequence per execution arrangement. Observe that
the number of possible execution sequences can be as large
as (|S|+|R|)!, even with no xor branching, while the number

of execution arrangements is bounded above by |R|!|R||S|.
Thus, the main issue is now to enumerate all possible ex-

ecution arrangements of an instance, and, for each of them,
to test its satisfiability. The enumeration is itself a non-
trivial question, not least because of the possible interleav-
ing of several xor and parallel branchings. In particular, the
presence of xor branchings implies that the set of steps and
release points might be different depending on the execu-
tions. Hence, our approach can be decomposed into three
subtasks:

1. Elimination of xor branchings.

2. Enumeration of all execution arrangements of a xor-
free instance.

3. Testing the satisfiability of an execution arrangement.

The next three subsections address these subtasks in turn.
In Section 3.2, we develop a method for decomposing a prob-
lem instance into subproblems that do not contain any xor
branching. Our algorithm will run in FPT time parameter-
ized by the number of xor branchings of the instance, and
polynomial space. In Section 3.3, we describe an algorithm
to enumerate execution arrangements running in FPT time
parameterized by the number of steps and release points,
and using polynomial space. Finally, in Section 3.4, we show
that each subproblem can be reduced to the classical WSP,
allowing us to use any known method for solving this prob-
lem in order to terminate the algorithm.

Algorithm 1 summarizes the general procedure in an infor-
mal manner. In Section 3.5, we provide a theoretical analysis
of our algorithm.

Algorithm 1 General algorithm

Input: W = (S,R,O,E, U,A,C) a c.c.w.s.
1: for all xor-free subinstance W ′ do
2: for all execution arrangement Σ of W ′ do
3: if Σ is unsatisfiable then
4: return UNSATISFIABLE INSTANCE
5: end if
6: end for
7: end for
8: return SATISFIABLE INSTANCE

3.2 Elimination of xor branchings
Recall that in an execution sequence σ of a composi-

tional workflow specification containing a xor branching of
two subworkflows G1 = (V1, E1) and G2 = (V2, E2), either
V1 ⊆ V (σ) or V2 ⊆ V (σ). Such a branching is identified
by its corresponding input and output vertices α⊗ and ω⊗,
respectively. For such a pair x = (α⊗, ω⊗), we construct
the compositional workflow schemas Gx1 and Gx2 from G by
removing all vertices from G2 and G1, respectively. Now,
given a set X of pairs of xor input and output vertices, we
define the set of reduced compositional workflows as follows:

• if X = {x}, then redX(G) = {Gx1 , Gx2};

• otherwise, for an arbitrary x ∈ X whose branches
does not contain themselves another xor branching,
redX(G) = redX\{x}(G

x
1) ∪ redX\{x}(Gx2).

Figure 4 illustrates these definitions applied to our running
example. In the first workflow, steps s3 and s5 are removed,
while in the second one, step s′3 is removed (then both are
simplified using rules described in Section 2.1, allowing us
to remove α⊗ and ω⊗).

We denote by B be the set of all pairs of xor input
and output vertices of a given c.c.w.s. W = (G =
(S,R,O,E), U,A,C). Informally, redB(G) contains all pos-
sible compositional workflows obtained from G by removing,
for every xor branching, one of the two branches. Hence,
any G′ ∈ redB(G) is xor-free, and, in particular, does not
contain two exclusive steps. For G′ = (V ′, E′) ∈ redB(G),
let W [G′] be the c.c.w.s. induced by G′: W [G′] = (G′ =

α

s1

s2 α‖

s′3

s4

ω‖ s6

ω

r

(a) first xor-free workflow

α

s1

s2 α‖

s3 s5

s4

ω‖ s6

ω

r

(b) second xor-free workflow

Figure 4: The two workflows obtained after removing the
xor branching of Figure 3.

(S∩V ′, R∩V ′, O∩V ′, E), U,A∩(V ′×U), C) (as mentioned
earlier, we may assume that constraints do not contain ex-
clusive steps, hence there is no need for restricting the scopes
of constraints). We now use this construction in the follow-
ing result.

