Sum-Max Graph Partitioning Problem*

R. Watrigant, M. Bougeret, R. Giroudeau, and J.-C. Konig

LIRMM-CNRS-UMR 5506-161, rue Ada 34090 Montpellier, France

Abstract. In this paper we consider the classical combinatorial opti-
mization graph partitioning problem, with Sum-Max as objective func-
tion. Given a weighted graph G = (V| E) and a integer k, our objective
is to find a k-partition (Vi,..., Vi) of V that minimizes >~/ Z?:Hl
maxyev;,vev; w(u,v), where w(u,v) denotes the weight of the edge
{u,v} € E. We establish the N"P-completeness of the problem and its
unweighted version, and the W{[1]-hardness for the parameter k. Then,
we study the problem for small values of k, and show the membership in
‘P when k = 3, but the N'P-hardness for all fixed k > 4 if one vertex per
cluster is fixed. Lastly, we present a natural greedy algorithm with an

approximation ratio better than ’;, and show that our analysis is tight.

1 Introduction

1.1 Description of the Problem

Graph partitioning problems are classical combinatorial optimization problems,
where the objective is to partition vertices of a given graph into k clusters, ac-
cording to one or several criteria. In this article we focus on minimizing the sum
of the heaviest edge between each pair of clusters. More formally, we study the
following optimization problem:

SUM-MAX GRAPH PARTITIONING
Input: a connected graph G = (V, E), w: E — N, k < |V|
Output: a k-partition (Vi,...,V;) of V with V; #0Vi=1,...,k
k

Goal: minimize max w(u,v)
— ueV;
4,J=1 veV;
1>]

We denote by U-SUM-MAX GRAPH PARTITIONING the unweighted version of the
problem, where w(e) = 1 Ve € E. The threshold value for the associated decision
versions will be denoted by C'.

All graphs studied here are supposed to be simple, non oriented and connected,
unless otherwise stated. For a graph G = (V, E), we define n = |V| and m = |E|.

1.2 Related Work

Graph partitioning problems are the heart of many practical issues, especially
for applications where some items must be grouped together, as in the design of

* This work has been funded by grant ANR 2010 BLAN 021902.

A.R. Mahjoub et al. (Eds.): ISCO 2012, LNCS 7422, pp. 297 2012.
(© Springer-Verlag Berlin Heidelberg 2012

298 R. Watrigant et al.

VLSI layouts [11], clustering of social and biological networks [12], or software
re-modularization [16]. Because of the wide range of applications, several con-
straints and objective functions are considered. For instance, one can fix some
vertices in clusters (like in the MULTICUT problem), force equal-sized clusters
etc., while optimizing (minimizing or maximizing) the sum of all edge weights
between each pair of clusters (like in MIN-K-CUT and MAX-K-CUT), the sum of
the edge weights (or the heaviest one) inside each cluster []], or optimizing the
cut ratio [12]. Some studies generalize many of these problems though one nat-
ural formalization: [7] gives computational lower bounds when the objective is
to maximize some function over the inner edges of the clusters, [I0] designs an
O*(2™) algorithm for a whole class of partition problems such as MAX-K-CUT,
K-DOMATIC PARTITION or K-COLOURING, and [3] defines the M-PARTITIONING
problem where the objective is to find a partition of the vertices respecting some
constraints defined by a matrix M.

From a practical point of view, several heuristics for solving graph partitioning
problems have been designed (some of them are surveyed in [I4]) using many dif-
ferent techniques, as for example hierarchical algorithms, meta-heuristics, spec-
tral methods or modular decomposition.

Concerning complexity and approximation results, to the best of our knowl-
edge SUM-MAX GRAPH PARTITIONING has still not been studied directly. Among
all of the previous problems, the two most relevant seem to be MIN-K-CUT (for
SUM-MAX GRAPH PARTITIONING) and M-PARTITIONING (for U-SUM-MAX GRAPH
PARTITIONING).

The only difference between SUM-MAX GRAPH PARTITIONING and MIN-K-CUT
is that the contribution of a pair of clusters is no longer the sum of all edge
weights, but the heaviest one between these two clusters. MIN-K-CUT is NP-
hard when k is part of the input [5], but polynomial for every fixed k, with a
O(n*") algorithm [6]. It is also W[l]-hard for the parameter k [I], and there
are several approximation algorithms, with ratios smaller than 2 [I3]. Even if
MIN-K-CUT and SUM-MAX GRAPH PARTITIONING seem related, it is not straight-
forward to directly re-use exact or approximation algorithms for MIN-K-CUT for
our problem. Indeed, optimal solutions may have very different structure, as
the number of edges between two clusters does not matter for SUM-MAX GRAPH
PARTITIONING.

