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ABSTRACT

Resiliency is a relatively new topic in the context of access
control. Informally, it refers to the extent to which a multi-
user computer system, subject to an authorization policy, is
able to continue functioning if a number of authorized users
are unavailable. Several interesting problems connected to
resiliency were introduced by Li, Wang and Tripunitara [12],
many of which were found to be intractable. In this paper,
we show that these resiliency problems have unexpected con-
nections with the workflow satisfiability problem (WSP).
In particular, we show that an instance of the resiliency
checking problem (RCP) may be reduced to an instance of
WSP. We then demonstrate that recent advances in our un-
derstanding of WSP enable us to develop fixed-parameter
tractable algorithms for RCP. Moreover, these algorithms
are likely to be useful in practice, given recent experimental
work demonstrating the advantages of bespoke algorithms
to solve WSP. We also generalize RCP in several differ-
ent ways, showing in each case how to adapt the reduc-
tion to WSP. Li et al. also showed that the coexistence
of resiliency policies and static separation-of-duty policies
gives rise to further interesting questions. We show how
our reduction of RCP to WSP may be extended to solve
these problems as well and establish that they are also fixed-
parameter tractable.
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1. INTRODUCTION
Access control is a fundamental aspect of the security of

any multi-user computing system, and is typically based on
the idea of specifying and enforcing an authorization policy.
Such a policy identifies which interactions between users and
resources are to be allowed by the system.

Over the last twenty years, authorization policies have be-
come more complex, not least because of the introduction of
constraints, which further refine an authorization policy. A
separation-of-duty constraint (also known as the “two-man
rule” or “four-eyes policy”) may, for example, require that
no single user is authorized for some particularly sensitive
group of resources. Such a constraint is typically used to
prevent misuse of the system by a single user.

In the context of workflow systems, such constraints may
mean that it is impossible to complete all the steps in a
workflow, while simultaneously ensuring that each step is
executed by an authorized user and all constraints are sat-
isfied. Hence, there has been considerable interest in an-
alyzing workflow specifications to determine whether they
are “satisfiable” or not [3, 4, 8, 10, 14]. Here, the intent of
the analysis is to confirm that a system satisfies functional or
operational requirements, in the presence of security policies
and constraints.

More recently, we have seen the introduction of resiliency
policies, whose satisfaction indicates a system will continue
to function as intended in the absence of some number of
authorized users [12, 14]. The purpose of specifying such
policies is again to determine whether or not a system satis-
fies certain operational requirements. Li, Wang and Tripuni-
tara’s seminal work on resiliency in access control [12] intro-
duces a number of problems associated with the simulta-
neous satisfaction of separation-of-duty constraints and re-
siliency policies. They established that many of these prob-
lems were intractable, although certain special cases did ad-
mit polynomial-time algorithms.

One interesting aspect of their work is the relative sizes
of the parameters. In particular, it may be assumed for
practical purposes that certain parameters are significantly
smaller than others. With this in mind, we exploit the the-
ory of fixed-parameter tractability to investigate the prob-
lems introduced by Li et al. [12]. Informally, we develop
algorithms whose running time is polynomial in the large
parameters but may be exponential in the small parame-
ters. Such algorithms can be very useful, particularly if the
assumptions underlying the relative sizes of the parameters
hold in practice.



The fundamental contribution of this paper is to exhibit
a polynomial-time construction to transform an instance of
the resiliency checking problem (RCP) to an instance of the
workflow satisfiability problem (WSP). Recent advances in
the understanding of WSP enable us to characterize the
complexity of RCP, in order to obtain efficient algorithms.
Moreover, we are able to exploit particular characteristics of
the WSP instances obtained from RCP to specialize existing
algorithms for solving WSP. In particular:

• we establish that RCP is fixed-parameter tractable for
parameters which are likely to take small values in
practice;

• we adapt the Pattern Backtracking algorithm for
WSP [3] to solve transformed instances of RCP;

• we generalize RCP to model additional situations that
may be of practical interest, and establish that the
reduction to WSP also holds in these cases.

We then consider several problems arising from the interac-
tion of resiliency policies and static separation-of-duty poli-
cies. We use a similar reduction to the workflow satisfi-
ability problem to establish that these problems are also
fixed-parameter tractable.

In the next section, we introduce relevant concepts from
the literature, including resiliency policies, WSP and fixed-
parameter tractability. In Section 3, we show how to reduce
RCP to WSP, and adapt a known algorithm in order to
obtain a better running time. We also consider several gen-
eralizations of the problem which are likely to be of practi-
cal interest. In Section 4, we extend our approach to find
a fixed-parameter tractable algorithm for the policy consis-
tency checking problem. In doing so, we introduce a sim-
pler variant of this problem, called the mixed policy checking
problem, that is of independent interest. We conclude the
paper with a summary of our contributions and some sug-
gestions for future work.

Due to the page limits, the proofs of Theorem 2 and
Lemma 2 are given in the appendix.

2. BACKGROUND
In this section, we recall relevant material on re-

siliency policies, workflow satisfiability and fixed-parameter
tractability. We assume there exists a set of resources R, ac-
cess to which must be controlled, by specifying and enforcing
authorization policies for a set of users U . These resources
may, for example, be data objects, permissions (typically
modeled as an object-action pair, as in RBAC96 [13]), or
steps in a workflow [2]. We follow existing work on resiliency
policies by assuming an authorization policy is specified as
a user-resource relation UR ⊆ U × R, where (u, r) ∈ UR
means that user u is authorized to access resource r.1

For a user u ∈ U , we write N(u) to denote
{r ∈ R : (u, r) ∈ UR}; that is, N(u) is the set of resources
for which u is authorized, and is called the neighborhood2 of
u. We extend this notation so that N(V ), for any V ⊆ U ,
denotes

⋃

u∈V
N(u); that is, N(V ), called the neighborhood

1Clearly, more complex policies may be specified, but in-
variably such policies may be reduced to such a relation in
polynomial time.
2We use the term neighborhood as we view UR as a bipartite
graph; this view may help the reader, too.

of V , is the set of resources for which users in V , collectively,
are authorized. For any integer q ∈ N, we will write [q] to
denote {1, . . . , q}.

2.1 Resiliency policies
Informally, resiliency in the context of access control is

related to fault tolerance. It refers to the ability of a multi-
user system, governed by some access policy, to continue
functioning if authorized users are unavailable. In order to
formalize the notion of resiliency and to study its properties,
Li, Wang and Tripunitara [12] introduce the concept of a
resiliency policy, which has the form res(P, s, d, t), where P
is a subset of R, and s, d and t are integers such that s > 0,
d > 1 and t > 1. The satisfaction of policy res(P, s, d, t) is
determined in the context of a user-resource authorization
relation UR.

Definition 1. An authorization relation UR satisfies
res(P, s, d, t) if and only if upon removal of any set of s users,
there exist d mutually disjoint sets of users V1, . . . , Vd such
that N(Vi) ⊇ P and |Vi| 6 t. We call such a set {V1, . . . , Vd}
a solution/set of teams.

Informally, the resiliency policy res(P, s, d, t) specifies a
requirement that the access control state UR should be able
to tolerate the absence of at most s users and still have
sufficient users authorized for some critical task (associated
with the resources in P ). In the most general version, the
critical task requires d teams of users, each of size at most t,
such that each team independently has all authorizations for
resources in P . Li et al. then define the following decision
problem [12, Definition 2].