Lemma 2. Using the notation above, W is satisfiable if
and only if W [G′] is satisfiable for every G′ ∈ redB(G).

Proof. Simply observe that every execution sequence
of W [G′] is also an execution sequence of W , and, con-
versely, for every execution sequence σ of W , there ex-
ists G′ ∈ redB(G) such that σ is an execution sequence of
W [redB(G)].

3.3 Enumeration of execution arrangements
Throughout this subsection, we will assume we are given

a c.c.w.s. W = (G = (S,R,O,E), U,A,C) which does not
contain any xor branching. Our objective is to provide an
algorithm enumerating all execution arrangements of W .

Since W is assumed to be xor-free, we know that all exe-
cution sequences (and thus all execution arrangements) that
can be obtained from G have the same set of steps and re-
lease points, namely S and R, respectively.

Let us recall the properties satisfied by an execution ar-
rangement (S1, r1, S2, r2, ..., rq−1, Sq):

1. {S1, ..., Sq} is a partition of S (we may have Si = ∅ for
some i ∈ [q]);

2. (r1, ..., rq−1) is a linear subextension of G containing
all release points;

3. for all (s1, . . . , sq) ∈ S1× · · ·×Sq, (s1, r1, . . . , rq−1, sq)
is a linear subextension of G.

The first step of the algorithm is to enumerate all linear
subextensions of release points. This is actually equivalent
to the enumeration of all topological orderings of the partial
order restricted to R, and can be done using a BFS-based

S1 r1 S2 r2 S3 r3 S4 r4 S5

s

imin imax

1

Figure 5: Illustration of imax and imin. Arrows indicate that
s < r4 and that there exists s′1 ∈ S1 and s′2 ∈ S2 such that
s′1 < s and s′2 < s. Hence, s may belong to S2, S3 or S4.

recursive algorithm (although more involved and efficient
algorithms exist, see e.g. [16, 19, 21, 23]). Hence, in the
following, we fix such a linear extension (r1, . . . , rq−1).

For the sake of readability, we will now restrict ourselves
to steps only: we first assume thatG does not contain release
points, by considering the restriction of the partial order to
V \ R. In addition, we will consider orchestration points
as normal steps. In order to obtain execution arrangements
containing “concrete” steps only, simply remove the orches-
tration points once an execution arrangement is returned.
Hence, we now assume V = S.

Our procedure is described in detail in Algorithm 2, and
consists in constructing the partition S1, . . . Sq step by step.
Also, it takes as input a partial partition S1, . . . , Sq of a
subset of S. It takes as input the subset Srem ⊆ S of re-
maining steps that have to be assigned to some set of the
partition {S1, . . . , Sq} of S \ Srem. For the first call, simply
set Srem = S and Si = ∅ for all i ∈ [q].

Algorithm 2 Enumeration of execution arrangements given
a linear extension (r1, . . . , rq−1) of release points

Input: Srem ⊆ S, {S1, . . . , Sq} partition of S \ Srem
1: if Srem = ∅ then
2: output (S1, r1, S2, r2, . . . , rq−1, Sq)
3: else
4: s← source of G[Srem] (arbitrarily chosen)
5: imin ← max({i ∈ {2, . . . , q} : ri−1 < s or s′ < s for

some s′ ∈ Si} ∪ {1})
6: imax ← min({i ∈ {1, . . . , q − 1} : s < ri or s < s′ for

some s′ ∈ Si} ∪ {q})
7: for all i ∈ {imin, . . . , imax} do
8: make a recursive call with input Srem \ {s},

{S1, . . . , Si ∪ {s}, . . . , Sq}
9: end for

10: end if

Once a step s has been chosen (line 4), we need to decide
to which set it can belong to. To do so, we determine two
indices imin and imax such that for all i ∈ {imin, . . . , imax},
s can be put in Si. Roughly speaking, we cannot put s to
the left of a set Sj such that s′ < s for some s′ ∈ Sj , or
to the left of some release point rj such that rj < s (and,
similarly, to the right of a set Sj or a release point rj such
that s < rj or s < s′ for some s′ ∈ Sj). This is illustrated
in Figure 5.