On the other hand, U-SUM-MAX GRAPH PARTITIONING is related to the prob-
lem of finding an homomorphism from a given graph G to a fixed pattern graph
H [9], or equivalently to the M-PARTITIONING problem [3] (with 1’s on the diag-
onal of the matrix M, and 0’s and 1’s elsewhere using notations of [3]). Indeed,
given an input (G, k) of U-SUM-MAX GRAPH PARTITIONING, the objective of our
problem is to find the smallest graph H (in terms of number of edges) with k ver-
tices such that G is homomorphic to H. However, as one could expect targeting
a fixed graph H with m* edges may be harder than constructing any & partition
of cost m*. Thus, as discussed in details in Section 2.2 it will not be possible to
directly use graph homomorphism to solve U-SUM-MAX GRAPH PARTITIONING.

Sum-Max Graph Partitioning Problem 299

1.3 Our Contributions
We show the following complexity results for SUM-MAX GRAPH PARTITIONING:

— when k is part of the input, the problem and its unweighted variant are:
e N'P-hard (and even kfl non-approximable),
e W{l]-hard for the parameter k,
— for fixed k = 3, the problem is solvable in polynomial time,
— for fixed k > 4, the problem is N"P-hard if we fix one vertex per cluster in
the input.

Then, we consider a natural greedy algorithm and prove that its approximation
ratio is better than k/2, and that the analysis is tight.

This article is organized as follows: the next section is devoted to the compu-
tational complexity of the general and restricted cases (with small values of k),
while Section Blis devoted to approximability.

2 Computational Complexity

In this section, we study the complexity of the problem and some variants. We
prove that when k is part of the input, the problem and its unweighted version
are N'P-hard, and W[1]-hard for the parameter k. The reduction used also leads
to an non-approximability bound. Then, we investigate the complexity for small
values of k, and show that it is polynomial for k£ = 3, but N"P-hard (even in the
unweighted case) for all fixed k > 4 if we fix one vertex per cluster.

2.1 Hardness of SUM-MAX GRAPH PARTITIONING

Theorem 1. U-SUM-MAX GRAPH PARTITIONING is N'P-hard, and cannot be
approximated within a factor p < kﬁl (unless P = NP).

Proof. We reduce from the well-known NP-hard problem INDEPENDENT SET.
Let G = (V,E) and k < |V| be an instance of INDEPENDENT SET. We construct
the following instance of U-SUM-MAX GRAPH PARTITIONING: G’ = (V' E') is a
copy of G plus a universal vertex «, (i.e. « is connected to each vertex of G).
We define the number of clusters k¥’ = k+ 1 and the cost of the desired partition
C" = k. This construction can clearly be computed in polynomial time.

e Let S ={s1,..., sk} be an independent set of size k in G, with s; € V for all
i €{1,...,k}. We construct the following k’-partition of V":
o for alli e {1,...,k}, we define V; = {s;}
° Vk+1 = V/\S
Since every pair of clusters in {Vi,..., Vi } is not adjacent, and since the set
V41 contains the vertex o which is connected to every other vertices, we

k/
have > i j=1 maxyev, w(u,v) =k=C_"
i>7 VeV

300 R. Watrigant et al.

e Suppose now that GG does not contain an independent set of size at least
k and let (V4,...,Viy1) be any k'-partition of G’. W.l.o.g., suppose that
a € Viy1. Since « is a universal vertex, the contribution of Vii1 is k.
Then, as the size of the maximum independent set is strictly lower than
k, at least one pair of clusters among (V4, ..., V}) is adjacent. Thus, we have
Zﬁ;:l maxyey, w(u,v) >k+1,
>3] veV;
which completes the A/P-hardness proof. Moreover, notice that the previous
reduction is a gap introducing reduction, where the gap between YES and NO
instances is kfl, leading to the non-approximability result.

Corollary 1. SUM-MAX GRAPH PARTITIONING is N'P-hard.

Moreover, notice that the polynomial-time transformation given in Theorem [is
also an FPT reduction [4] from INDEPENDENT SET parameterized by k (which is a
known W1]-hard problem) to U-SUM-MAX GRAPH PARTITIONING parameterized
by the number of clusters. Indeed, the output parameter is clearly polynomial
in the input parameter (k' = k 4 1), and the reduction can be computed in
polynomial time. Thus, we deduce the following proposition.

Proposition 1. SUM-MAX GRAPH PARTITIONING (and its unweighted version)
parameterized by the number of clusters is W[1]-hard.

2.2 Analysis of the Problem for Small k£ Values

Enumerating Patterns. Given the NP-hardness of the problem when k is
part of the input, it is natural to investigate the complexity of the problem for
some small values of k.

Theorem 2. SUM-MAX GRAPH PARTITIONING is polynomial if k = 3.

Proof. Let G = (V, E) be a graph. The principle of the following algorithm is
to enumerate all pairs (or triplets) of edges in order to find the heaviest edges
between the clusters in an optimal solution (i.e. edges that will be taken into
account in the solution value). Thus, for each fixed pairs (or triplets) of edges
the algorithm tries to arrange all remaining vertices in clusters without changing
the solution value.