Definition 2. Given a user-resource relation UR and a
resiliency policy res(P, s, d, t), the Resiliency Checking

Problem (RCP) asks whether UR satisfies res(P, s, d, t).

Li et al. introduce bracket notation RCP〈〉 to denote some
restrictions of the problem, in which one or more parameters
(among s, d and t) are fixed: s and d can respectively be set
to 0 and/or 1 (or other fixed positive values), while t can be
set to infinity (∞), meaning that there is no constraint on
the size of the sets (this is equivalent to t = |P |, as the size
of any suitable team can be reduced to at most |P | users).

As Li et al. [12] point out, RCP〈〉 and its special cases
are connected to several well-known combinatorial problems
such as the Set Cover and Domatic Partition problems.
They were thus able to establish several, mainly negative,
results concerning the computational complexity of RCP〈〉,
summarized by the following result [12, Theorem 1].

Theorem 1. We have the following:

• RCP〈〉, RCP〈d = 1〉 and RCP〈t = ∞〉 are NP-hard
and are in coNPNP.

• RCP〈s = 0, d = 1〉, RCP〈s = 0, t = ∞〉 and
RCP〈s = 0〉 are NP-complete.

• RCP〈d = 1, t = ∞〉 can be solved in linear time.

In practice, it seems reasonable to assume that s will be
much smaller than the total number of users. This amounts
to saying that at any given time only a very small percentage
of users will be unvailable. Similarly, in many settings, it



seems reasonable to assume that d will also be much smaller
than the total number of users. Indeed, in many settings,
the case d = 1 will be the only one of interest.

Given the relative sizes of the parameters, in particular the
sharp disparity between the number of users and the other
parameters, it is worth investigating the extent to which
the complexity of RCP〈〉 is influenced by each of the pa-
rameters. For this reason, we will analyze RCP〈〉 using the
techniques from parameterized complexity, also called mul-
tivariate complexity analysis [6].

2.2 Workflow satisfiability
A workflow is a collection of steps that must be executed

by some users in order to achieve an objective. The order
in which those steps should be executed is usually given, as
well as constraints and authorization policies, restricting the
users that can be assigned to steps [2, 14].

More formally, a workflow specification is defined by a di-
rected, acyclic graph G = (S,E), where S is a set of steps
and E ⊆ S×S. Given a workflow specification (S,E) and a
set of users U , an authorization policy for a workflow specifi-
cation is a relation A ⊆ S×U ; we say user u is authorized to
perform step t if (t, u) ∈ A. A workflow constraint has the
form (T,Θ), where T ⊆ S and Θ is a family of functions with
domain T and range U ; we say T is the scope of the con-
straint (T,Θ). (Informally, Θ defines the set of authorized
mappings from steps in T to users in U . Generally speak-
ing, the elements of Θ are not explicitly enumerated; we
discuss this in more detail below.) Then a constrained work-
flow authorization schema is a pair ((S,E), U,A,C), where
((S,E), U,A) is a workflow authorization schema and C is a
set of workflow constraints.

Once a constrained workflow authorization schema has
been defined, the goal is to assign a user to each step, so that
both constraints and the authorization policy are satisfied.
More formally, a (partial) plan is a function π : T → U ,
where T ⊆ S. A plan π is complete if T = S. Given a
plan π : T → U and T ′ ⊆ T , we write π|T ′ : T ′ → U
to denote the plan such that π|T ′(t) = π(t) for all t ∈ T ′.
We say a plan π : S′ → U satisfies a workflow constraint
(T,Θ) if T 6⊆ S′ or π|T ∈ Θ. Finally, a plan π : S → U is
valid if it satisfies every constraint in C and, for all t ∈ S,
(t, π(t)) ∈ A. (Informally, if the range of π includes the
scope of a constraint, then the restriction of π to T must
be one of the authorized mappings.) The combination of
authorization policy and constraints may mean that no valid
plan exists, motivating the following problem.

Definition 3. Given a constrained workflow authoriza-
tion schema W = ((S,E), U,A,C), the Workflow Sat-

isfiability Problem (WSP) asks whether there exists a
valid plan for W .

In practice, we do not define constraints by enumerating
all possible elements of Θ. Instead, we define different fam-
ilies of constraints that have “compact” descriptions. For
instance, two simple constraints we will use in this paper
are the atleast and atmost constraints. Both have two argu-
ments: the scope P ⊆ S to which they apply, and an integer
ℓ ≤ |U |. Then, a plan π : S → U satisfies atleast(P, ℓ) (resp.
atmost(P, ℓ)) if and only if |π(P )| ≥ ℓ (resp. |π(P )| ≤ ℓ),
that is, if the steps in P are assigned to at least (resp. at
most) ℓ users.

There now exists a substantial body of work on con-
straints in workflow systems, beginning with the seminal
work of Bertino, Ferrari and Atluri [2]. In particular, separa-
tion/binding of duty constraints and cardinality constraints
are recognized as being important and have been widely
studied. Informally, atleast constraints generalize separation
of duty constraints, and are analogous to the ssod constraints
studied by Li et al. [12], while atmost constraints generalize
binding-of-duty constraints. In particular, atleast({t, t′}, 2)
requires that steps t and t′ are performed by separate users,
while atmost({t, t′}, 1) requires that steps t and t′ are per-
formed by the same user.

User-independent constraints generalize all these forms of
constraints [3]. Informally, such a constraint limits the exe-
cution of steps in a workflow, but is indifferent to the par-
ticular users that execute the steps. More formally, a con-
straint (T,Θ) is user-independent if whenever θ ∈ Θ and
ψ : U → U is a permutation then ψ ◦ θ ∈ Θ (where ◦
denotes function composition). A separation of duty con-
straint, on two steps for example, simply requires that two
different users execute the steps, not that, say, Alice and
Bob must execute them. Similarly, a binding of duty con-
straint on two steps only requires that the same user ex-
ecutes the steps. More generally, atleast and atmost con-
straints are user-independent. It appears most constraints
that are useful in practice are user-independent: all con-
straints defined in the ANSI-RBAC standard [1], for exam-
ple, are user-independent.

2.3 Fixed-parameter tractability
It is generally assumed that no polynomial-time algorithm

exists to solve an NP-hard decision problem. In other words,
the running-time of any algorithm for solving such a problem
is exponential in the size of the input to the problem. How-
ever, many decision problems have multiple parameters and
the relative magnitude of the values taken by those param-
eters might be quite different in most, if not all, conceivable
practical instances of the problem. Hence, it is worth con-
sidering whether there are algorithms whose running-time is
exponential in the parameters expected to take small values
(and polynomial in the size of the input). It is this approach
we will adopt in the study of this paper.

Formally, we say that a decision problem is fixed-
parameter tractable (FPT) if there exists an algorithm that
decides if an instance is positive in O(f(k)p(n)) = O∗(f(k))
time3 for some computable function f and some polynomial
p, where n denotes the size of an instance, and is k a pa-
rameter (or a combination of several parameters) of the in-
stance. Accordingly, we will call such an algorithm an FPT
algorithm. The purpose of FPT algorithms is to provide a
multivariate analysis of the complexity of a problem, and to
obtain efficient algorithms when the chosen parameters take
small values in practice. For more details about parame-
terized complexity, we refer the reader to the monograph of
Downey and Fellows [6].