Lemma 3. Every output of Algorithm 2 is an execution
arrangement, and every execution arrangement is an output
of Algorithm 2.

Proof. Let Σ = (S∗1 , r1, S
∗
2 , . . . , rq−1, S

∗
q) be an output

of our algorithm, and let us show it is indeed an execution
arrangement. First, (r1, . . . , rq−1) is a fixed linear exten-
sion of R, and the algorithm only stops when all steps have
been assigned to a set Si, thus properties (2) and (1) are
obviously satisfied. For all inputs (S1, . . . , Sq) of the algo-
rithm, we prove that for all (s1, . . . , sq) ∈ S1 × · · · × Sq,
(s1, r1, . . . , rq−1, sq) satisfies property 3, by induction on
|
⋃
i∈[q] Si|. The property is obviously true at the first call

since (r1, . . . , rq−1) is a linear subextension of R. Then, let
(S1, . . . , Sq) be an input satisfying the property, and s cho-
sen at line 4. Let i ∈ {imin, . . . , imax}. For all j < i, by
definition of imin, it holds that s 6< rj , and s 6< s′ for all
s′ ∈ Sj . Similarly, for all j ≥ i we have rj 6< s, and, for
all j > i and all s′ ∈ Sj , we have s′ 6< s. This proves
that (s1, r1, . . . , rq−1, sq) is a linear subextension of G for all
(s1, . . . , sq) ∈ S1 × · · · × Si ∪ {s} × · · · × Sq.

Conversely, let Σ = (S∗1 , r1, . . . , rq−1, S
∗
q) be an execution

arrangement. We now show that Σ is an output of the algo-
rithm. To do so, assume that there is a call of the algorithm
with input {S1, . . . , Sq} such that Si ⊆ S∗i for all i ∈ [q]
(this is obviously true at the first call). Let s be the step
chosen at line 4, and i∗ such that s ∈ S∗i . We need to show
that imin ≤ i∗ ≤ imax. If imin = 1 then the first inequality
obviously holds. Otherwise, the definition of imin implies
that we have rimin−1 < s or s′ < s for some s′ ∈ Simin . In
both cases, having i∗ < imin would break property 3 and
Σ would not be an execution arrangement. Similarly, the
second inequality holds trivially if imax = q, and imax < i∗

together with the definition of imax would imply that Σ is
not an execution arrangement.

3.4 Reduction to WSP
It now remains to test the satisfiability of an execution

arrangement. Indeed, as we saw in Lemma 1, all execu-
tion sequences of the same execution arrangement behave
the same with respect to satisfiability. To do so, we show
that satisfiability of an execution arrangement reduces to the
satisfiability of a finite number of “classical” WSP instances.
We recall the formal definition of WSP [24].

Workflow Satisfiability Problem (WSP)
Input: A constrained workflow authorization schema

W = (G = (S,E), U,A,C)
Question: Is there a valid plan π : S → U ?

Let Σ = (S1, r1, S2, r2, ..., rq−1, Sq) be an execution ar-
rangement (i.e. an output of Algorithm, line 2), and
c = (T,Θ, P) be a constraint with release points P =
{rp1 , . . . , rp|P |} (w.l.o.g. we assume pi ≤ pj whenever

i ≤ j, i.e. this ordering is a linear extension of R(Σ)).
As in Section 2.3, for all i ∈ {1, . . . , |P | − 1}, define Ti =
T ∩ S(btw(rpi , rpi+1)), T0 = T ∩ S(left(rp0)), T|P | = T ∩
S(right(rp|P |)), and the“classical”constraint ci = (Ti,Θ|Ti).
Recall that c is satisfied by an execution sequence σ iff
there exists a plan π such that π|Ti satisfies ci for every
i ∈ {0, . . . , q}. Thus, for each i ∈ [|P |], it makes sense to
define the WSP instance Wi = (Gi = (Si, Ei), U,Ai, Ci),
where defines the partial order of G restricted to Si, Ai =
A ∩ (Si × U) and Ci = {ci|c ∈ C}. By the foregoing, we
obtain the following result:

Lemma 4. Σ is satisfiable (for WSP with Release
Points) if and only if Wi is satisfiable (for WSP) for every
i ∈ [|P |].

Using this result, we are thus able to use any state-of-the-
art solver for WSP as a black box in order to obtain the
general algorithm. There are several papers where practical
WSP algorithms were designed and evaluated, see, e.g., [6,
17, 18, 24]. Some of these algorithms are bespoke, while
others use SAT solvers.

3.5 Analysis of the algorithm
We now analyze the running time and space of our algo-

rithm with respect to the different parameters of an instance:
the number of users |U |, the number of constraints |C|, the
number of steps |S|, the number of release points |R| and
the number of orchestration points |O|. We denote by |W |
the total size of an instance. First, observe that we always
have |O| = O(|R|+ |S|) by construction (in practice, |O| will
be much smaller than |S|+ |R| because of the simplification
mentioned at the end of Section 2.1). We will also consider
the number |B| of xor branchings in a problem instance.
(Clearly |B| ≤ |O|.)

Most techniques we use in this algorithm are based on re-
cursive procedures. Given an input I, such a recursive proce-
dure applies various operations (dependent on I), and then
makes one or several recursive calls with inputs I1, . . . , Iw.
In order for such a procedure to terminate, there must exist
an integer-valued measure `(I) which strictly decreases with
each recursive call, i.e. such that `(Ij) < `(I) for all j ∈ [w].
For instance, the measure of the recursive procedure of Sec-
tion 3.2 is the number of xor branchings in the input, which
decreases by one at each new call, while the measure of Al-
gorithm 2 is the number of steps, which also decreases by
one at each new call.

The width of a recursive algorithm is the maximum num-
ber of recursive calls at each step (i.e. w in the previous no-
tation), while the depth is the measure `(I) of the first input
of the algorithm. Then a recursive algorithm has a running
time of O(w`(I)T (I)), where T (I) is the running time of a
single call, and a space complexity of O(`(I)Sp(I)), where
Sp(I) is the space complexity of a single call.

The worst case complexity (time or space) of our algo-
rithm is the product of the respective complexity of the al-
gorithms for solving the three subproblems:

1. enumeration of all xor-free subinstances;

2. given a xor-free instance, enumeration of all execution
arrangements;

3. given an execution arrangement, reduction to WSP
and satisfiability test.

The first step, described in Section 3.2, is done using a
recursive algorithm. Its branching width is 2, its depth is
|B| (the number of xor-branchings of the instance), and ev-
ery step takes polynomial time and space, since it simply
consists in removing some vertices of the workflow specifica-
tion. Thus, its running time is O(2|B| · |W |O(1)) and it uses
polynomial space.

Given a xor-free instance of the previous step, the next
task is to enumerate all execution arrangements (Sec-
tion 3.3). To do so, we first enumerate all linear extensions
of release points. This can be done in time linear in the

number of such linear extensions [21], which is at most |R|!.
Then, given a linear extension of the release points, we can
apply Algorithm 2, which is a recursive algorithm, whose
branching width is at most q, the number of release points
plus one (see line 7), and depth is |S| (since we remove an
element of Srem at each recursive call). Moreover, each call
takes polynomial time and space. Hence Algorithm 2 takes
time O(q|S| · |W |O(1)) and thus subproblem 2 takes time

O(|R|!q|S||W |O(1)) = O(|R|!(|R| + 1)|S||W |O(1)) and poly-
nomial space.