In the particular case of WSP, a naive algorithm to solve
the problem considers every possible plan in turn. Assum-
ing we can test whether a plan is valid in time polynomial
in n = |U | and k = |S|, the algorithm has running time
O∗(nk). Wang and Li [14] were the first to observe that the

3We will follow the convention adopted in the literature on
FPT algorithms [6] by using the O∗(.) notation, which omits
polynomial terms and factors.



number of users n is typically an order of magnitude larger
than the number of steps k. They used this observation to
show that WSP is FPT when k is the parameter and all
constraints are separation-of-duty or binding-of-duty con-
straints [14]. Recent work has significantly extended Wang
and Li’s results, in terms of the running times for FPT al-
gorithms and the range of constraints that can be included
in the workflow specification. The most powerful theoretical
results relate to user-independent constraints [3] and exten-
sive experimental work has shown that implementations of
the resulting FPT algorithms have practical value [3, 10].

3. THE RESILIENCY CHECKING

PROBLEM
We first argue that the main interest in designing efficient

algorithms for RCP〈〉, either from the practical or theoreti-
cal point of view, lies in the case where s = 0. Notice that
all the following ideas also apply to the variant RCP〈t = ∞〉
(mainly because, as we saw previously, we may assume that
t = p).

We first review the method used by Li et al. [12] to
solve RCP〈〉 (and RCP〈t = ∞〉). Given a resiliency pol-
icy res(P, s, d, t) and a relation UR, their initial idea is to
enumerate all subsets of at most s users, and, for each such
subset V , to test whether the resiliency policy res(P, 0, d, t)
is satisfied by the instance obtained by removing the users
in V from U (and deleting the corresponding elements from
UR accordingly). Then, using a domination argument, they
observe that the exhaustive enumeration of all such sub-
sets can be avoided, and define two kinds of pruning strate-
gies. The satisfaction of the resulting instance (in which
s = 0) is then determined by translating the problem into a
SAT instance and using SAT4J, an off-the-shelf SAT solver,
to solve it. In their experiments, they observe that their
static pruning strategy is quite efficient, and that the bot-
tleneck of their algorithm seems to be the satisfiability test
for the res(P, 0, d, t) policy on the reduced instance. From
this observation, it makes sense to focus on the resolution of
RCP〈s = 0〉 only.

Another argument for this approach is the parameter-
ized complexity of RCP〈〉. As we mentioned earlier, it
makes sense to analyse the performance of our algorithms for
RCP〈〉 and its variants using parameters such as p = |P |,
s, d and t. The following result asserts that RCP〈〉 can

be tackled by solving 2s log(dt) instances of RCP〈s = 0〉.4

This result will let us focus on the development of an ef-
ficient algorithm for RCP〈s = 0〉, and more precisely of a
fixed-parameter tractable algorithm parameterized by (p, d)
(Theorem 3). Combining these two results, we will be able
to show that RCP〈〉 is itself fixed-parameter tractable pa-
rameterized by (p, s, d, t).

Theorem 2. Suppose that there is an algorithm for
RCP〈s = 0〉 which returns a set of teams in case of a sat-
isfiable instance (and answers no in case of an unsatisfiable
one) in time O∗(f(p, d, t)) for some computable function f .

Then RCP〈〉 can be solved in O∗(2s log(dt)f(p, d, t)) time.

In summary, using RCP〈s = 0〉 as a black box for solving
the more general case makes sense both from a practical and

4All logarithms used in this paper are in base 2, unless oth-
erwise stated.

theoretical point of view. In the remainder of this section,
we thus focus on RCP〈s = 0〉 only, and show how the work-
flow satisfiability problem can be used to solve the problem
as well as several generalizations of it which might be of
practical interest.

3.1 RCP as a workflow satisfiability problem
We first discuss how an instance of RCP〈s = 0〉 may be

transformed into an instance of WSP with user-independent
constraints. We then show that it is possible to define several
interesting generalizations of RCP〈〉 and to use a similar
transformation to WSP to solve these problems.

3.1.1 Reduction

The intuition behind our reduction from RCP〈〉 to WSP

lies in the observation that RCP〈〉 asks for a mapping from
d copies of a resource to d different authorized users, while
WSP asks whether there exists a mapping from steps to
authorized users, subject to some constraints. Hence, we
translate the set of resources in RCP〈〉 into an appropriate
set of steps and the constraints imposed on the structure of
the teams by a resiliency policy to user-independent work-
flow constraints.

Construction 1. Given UR ⊆ U × R and res(P, 0, d, t)
with P ⊆ R, we construct a constrained workflow authoriza-
tion scheme W in which E = ∅ and S comprises d copies
of P . We write these distinct sets as P 1, . . . , P d and, for
r ∈ P , we write ri to denote the copy of r in set P i. Then
we define:

A =

d
⋃

i=1

{(u, ri) : (u, r) ∈ UR};

C = {atleast({ri, sj}, 2) : r, s ∈ P, 1 ≤ i < j ≤ d} ∪

{atmost(P i, t) : i ∈ [d]}.

Lemma 1. res(P, 0, d, t) is satisfied by UR if and only if
W is satisfiable.

Proof. Suppose that UR satisfies res(P, 0, d, t), i.e. there
exists a set of teams {V1, . . . , Vd}. Since N(Vi) ⊇ P for all
i ∈ [d], and since all teams are pairwise disjoint, for every
r ∈ P there exists (ur

1, . . . , u
r
d) ∈ V1 × · · · × Vd such that

(ui, r) ∈ UR for all i ∈ [d]. By definition of A, observe that
we can construct a plan π : P 1 ∪ · · · ∪ P d → U , by setting,
for all i ∈ [d] and all r ∈ P i, π(r) = uri

i . This plan will
not violate any atleast constraint by definition, and will not
violate any atmost constraint since |Vi| ≤ t for all i ∈ [d].

Conversely, suppose thatW is satisfiable, i.e. there exists
a valid plan π : P 1 ∪ · · · ∪ P d → U . For all i ∈ [d], we
define πi : P i → U by πi(r) = π(r) for all r ∈ P i, and let
Vi = πi(P

i). Since π is a valid plan, the atmost constraints
ensure that |Vi| ≤ t while the atleast constraints ensure that
all Vi are pairwise disjoint. Finally, by construction we have
N(Vi) ⊇ P , which proves that res(P, 0, d, t) is satisfied.

Note that if d = 1 (meaning we require a single team of
authorized users), then we have a simple instance of WSP,
where the set of steps corresponds exactly to P . Note also
that if t = ∞ (or indeed t = p), then we do not require any
atmost constraints.



3.1.2 Algorithm

There has been a considerable amount of research into
FPT algorithms for WSP in recent years. In particular,
recent work by Cohen et al. [3] and Karapetyan et al. [10]
has led to optimized and demonstrably efficient algorithms
for WSP (in the case that k is considerably smaller than n).