Finally, the last step contains a reduction to several in-
stances of WSP, and a satisfiability test for each of them.
More precisely, given an execution arrangement Σ, we con-
struct, in polynomial time, |R(Σ)| + 1 = O(|R|) instances
of WSP. Then, the running-time of the satisfiability test of
each WSP instance depends on the chosen algorithm. Let
wsp(α, β, γ) be the running time of an algorithm solving a
WSP instance with α users, β steps and γ constraints. The
running time of this step is thus O(|R|)wsp(|U |, |S|, |C|),
while the space complexity is the one of the chosen al-
gorithm for WSP. If all constraints are user-independent,
then the algorithm of [17] runs in time wsp(|U |, |S|, |C|) =

O(2|S| log2 |S||W |O(1)) and polynomial space. Thus, this step

takes time O(2|S| log2 |S||W |O(1)) and polynomial space.
In total, the running-time of our algorithm is thus

O(2|B||R|!(|R|+ 1)|S|wsp(|U |, |S|, |C|)|W |O(1)).

If all constraints are user-independent, this becomes

O(2|B||R|!(|R|+ 1)|S|2|S| log2 |S||W |O(1)),

which is an FPT running time parameterized by the number
of vertices of the workflow specification. Moreover, the algo-
rithm uses polynomial space. Thus, we obtain the following
result.

Theorem 1. If all constraints are user-independent,
WSP with Release Points can be solved in
O(2|B||R|!(|R| + 1)|S|2|S| log2(|S|)|W |O(1)) and polynomial
space.

As long as the values of |B| and |R| are small, our algo-
rithm may well be efficient in practice since the branch-and-
bound algorithm of [17] has proved to be very efficient in
practice and was further improved in [18]. For instance, in
the particular case where |R| = 0, we obtain the same run-
ning time as for WSP. Observe that this algorithm scales
polynomially with the number of users which is likely to be,
in practice, the largest parameter of a workflow. Finally,
our algorithm is deterministic, i.e. does not produce false
positive or false negative answers, contrary to the algorithm
of Basin et al. [3]. It also uses polynomial space, contrary
to the algorithm of Crampton and Gutin [9].

4. RELATED WORK
Research on workflow satisfiability began with the semi-

nal work of Bertino, Ferrari and Atluri [4] and Crampton [7].
Wang and Li were the first to demonstrate that WSP, sub-
ject to specific and limiting restrictions, was fixed-parameter
tractable [24]. A substantial body of work now exists on the
fixed-parameter tractability of WSP [5, 8, 10]. In particular,
it is known that WSP is fixed-parameter tractable (param-
eterized by the number of steps) when all constraints are
regular [10] or user-independent [5].

Basin, Burri and Karjoth introduced the notion of release
points [3] in order to model workflows in which the set of
steps that are executed may vary and for which constraints
only apply to certain sets of steps. They modeled workflows
using a process algebra and define the notion of an enforce-
ment process, which corresponds to a valid plan in our model
of workflow satisfiability. They showed that the enforcement
process existence (EPE) problem, which corresponds to the
workflow satisfiability problem, is NP-hard, and developed a
polynomial-time heuristic to solve the EPE problem. Their
algorithm achieves good results under the assumption that
the user population is large and “the static authorizations
are equally distributed between them”.

We believe it is reasonable to assume the user population
is large, at least relative to the number of steps in the work-
flow. Indeed, our FPT algorithms are of interest provided
this assumption holds. However, it is unclear whether it is
reasonable to assume that static authorizations are equally
distributed. We adopt a different approach by extending an
existing model for compositional workflows, due to Cramp-
ton and Gutin [9], to accommodate release points, and mod-
ifying the definition of constraint satisfaction and workflow
satisfiability accordingly. By making use of existing work
on WSP we are able to provide the first FPT algorithm for
WSP with release points. Moreover, this algorithm is exact
and may be used for any workflow specification containing
user-independent constraints. This is in contrast to the work
by Basin et al., which yields a non exact algorithm, in the
sense that it may produce false negatives (although it does
run in polynomial time) and only applies to specific SoD and
BoD constraints. However, it should also be noted that the
approach of Basin et al. can model more complex workflow
specifications, such as ones containing loops. In other words,
their approach is applicable to more workflow patterns than
ours, but to fewer types of workflow constraints.