The instances of WSP obtained from instances of RCP〈〉
have a particular form, because of the specific constraints
a resiliency policy imposes. In this section, we improve the
running-time O∗(2k log(k)) = O∗(2dp log(dp)) of the Pattern
Backtracking algorithm [10], exploiting the particular nature
of the WSP instances obtained from RCP〈〉.

Theorem 3. RCP〈s = 0〉 can be solved in O∗(2dp log(p)).

Proof. As described in Construction 1, we are given a set
S of steps composed of d pairwise disjoint sets P 1, . . . , P d,
each containing p steps, an authorization policy A, and a set
of atleast and atmost constraints. In particular, the scope of
each atleast constraint lies in two different sets P i and P j ,
while the scope of each atmost constraint lies in a unique set
P i.

Given a plan π : S′ → U , where S′ ⊆ S, the pattern
Pat(π) of π is the partition {π−1(u) : u ∈ U, π−1(u) 6= ∅}
of S′ into non-empty sets. We say that two plans π and
π′ are equivalent if they have the same pattern. A pat-
tern is said to be complete if S′ = S. We say that a pat-
tern T = {V1, . . . , V|T |} is valid if there exists a valid plan
π : S → U such that Pat(π) = T . Observe that given a pat-
tern T = {V1, . . . , V|T |} of S, we can, in polynomial time,
decide whether it is valid pattern, and to find in that case a
valid plan, by finding a perfect matching in an appropriate
bipartite graph (namely, with partite sets {1, . . . , |T |} and
U , and an edge between i ∈ {1, . . . , |T |} and u ∈ U when-
ever there exists r ∈ Vi such that (u, r) ∈ A). Hence, the
algorithm is a procedure for finding a valid pattern.

A naive upper bound on the number of all possible pat-
terns of S is the number of all partitions of S into non-empty
sets; that is, the |S|-th Bell number, B|S| = O(2dp log(dp)).
However, it can be seen that in our case, any pattern T con-
taining V such that V ∩ P i 6= ∅ and V ∩ P j 6= ∅ for i 6= j,
cannot be valid, as otherwise it would violate at least one
atleast constraint. Thus, the number of valid patterns can
actually be reduced to (Bp)

d = O(2dp log(p)), which proves
the claimed running time.

Combining Theorems 2 and 3, we obtain the following
result:

Theorem 4. RCP〈〉 (and RCP〈t = ∞〉) is fixed-
parameter tractable parameterized by (p, s, d, t).

3.1.3 Discussion

The Pattern Backtracking algorithm for WSP has ob-
tained good results in practice [10]. The experiments con-
ducted by Karapetyan et al. used values of k between 10 and
65, together with varying numbers of (atleast and atmost)
constraints, and defined n = 10k. The performance of the
Pattern Backtracking algorithm was compared to that of
SAT4J, a state-of-the-art off-the-shelf SAT solver, running
on WSP instances transformed into pseudo-Boolean SAT

instances [10, 14]. The Pattern Backtracking algorithm was
able to solve all WSP instances containing less than 60 steps,
in contrast to the SAT solver, which was rarely able to find
solutions for instances containing more than 25 steps.

The small parameter in WSP is the number k of workflow
steps and in the reduction from RCP〈〉 toWSP, the number
of workflow steps is dp. The running-time of our algorithm
is exponential in dp log p, so we require this parameter to be
relatively small for this reduction to be of practical use. In
the case d = 1, we expect to solve instances of RCP in which
P is relatively large (up to 60). If d > 1, we will obviously
need a corresponding reduction in the size of p.

Hence, we believe that our reduction to WSP and use of
the Pattern Backtracking algorithm is of practical value, and
will signicantly extend the size of the RCP instances that
can currently be solved [12]. With the above observations
in mind, we recall the experimental results presented by Li
et al. [12, Figure 3]. In their experiments, the parameters
s = 3 and p = 10 were fixed, while d varied between 2 and 7,
and n varied between 40 and 100. Their approach involved
two steps: the first reduced an instance of RCP〈s = 3〉 to
multiple instances of RCP〈s = 0〉; the second solved the
instance of RCP〈s = 0〉 by translating it to an instance
of SAT and solving the SAT instance using SAT4J. The
static pruning technique used to perform the first step meant
that SAT4J had to solve approximately the same number
of instances of RCP for a given value of s (independent of
the number of users n) [12, Table I]. This means, that the
difference in running times on instances of RCP〈s = 3〉 for
a given n is largely determined by d (since p is fixed). Li
et al. noted that the performance of the SAT solver (on
instances of RCP〈s = 0〉) began to degrade significantly as
d increased, and do not report results for d larger than 7.
We believe that using the Pattern Backtracking algorithm in
step two would mean that far larger instances of RCP could
be solved. In particular, we could significantly increase the
number of users (up to several hundred). Moreover, we could
solve a wider range of instances: we could, for example, solve
instances in which d > 7, provided there was a corresponding
reduction in p.

Our multivariate analysis of RCP suggests that instances
of RCP〈s = 0〉 can be solved in a reasonable amount of
time, provided dp log p is relatively small. Moreover, as we
will see in the next section, our approach to solving RCP is
rather flexible, in the sense that we can impose additional
requirements on the solution to RCP and, with very simple
modifications to Construction 1, translate the problem to
an instance of WSP. This is unlikely to be the case for the
methods used by Li et al. to solve RCP, which involved
creating a specific SAT encoding for RCP and the use of
a SAT solver; different versions of RCP will require new
encodings.

3.2 Generalizing resiliency policies
We now describe how the model of resiliency of Li et

al. [12] can be generalized in order to capture some other sit-
uations that might occur in practice. For each of these cases,
we demonstrate that a simple adaptation of Construction 1
enables us to model the problem as an instance of WSP:
generally speaking, it is simply a matter of adjusting the set
of constraints. As we saw in the beginning of Section 3, it
makes sense to focus on the problem of testing the satisfac-
tion of the given property only (the case s = 0), rather than
its “resiliency” part. That is why only this subcase will be
considered in the following sub-sections.



3.2.1 Adding counting constraints

The original definition of a resiliency policy imposes con-
straints on the composition of the teams, by insisting on
disjointness and that each team has at most t users. It is
debatable whether disjointness is a property that would be
important in practice, and we relax this assumption in Sec-
tion 3.2.2. However, we first consider, two, perhaps more
obvious, constraints on the composition of the teams, and
show that we can modify Construction 1 to produce an in-
stance of WSP.

First, we might consider imposing another “local” con-
straint on team composition, requiring that at least ℓ users
belong to each team. Such a requirement might be imposed
in the interests of separation of duty or to ensure a reason-
ably fair division of labor. In particular, we might set ℓ = t,
in which case every team would have exactly t users. Of
course, in the context of Construction 1, this simply means
including the following (additional) constraints:

{

atleast(P i, ℓ) : i ∈ [d]
}

.

A further possibility is to impose different constraints on the
size of each team. (This simply requires a different value ℓi
to be associated with each P i in the atleast constraints.)

Second, we might consider imposing “global” constraints.
The effect of insisting that each team has at most t users is
that the total number of users is no greater than dt. How-
ever, we may wish to impose a global upper bound Lmax (less
than dt) on the total number of users in the d teams. We can
achieve this simply including the constraint atmost(S,Lmax)
in the WSP formulation. Similarly, we can impose a global
lower bound Lmin on the total number of users, which we
can achieve by including the constraint atleast(S,Lmin) in
the WSP formulation.

The most important observation to make here is that all of
these constraints on team composition are user-independent
constraints in the WSP instance.

3.2.2 Allowing team overlaps

In their definition of res(P, s, d, t), Li et al. [12] insist on
the disjointness of the d teams. We may relax this condition
and consider the possibility of allowing teams to overlap.
(In the context of workflow systems, this would mean that
a user could participate in the execution of more than one
workflow instance.) Hence, we introduce an extended form
of resiliency policy xres(P, s, d, d′, t), with d′ 6 d. Such a
policy is satisfied if, for all subsets V of size s in U , there
exist d sets V1, . . . , Vd of users such that for all i ∈ [d] and
all u ∈ U : (i) Vi ∩ V = ∅; (ii) u belongs to at most d′ of
V1, . . . , Vd; (iii) |Vi| 6 t; (iv) N(Vi) ⊇ P . The condition that
u belongs to at most d′ teams seeks to limit the workload of
each user. Note that setting d′ = d imposes no upper limit
on the number of teams to which any one user can belong,
while d′ = 1 corresponds to the “standard” resiliency policy
res(P, s, d, t), and thus the satisfaction of this new policy
generalizes the one of Definition 1.

We now focus on the problem of testing the satisfaction
of a dynamic resiliency policy xres(P, 0, d, d′, t) (i.e. with
s = 0). As noted previously, similar arguments as for RCP〈〉
can be made for this new problem, and the case s = 0 can
be used as a black-box to solve the more general one.

We introduce a construction to transform the satisfaction
of xres(P, 0, d, d′, t) into an instance of WSP. We no longer

require that a user belonging to a “team” executing steps in
one workflow instance cannot belong to a team executing a
different instance. Hence, we no longer require the atleast

constraint that we used in Construction 1. Instead, we have
to impose constraints on the total number of steps to which
any one user is assigned. As in Construction 1, the set of
steps will be defined by S = P 1 ∪ . . . P d, where P i is a copy
of P , for all i ∈ [d], and the authorization policy is defined

to be A =
⋃d

i=1{(u, r
i) : (u, r) ∈ UR} (recall that ri denotes

the copy of r in P i, for all r ∈ P and i ∈ [d]). Then, we have
to ensure that for any set of (d′ + 1) steps, each chosen in a
different P i, the number of users assigned to these steps is
at most d′. Accordingly, we define

ζ(S) = {X ⊆ S : |X| = d′ + 1, |P i ∩X| ≤ 1, i ∈ [d]}.

Finally, determining the satisfaction of an xres(P, 0, d, d′, t)
policy can be done by replacing the set of constraints of
Construction 1 by

C = {atleast(X, d′) : X ∈ ζ(S)} ∪ {atmost(P i, t) : i ∈ [d]}

and solving the resulting instance of WSP, using e.g. the
Pattern Backtracking algorithm of [10] (note that the op-
timization of the algorithm provided in Theorem 3 can no
longer be applied to the WSP instance obtained in this par-
ticular case).

Note, however, that the WSP instance we now solve con-
tains a number of constraints exponential in d and p, im-
plying an additional computational cost when solving this
new problem, as one could expect. Observe that there are
exactly |ζ(S)|+ d constraints, and that

|ζ(S)| = O

((

d

d′ + 1

)

pd
′+1

)

= O
(

2(d
′+1)(log(d)+log(p))

)

,

since for each I ⊆ {1, . . . , d} of size d′ +1, there are at most

pd
′+1 subsets of S intersecting P i in exactly one element,

for all i ∈ I .
It is worth noting that the set of constraints obtained from

translating an instance of RCP〈〉 in which d′ = d (that is,
when we impose no upper limit on the number of teams to
which a user can belong) is simply

C = {atmost(P i, t) : i ∈ [d]}.

In other words, if we are not concerned with individual work-
loads, the WSP instance for the version of RCP in which
teams need not be disjoint is actually easier than the origi-
nal version of RCP〈〉.

Table 1 summarizes the possible requirements for team
composition in the context of resiliency and associates those
requirements with the corresponding constraints in a WSP

instance. Selecting requirements 1 and 2, for example, cor-
responds to the standard resiliency policies of Li et al. Se-
lecting requirements 1, 2 and 3 would insist that all teams
have exactly t members and every team is disjoint. In the
next two subsections, we consider further possibilities for
generalizing RCP.

3.2.3 Independent teams

In the definition of RCP〈〉, all d teams are required to
be of size at most t, and are allocated to the same set of
resources P ⊆ R. A natural generalization is to allow each
team to have a different size, and to be associated with a
different set of resources.



Resiliency requirement Constraint(s) in WSP

1. Teams should have no more than t users {atmost(P i, t) : i ∈ [d]}
2. Teams should be disjoint {atleast({ri, sj}, 2) : r, s ∈ P, 1 ≤ i < j ≤ d}
3. Teams should have at least ℓ users {atleast(P i, ℓ) : i ∈ [d]}
4. Teams should contain no more than Lmax users in total {atmost(P 1 ∪ · · · ∪ P d, Lmax)}
5. Teams should contain at least Lmin users in total {atleast(P 1 ∪ · · · ∪ P d, Lmin)}
6. Each user should belong to no more than d′ teams {atleast(X, d′) : X ⊆ S, |X| = d′ + 1, |P i ∩X| ≤ 1, i ∈ [d]}

Table 1: Summary of possible resiliency policies

First, we define a team-independent constraint t-ind(P, t),
which is satisfied by UR ⊆ U × R if and only if there
exists a set containing no more than t users who are col-
lectively authorized for P . Then, a team-independent re-
siliency constraint is given by ti-res(s, P1, t1, . . . , Pd, td), and
is satisfied by UR ⊆ U × R if and only if on removal
of any set of s users, the team-independent constraints
t-ind(P1, t1), . . . , t-ind(Pd, td) are all satisfied by disjoint sets
of users.

In particular, res(P, s, d, t) (in the sense of Definition 1) is
a team-independent resiliency constraint in which the scope
and team size of each t-ind(Pi, ti) constraint are P and t, re-
spectively. Hence, this new problem is also a generalization
of RCP〈〉.

Here again, we modify Construction 1 in order to test the
satisfaction of ti-res(0, P1, t1, . . . , Pd, td). We define the set
of steps to be S = P 1 ∪ · · · ∪ P d, where P i is a copy of Pi

for all i ∈ [d]. Again, for all r ∈ R, we denote by ri its copy
in P i, in the case where r ∈ Pi. Then the authorization
policy remains A =

⋃d

i=1{(u, r
i) : (u, r) ∈ UR and r ∈ Pi}.

Finally, we define the set of constraints C = C1 ∪ C2, with:

C1 = {atmost(P i, ti) : i ∈ [d]}

C2 = {atleast({ri, sj}, 2) : r ∈ P i, s ∈ P j , 1 ≤ i < j ≤ d}.