On the other hand, Crampton and Gutin’s model for com-
positional workflows [9] does not consider release points.
One obvious contribution of this paper is to extend this
model, but we also introduce the notion of execution ar-
rangements and an algorithm which considers execution ar-
rangements (rather than execution sequences). Thus we pro-
vide techniques that can usefully be applied to WSP for
compositional workflows without release points.

5. CONCLUDING REMARKS
In this paper, we have extended recent work on FPT algo-

rithms for the workflow satisfiability problem by introduc-
ing release points. Release points allow constraints to be
defined for a workflow specification in which the set of steps
that is executed may vary from one workflow instance to
another. In particular, a constraint can be “switched on”
when certain steps are executed in a certain sequence and
“switched off” otherwise. The typical use case is when there
is non-deterministic branching in the specification and the
constraint should apply when one branch is executed but not
the other. As such, this work allows us to further close the
gap between the workflow specifications that are required in
practice and those for which we can provide algorithms to
solve the workflow satisfiability problem. In particular, our
algorithms can be used as the basis for an on-line reference
monitor for workflows containing xor branching.

We plan to extend our model to include sub-workflows
that can be repeated. A purchase order workflow, for exam-

ple, might include a sub-workflow containing a single step
that creates an item in a purchase order. We expect that
some care will be required to integrate looping constructs
and release points.

In Section 3.5 we noted that we reduce WSP with Re-
lease Points to WSP and use existing WSP solvers. The
performance of such solvers has improved dramatically in
recent years [6, 17, 18, 24]. We plan to use state-of-the-art
solvers to test the hypothesis that strong satisfiability for
real-world workflow specifications with xor branching and
release points can be solved efficiently in practice.

It may also be interesting to consider the workflow satisfi-
ability problem when the authorization policy changes over
the lifetime of a workflow instance. Such changes might
occur, for example, if some users are unavailable at cer-
tain times. Some related prior work exists on workflow re-
siliency [20, 24]. It is also possible to model certain con-
straints with release points by modifying the authorization
policy. Indeed, this is essentially how Basin et al. define en-
forcement processes for their SoD and BoD constraints [3].

6. REFERENCES
[1] American National Standards Institute. ANSI

INCITS 359-2004 for Role Based Access Control,
2004.

[2] Bang-Jensen, J., and Gutin, G. Digraphs - theory,
algorithms and applications. Springer, 2002.

[3] Basin, D. A., Burri, S. J., and Karjoth, G.
Obstruction-free authorization enforcement: Aligning
security and business objectives. Journal of Computer
Security 22, 5 (2014), 661–698.

[4] Bertino, E., Ferrari, E., and Atluri, V. The
specification and enforcement of authorization
constraints in workflow management systems. ACM
Trans. Inf. Syst. Secur. 2, 1 (1999), 65–104.

[5] Cohen, D., Crampton, J., Gagarin, A., Gutin,
G., and Jones, M. Iterative plan construction for the
workflow satisfiability problem. J. Artif. Intell. Res.
(JAIR) 51 (2014), 555–577.

[6] Cohen, D. A., Crampton, J., Gagarin, A.,
Gutin, G., and Jones, M. Algorithms for the
workflow satisfiability problem engineered for counting
constraints. J. Comb. Optim. 32, 1 (2016), 3–24.

[7] Crampton, J. A reference monitor for workflow
systems with constrained task execution. In 10th ACM
Symposium on Access Control Models and
Technologies, SACMAT 2005, Stockholm, Sweden,
June 1-3, 2005, Proceedings (2005), E. Ferrari and
G. Ahn, Eds., ACM, pp. 38–47.

[8] Crampton, J., Gagarin, A., Gutin, G., Jones,
M., and Wahlström, M. On the workflow
satisfiability problem with class-independent
constraints for hierarchical organizations. ACM Trans.
Priv. Secur. 19, 3 (2016), 8:1–8:29.

[9] Crampton, J., and Gutin, G. Constraint
expressions and workflow satisfiability. In 18th ACM
Symposium on Access Control Models and
Technologies, SACMAT ’13, Amsterdam, The
Netherlands, June 12-14, 2013 (2013), M. Conti,
J. Vaidya, and A. Schaad, Eds., ACM, pp. 73–84.

[10] Crampton, J., Gutin, G., and Yeo, A. On the
parameterized complexity and kernelization of the

workflow satisfiability problem. ACM Trans. Inf. Syst.
Secur. 16, 1 (2013), 4:1–4:31.

[11] Cygan, M., Fomin, F. V., Kowalik, L.,
Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., and Saurabh, S. Parameterized
Algorithms. Springer, 2015.

[12] Diestel, R. Graph Theory, 4th Edition, vol. 173 of
Graduate texts in mathematics. Springer, 2012.

[13] Downey, R. G., and Fellows, M. R. Fundamentals
of Parameterized Complexity. Texts in Computer
Science. Springer, 2013.

[14] Gutin, G., and Wahlström, M. Tight lower bounds
for the workflow satisfiability problem based on the
strong exponential time hypothesis. Inf. Process. Lett.
116, 3 (2016), 223–226.

[15] Impagliazzo, R., and Paturi, R. On the complexity
of k-SAT. J. Comput. Syst. Sci. 62, 2 (2001), 367–375.

[16] Kalvin, A. D., and Varol, Y. L. On the generation
of all topological sortings. Journal of Algorithms 4, 2
(1983), 150 – 162.

[17] Karapetyan, D., Gagarin, A. V., and Gutin, G.
Pattern backtracking algorithm for the workflow
satisfiability problem with user-independent
constraints. In Frontiers in Algorithmics - 9th
International Workshop, FAW 2015, Guilin, China,
July 3-5, 2015, Proceedings (2015), J. Wang and
C. Yap, Eds., vol. 9130 of Lecture Notes in Computer
Science, Springer, pp. 138–149.

[18] Karapetyan, D., Parkes, A. J., Gutin, G., and
Gagarin, A. Pattern-based approach to the workflow
satisfiability problem with user-independent
constraints. CoRR abs/1604.05636 (2016).

[19] Knuth, D. E., and Szwarcfiter, J. L. A
structured program to generate all topological sorting
arrangements. Inf. Process. Lett. 2, 6 (1974), 153–157.

[20] Mace, J. C., Morisset, C., and van Moorsel, A.
P. A. Quantitative workflow resiliency. In Computer
Security - ESORICS 2014 - 19th European Symposium
on Research in Computer Security, Wroclaw, Poland,
September 7-11, 2014. Proceedings, Part I (2014),
M. Kutylowski and J. Vaidya, Eds., vol. 8712 of
Lecture Notes in Computer Science, Springer,
pp. 344–361.

[21] Pruesse, G., and Ruskey, F. Generating linear
extensions fast. SIAM J. Comput. 23, 2 (1994),
373–386.

[22] van der Aalst, W. M. P., ter Hofstede, A.
H. M., Kiepuszewski, B., and Barros, A. P.
Workflow patterns. Distributed and Parallel Databases
14, 1 (2003), 5–51.

[23] Varol, Y. L., and Rotem, D. An algorithm to
generate all topological sorting arrangements. Comput.
J. 24, 1 (1981), 83–84.

[24] Wang, Q., and Li, N. Satisfiability and resiliency in
workflow authorization systems. ACM Trans. Inf.
Syst. Secur. 13, 4 (2010), 40.

[25] White, S., and Miers, D. BPMN Modeling and
Reference Guide: Understanding and Using BPMN.
Future Strategies Incorporated, 2008.