Here again, the Pattern Backtracking algorithm of Theo-
rem 3 can be used to solve the obtained instance of WSP.
Thus, the problem of testing whether an authorization pol-
icy satisfies ti-res(s, P1, t1, . . . , Pd, td) is FPT parameterized

by |
⋃d

i=1 Pi|, s, d, and maxi=1...d ti.
Naturally, we can also define an extended version of a

team-independent resiliency constraint, in which we relax
the condition that the teams be disjoint (as in Section 3.2.2).
Again, we may distinguish between the case when there is
an upper limit on the number of teams to which a user may
belong (d′ < d), where we will require a large number of
additional constraints, and the case where no such limit is
imposed (d′ = d), and the number of constraints is actually
reduced.

3.2.4 Weighted resiliency

In Section 3.2.1, we considered the possibility of impos-
ing a global upper limit on the total number of users in the
teams. In practice, it might be the case that different users
“cost” a different amount. We might imagine, for example,
departments charging out the use of its employees by other
departments, and that more senior staff cost more than ju-
nior staff. In other words, as well as imposing an upper limit
on the total number of users, we might consider associating
each user with a cost and imposing an upper limit – a budget
B – on the total cost of the users. Accordingly, we introduce
a cost function defined over the set of users c : U → Z. This

weighted variant of RCP〈〉 then asks for teams V1, . . . , Vd

such that |Vi| ≤ t for all i ∈ [d] and

d
∑

i=1

∑

u∈Vi

c(u)

is minimum over all possible sets of teams.
In order to deal with this variant, we use a recent gener-

alization of WSP to a weighted version [4], called Valued-

Workflow Satisfaction Problem (V-WSP). This prob-
lem allows us to define, for each set of steps T ⊆ S and user
u ∈ U , a weight w(T, u) representing the cost of assigning u
to steps in T . The goal is then to find a valid plan π : S → U
such that

wA(π) =
∑

u∈U

w(π−1(u), u)

is minimum over all valid plans5. Hence, we use once again
Construction 1, and set, for every u ∈ U and all T ⊆ P i for
all i ∈ [d]:

w(T, u) =

{

c(u) if T ⊆ N(u)

∞ otherwise

Using similar ideas as in the proof of Lemma 1, the algorithm
for V-WSP will output d plans πi : P

i → U , i ∈ [d], defining
the teams V1, . . . , Vd. As explained earlier, this plan will be
such that

d
∑

i=1

∑

u∈Vi

w(π−1(u), u) =

d
∑

i=1

∑

u∈Vi

c(u)

is minimum, over all plans not violating any constraint. It
is worth pointing out that the algorithm for V-WSP of [4]
can also be improved in the same way as described in the
proof of Theorem 3.

Furthermore, still using the particular structure of the
obtained V-WSP instance, it is also possible to change the
algorithm so that it outputs a set of teams V1, . . . , Vd such
that

∑

u∈Vi
c(u) ≤Wi for some given boundsW1, . . . ,Wd, if

such a set exists. In other words, we now ask in this variant
that each team independently respect its own upper bound.
A possible application of this variant might be as follows:
suppose that the set of users contains a subset Us of special
users, and the task that needs to be achieved (by having

5Notice that in the definition of V-WSP of [4], a weight
function over the constraints wC is also defined, and the goal
is actually to find a plan which minimizes wA(π) + wC(π).
However, assigning an infinite cost to each constraint simply
forbids the violation of any constraint and forces an optimal
solution to minimize wA(π) over all plans with a finite con-
straint weight, as desired here.



access to all resources in P ) necessarily requires the presence
of at least one special user. For instance, one might think of
the special users as managers, or team leaders. This problem
can simply be solved using the aforementioned method by
setting c(u) = −t + 1 for all u ∈ Us, c(u) = 1 for all u ∈
U \ Us, and setting Wi = 0 for all i ∈ [d].

4. STATIC SEPARATION-OF-DUTY AND

RESILIENCY
A static separation of duty (SSoD) policy has the form

ssod(P, t), where P is a subset of the set of resources R and
t is an integer such that 1 < t 6 |P | [12]. Satisfaction
of this constraint is determined by considering the autho-
rization policy UR (and we ensure continuing satisfaction
of the constraint by controlling updates to UR). More for-
mally, the SSoD policy ssod(P, t) is satisfied by UR ⊆ U×R
if and only if for all subsets V of U such that |V | < t,
P 6⊆ N(V ). So, for example, the static separation-of-duty
constraint ssod({p1, p2}, 2), requires that two particular re-
sources are not assigned to the same user.

Equivalently, ssod(P, t) is violated if there exists a set of
at most t − 1 users V such that N(V ) ⊇ P . A naive al-
gorithm for testing the satisfiability of an ssod(P, t) policy
would be to check if the neighborhood of some subset of
at most t − 1 users contains P . However, such an algo-
rithm would necessarily be of complexity O∗(nt−1), which
would be inefficient in practice. Thus, our goal is to obtain
FPT algorithm parameterized by some smaller parameters,
like p = |P |. To do so, we now explain how the problem
of determining whether a static separation-of-duty policy is
satisfied may be converted into an instance of WSP.

Construction 2. Given UR ⊆ U × R and ssod(P, ℓ),
we construct a workflow specification W in which S = P ,
E = ∅, A = UR ∩ (U × P ), and C = {atmost(P, t− 1)}.

Lemma 2. ssod(P, t) is satisfied if and only if W is un-
satisfiable.

Note that atmost(P, t) is a user-independent constraint,
and that the number of steps in the obtained WSP instance
is p = |P |. Thus, here again the Pattern Backtracking al-
gorithm for WSP [10] gives a practical algorithm to test
whether a static separation-of-duty constraint is satisfied by
an authorization policy, in a worst-case O∗(2p log(p)) time
and polynomial space. In addition, as Li et al. [12] notice,
the complement of this problem is actually equivalent to the
Set Cover problem6. Known positive [7] and negative [5]
results for Set Cover lead to the following.

Theorem 5. Testing whether a static separation-of-duty
ssod(P, t) is satisfied by an authorization policy UR can be

done in O∗(2p) time, while a O∗(2o(p)) algorithm would vi-
olate Exponential Time Hypothesis7.

Notice that the O∗(2p) algorithm of [7] relies on a dy-
namic programming approach, thus using exponential space.

6In the Set Cover problem, we are given a set S of subsets
of a set U , and an integer k, and the aim is to find at most
k elements of S whose union is U .
7The Exponential Time Hypothesis is the assumption that
3-SAT cannot be solved in time O∗(2o(n)), where n is the
number of variables in the CNF formula [9].

Hence, we strongly believe that applying the Pattern Back-
tracking algorithm on the instance obtained by Construc-
tion 2 is likely to be more efficient in practice, although
having a worse theoretical running time (O∗(2p log(p))).

4.1 Policy checking problems
The work of Li et al. [12] considers the interaction between

static separation-of-duty constraints and resiliency policies.
In this section, we reevaluate the problems they studied us-
ing the tools from fixed-parameter tractability, and extend
the analysis to include user-independent constraints.

Before doing so, we note there are two types of constraints
that can be defined. One type, which we will call existential
constraints, are satisfied if some condition “guarded” by an
existential quantifier holds. A resiliency policy res(P, s, d, t),
for example, is an existential policy (since we need only find
one allocation of users to teams). The other type, which
we will call universal constraints, are satisfied if some con-
dition “guarded” by a universal quantifier holds. A static
separation-of-duty constraint ssod(Q, t) is a universal policy
(since every subset of cardinality less than or equal to t must
satisfy a particular condition).

A satisfiable instance of WSP indicates the existence of a
plan. Informally, then, WSP can be used to determine the
satisfaction (or otherwise) of an existential constraint (as we
have seen with resiliency policies). Conversely, WSP can be
used to determine the violation (or otherwise) of a universal
constraint (as we have seen with static separation-of-duty
policies).

Clearly, there is some “tension” between resiliency and
SSoD policies: informally, resiliency policies require “over-
provisioning”in the authorization policy, while SSoD policies
require “minimal” provisioning. This leads naturally to the
following definition and problem.

Definition 4. The Mixed Policy Checking Problem

is the problem of determining whether a set of resiliency and
SSoD policies is satisfied by a given user-resource relation
UR.

Note the Mixed Policy Checking Problem is not con-
sidered as a problem in its own right in the work of Li et
al. [12]. However, it turns out that an algorithm to solve
the Mixed Policy Checking Problem can be used as a
sub-routine to solve the Policy Consistency Checking

Problem problem defined later. Now, the Mixed Policy

Checking Problem can be solved by first asking whether
every resiliency policy is satisfied (using Construction 1)
and then asking whether any one of the static separation-of-
duty policies is violated (using Construction 2). (We have
to perform these checks separately because resiliency poli-
cies are existential constraints and separation-of-duty poli-
cies are universal.) Recall the input to MPCP includes a
set F of resiliency and SSoD policies. We denote by sM ,
dM , tM the maximum values of s, d, t, respectively, in any
resiliency policy res(P, s, d, t) ∈ F , and by pM the size of the
largest scope of any resiliency or SSoD policy of F . Given
that testing the satisfiability of an SSoD policy ssod(P, t) is
FPT parameterized by p, and that testing the satisfiability
of a resiliency policy res(P, s, d, t) is FPT parameterized by
(p, s, d, t), we obtain the following result:

Theorem 6. Mixed Policy Checking Problem is
FPT parameterized by (pM , sM , dM , tM ).



A set of policies comprising resiliency and SSoD policies is
said to be consistent if and only if there exists an authoriza-
tion relation UR such that every policy is satisfied [12]. This
definition leads naturally to the following decision problem.

Definition 5. The Policy Consistency Checking

Problem consists in deciding whether there exists a user-
resource relation UR that satisfies a given set of SSoD and
resiliency policies.

Li et al. [12] show that Policy Consistency Check-

ing Problem is a computationally hard problem: it is in
general in NPNP, and the two restrictions where there is
only one resiliency policy, and only one SSoD policy are
NP-hard and coNP-hard, respectively. On the other hand,
there exists a naive algorithm to solve the Policy Consis-

tency Checking Problem using an algorithm for Mixed

Policy Checking Problem as a sub-routine: first enu-
merate all possible authorization policies, and for each of
them, construct an instance of Mixed Policy Check-

ing Problem in order to test whether it satisfies the poli-
cies. The obvious question with this strategy is whether
the algorithm will terminate, since the number of all pos-
sible authorization policies is, a priori , not bounded. In
the following result, we show that this user set can actu-
ally be bounded by a function of the maximum size of the
scopes of the input policies, implying an FPT algorithm
with this parameter. Let ssod(P1, t1), . . . , ssod(Pq1 , tq1) and
res(Pq1+1, 0, 1, tq1+1), . . . , res(Pq2 , 0, 1, tq2) be the policies in
the input of Policy Consistency Checking Problem (as
Li et al. [12] note, we may suppose that s = 0 and d = 1 for
all resiliency policies res(P, s, d, t)). We note P =

⋃q2
i=1 Pi,

and, as before, p = |P |.

Theorem 7. Policy Consistency Checking Prob-

lem is FPT parameterized by p.

Proof. First observe that for any set U and UR ⊆ U×R
such that UR satisfies all policies, removing from UR all
elements (u, r) such that r /∈ P does not violate any of the
constraints. Then, we may also assume that for all u ∈ U ,
N(u) ⊆ P . Now we show that we may also delete every
user u having a twin, i.e. a user u′ such that u 6= u′ and
N(u) = N(u′). Indeed, let u, u′ be two twins, U ′ = U \
{u′}, and UR′ = UR|U′ . First assume that UR satisfies
two policies ssod(P, ℓ) and res(P ′, 0, 1, t). Then, clearly UR′

also satisfies ssod(P, ℓ), since every subset V of U ′ of size
at most ℓ − 1 is also a subset of U of the same size, and
thus N(V ) ( P . Then, UR′ satisfies res(P ′, 0, 1, t), since
N(V ) = N((V \{u′})∪{u}) for all V ⊆ U such that u′ ∈ V .

Conversely, if UR′ satisfies ssod(P, ℓ) and res(P ′, 0, 1, t),
then the same holds for UR, since, here again, N(V ) =
N((V \ {u′})∪ {u}) for all V ⊆ U such that u′ ∈ V . Hence,
we showed that for all U and UR ⊆ U × R such that UR
satisfies all policies, we can iteratively delete all twins with-
out violating any constraint, thus obtaining a solution U ′

and UR′ with |U ′| ≤ 2p. Hence, instead of enumerating all
authorization policies, it is actually sufficient to enumerate
all subsets of a user set U containing 2p users, namely one
user per subset of P , which represent the resources (s)he is
authorized for. Then, for each such authorization policy, it
remains to test the satisfaction of the separation-of-duty and
resiliency policies (e.g., using the algorithm of Theorems 3
and 5). One can observe that the total running time of this

algorithm is O∗(2p log(p)+2p).

4.2 Minimizing the number of needed users
The final problem that Li et al. [12] consider is the spe-

cial case that the resiliency policy res(P, s, 1,∞) and static
separation-of-duty policy ssod(P, k, s) are defined over the
same set of resources P ⊆ R. Given enough users, it will
clearly be possible to find an authorization relation that si-
multaneously satisfies both policies. The interesting ques-
tion is what the minimum number of users is. More formally,
Li et al. define the following problem.

Definition 6. Given a set of resources R and
res(P, s, 1,∞), ssod(P, k, s), with P ⊆ R, s, k ∈ N,
Min-Users PCCP Satisfiability (MUPS) consists of
determining the smallest integer m0 for which there exist
U , UR ⊆ U × R such that |U | ≤ m0 and UR satisfies
res(P, s, 1,∞) and ssod(P, k, s).

Li et al. [12] were not able to settle the complexity of Min-

Users PCCP Satisfiability. However, they were able to
obtain upper and lower bounds for m0, these bounds being
p(s+1) and k+ s, respectively; moreover, they showed that
the lower bound is tight whenever p ≥

(

k+s

s+1

)

.
While the general complexity of MUPS remains open, we

can establish that it is FPT. In particular, the algorithm
discussed in the proof of Theorem 7 can be modified to de-
termine whether a set of resiliency and SSoD policies are
satisfied by an authorization policy defined on a set of at
most m users, where m is an additional input of the prob-
lem. Indeed, one just need to restrict the enumeration of all
subsets of U to those of size at most m. We thus have the
following result.

Theorem 8. MUPS is FPT parameterized by p.

5. CONCLUDING REMARKS
The specification and enforcement of policies and con-

straints is perhaps the most common way of implement-
ing access control requirements in computer systems. These
policies and constraints may be mutually incompatible to
some extent, in the sense that authorization policies that
satisfy one constraint may lead to the violation of another.
In particular, static separation-of-duty and resiliency poli-
cies may be incompatible in this sense.

Hence, it is important to be able to analyze whether a
given authorization policy simultaneously satisfies mutually
incompatible constraints. Prior work in this area has estab-
lished that such analyses are generally intractable [12]. In
this paper, we make important contributions to the under-
standing of the Resiliency Checking Problem and the
Policy Consistency Checking Problem from the per-
spective of fixed-parameter tractability.

First, we exhibit a transformation from the Resiliency

Checking Problem to the Workflow Satisfiability

Problem, by which a resiliency policy is translated into
atmost and atleast constraints. This enables to re-use and
adapt known results for WSP, leading to new results es-
tablishing that Resiliency Checking Problem is FPT.
Moreover, the existence of optimized algorithms to solve
WSP suggests that it will be possible to solve much larger
instances of the Resiliency Checking Problem than has
been possible up to now. Moreover, the fact that WSP is
FPT for all user-independent constraints means we can in-
troduce potentially useful generalization of and variations



on the Resiliency Checking Problem. Second, we in-
troduce the Mixed Policy Checking Problem, an inter-
mediate problem that can be solved using methods similar
to those for the Resiliency Checking Problem (ie, by
translating to a WSP instance), and as a basis for solving
the Policy Consistency Checking Problem. We show
that the Mixed Policy Checking Problem is FPT and
how an algorithm to solve the Mixed Policy Checking

Problem can be used to solve the Policy Consistency

Checking Problem. The method we use introduces a way
of bounding the number of users that need to be considered,
thus making the Policy Consistency Checking Prob-

lem FPT. This method may be of independent interest in
the context of workflow satisfiability and is something we
intend to explore in future work.

It is perhaps worth mentioning in conclusion that WSP

cannot be used directly to solve problems related to work-
flow resiliency [14]. In the case of resiliency in access control
systems, the Resiliency Checking Problem asks whether
it is possible to allocate users to teams even if up to s users
are unavailable. Here the assumption seems to be that the
set of (available) users will not change once the users have
been allocated to teams. In the case of resiliency in work-
flow systems, however, three different models of user avail-
ability have been proposed [14], based on the assumption
that workflow instances may run for a relatively long pe-
riod of time, and users that were available when the work-
flow was instantiated may no longer be available when the
workflow instance is partially complete. This leads to three
distinct definitions of workflow resiliency: static, incremen-
tal and dynamic. The work on resiliency in access control
essentially corresponds to static resiliency and questions of
static resiliency can, presumably, be answered by reducing
the problem to (multiple instances of) WSP. In future work,
we plan to investigate incremental and dynamic workflow re-
siliency, using techniques for Valued WSP (since we can use
weights to model availability of users).

Finally, we note Khan and Fong’s work on workflow feasi-
bility [11] in the context of a constrained workflow authoriza-
tion schema that also includes rules for updating the autho-
rization relation UR. A workflow is feasible if there exists
a “reachable” authorization relation (by application of the
update rules) such that the resulting constrained workflow
authorization schema is satisfiable. Khan and Fong’s work
was set in the specific context of relationship-based access
control, where updates to the authorization relation are con-
trolled in particular ways. Workflow feasibility is obviously
related to the Policy Consistency Checking Problem

and can presumably be modeled as multiple instances of
WSP. In future work we hope to consider workflow feasi-
bility in the context of role-based access control (RBAC)
together with a suitable administrative model for RBAC to
update the user-role and role-step relationships (from which
the authorization relation may be derived).
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APPENDIX

A. PROOFS

Proof of Theorem 2. Given an instance
(U,R,UR, res(P, s, d, t)) of RCP〈〉, and U ′ ⊆ U , we
define UR|U′ = {(u, r) ∈ UR : u ∈ U ′}, the restriction
of UR to users which belong to U ′. By Definition 1,
if UR does not satisfy res(P, s, d, t) then there is a set
V ⊆ U of cardinality s, called a blocker set, such that for
any d mutually disjoint sets of users V1, . . . , Vd such that
N(Vi) ⊇ P and |Vi| 6 t, V1 ∪ · · · ∪ Vd ∩ V 6= ∅.

Now, consider the complement of RCP〈〉, co-RCP〈〉,
where we wish to find a blocker set V ⊆ U of size at most s
(i.e. such that UR|U\V does not satisfy res(P, 0, d, t)). We
design an algorithm for a more general version of this prob-
lem, which we call co-RCP with advice, where the input
comes together with a set V ⊆ U , and the goal is to find a
set V ∗ ⊆ U , such that V ∗ ⊇ V , |V ∗| ≤ s, and UR|U\V ∗ does
not satisfy res(P, 0, d, t). By the foregoing, solving co-RCP

with advice with V = ∅ clearly solves RCP〈〉. Recall that
a negative answer for co-RCP with advice means that the
RCP〈〉 instance is positive, and conversely. In the following,
we will only focus on solving co-RCP with advice. Let us
denote by A the algorithm described in the statement.

We are thus given (U,R,UR, res(P, 0, d, t)) and V ⊆ U . If
|V | > s, then we can clearly answer no for co-RCP with ad-

vice. We thus assume in the following that |V | ≤ s. Using
algorithm A, we determine whether res(P, 0, d, t) is satisfied
by UR|U\V . In the negative case, then V ∗ = V is a blocker
set for co-RCP with advice, and we answer yes. Other-
wise, A outputs a set of teams V1, . . . , Vd, with Vi ⊆ U \ V
for all i ∈ [d]. For all u ∈ V1 ∪ · · · ∪ Vd, we make a recur-
sive call to our algorithm with input (U,R,UR, res(0, d, t))
and V ∪ {u}, and return yes if and only if one of these
sub-instances returns yes. If the instance is a positive one
for co-RCP with advice, then observe that any blocker
set V ∗ must intersect V1 ∪ · · · ∪ Vd, and thus one of the
recursive calls must return yes. If the instance is a neg-
ative one, then clearly all these recursive calls will return
no as well, proving the correctness of the algorithm. Fi-
nally, observe that we branch on at most dt sub-instances
of co-RCP with advice, each of them having its input V
increased by one element. Since the algorithm stops when-
ever |V | > s, the number of calls to the algorithm is at most

O∗((dt)s) = O∗(2s log(dt)). Since in every execution we make
at most one call to algorithm A, the total running time of
the algorithm is O∗(2s log(dt)f(p, d, t)).

Proof of Lemma 2. IfW is satisfiable, then there exists
a valid plan π : P → U . In particular, |π(P )| ≤ t− 1, which
means that there exists a set of at most t − 1 users which,
altogether, have access to all resources in P , thus violating
the policy.

Conversely, assume that ssod(P, t) is violated, which
means that there exists a set V of at most t− 1 users such
that N(V ) ⊇ P , i.e. for all r ∈ P , there exists ur ∈ V such
that (ur, r) ∈ UR. Thus, the plan π : P → U defined by
π(r) = ur for all r ∈ S is a valid plan for W .