Let us now distinguish two cases: one where an optimal solution contains
only two edges between the clusters (the partition forms a path over the three
clusters), and one where any optimal solution contains three edges (the partition
forms a clique over the three clusters). Let (V, Va2, V3) be the partition we are
building, and (V{*, V5", V5*) an optimal solution.

First case: one optimal solution contains only two edges. Let us first assume
that we know the two edges e} and e; that are taken into account in the opti-
mal solution value (as depicted in Figure [[a)). Let a be the weight of the edge
es = {a1, a2} between V" and V', and b be the weight of the edge ej = {b1, b2}

Sum-Max Graph Partitioning Problem 301

between V5* and V3. Notice that four cases are possible, depending of the ori-
entation of e} and e; (for example a; could be in Vi* or V5"). We assume that
a; € V¥ and b; € V', and thus the algorithm will have to enumerate these
four cases. Without loss of generality, we suppose a < b. In the first step, the
algorithm mimics the optimal solution and adds a; to Vi, as and by to V5, and
bs to V3. Let S7 (resp. S3) be the set of all vertices reachable from V; (resp.
V3) using edges of weight strictly greater than a (resp. b). As the cost of the
considered optimal solution is a + b, we know that (1) S; C Vi* and S5 C V5,
(2) S1NS3 =0 and (3) there is no edge between S and Ss. Thus, in the second
step the algorithm adds S; to V4 and S5 to V3.

Finally, the algorithm assigns all remaining vertices to V5. It is easy to see
that this strategy will not create any forbidden edge (i.e. edge that increases the
weight of the maximum edge between two clusters), as the remaining vertices
were not adjacent to any vertex of Vi (resp. V3) using edges of weight strictly
greater than a (resp. b).

Second case: any optimal solution contains three edges. Here again suppose that
we know the three edges e}, e and e that are taken into account in an optimal
solution value (as depicted in Figure[ID)). As before, we assume a fixed orientation
of the guessed edges, to the price of the enumeration of a fixed number of cases.
Let a be the value of the edge e = {a1, a2} between Vi* and V5" (where a; € V{*,
as € V3), b be the value of the edge e; = {b1,b2} between V" and V5" (where
b; € V;*), and ¢ be the value of the edge e} = {c1, co} between V;* and V5" (where
¢i € Vi) Without loss of generality, we suppose a < b < c.

Again, in the first step, the algorithm mimics the optimal solution and adds
ay and by to Vi, be and ¢1 to Vo, and as and co to Vs. Let S7 (resp. S3) be the
set of vertices reachable from V; (resp. V3) using edges of weight strictly greater
than b (resp. ¢). Using the same kind of arguments, we know that (1) S; C V;*
(for 7 € {1,3}), (2) S1 N S3 = 0 and (3) there is no edge between S; and S of
weight strictly larger than a. Thus, we add S; to V;.

Finally, the algorithm assigns all remaining vertices to V5. As before, it is
straightforward to see that this will not create any forbidden edge.

Owverall complexity: The overall algorithm consists in re-executing the previous
routine for any pair and any triplet of edges, taking the best execution. Thus,
the overall complexity is clearly polynomial, with a main factor in O(m?) due
to the enumeration.

A natural way to solve the problem would be to extend the previous algorithm
by enumerating all edges between clusters (or all k-uplets of vertices), and then
arranging the remaining vertices using the same kind of "dominating rules".
Moreover, the corresponding complexity (in £2(nf(®))) would be satisfying, as
the problem is W[1]-hard. Here we show that this strategy is hopeless (even for
the unweighted case), because of the N'P-hardness of the following problem (the
proof is available in [I5]):

302 R. Watrigant et al.

Fig. 1. Illustration of the polynomial algorithm for & = 3. Bold arrows represent
assignments to clusters. ({al): One optimal solution contains 2 edges (Ih): Any optimal
solution contains 3 edges.

SUM-MAX GRAPH PARTITIONING WITH FIXED VERTICES
Input: a graph G = (V,E), w: E—- N, k<|V|,C €N, aset {v1,...,u.} CV
Question: Is there a k-partition (V3,...,V%) of V such that Zﬁjﬂ maxyev;

i>7 veVj
w(u,v) < Cand v, € V; Vi e {1,...,k}?

Proposition 2. SUM-MAX GRAPH PARTITIONING WITH FIXED VERTICES (and
its unweighted version) is N'P-hard for all fized k > 4.

Link with Graph Homomorphisms. As said before, U-SUM-MAX GRAPH
PARTITIONING is related to the problem of finding an homomorphism between a
graph G (our input) and a fixed graph H that has k verticed].

Indeed, the existence of a k-partition of cost C' for a given graph G implies
that there exists an homomorphism from G to some graph with k vertices and
C edges. Conversely, an homomorphism from G to a graph H with k vertices
and C' edges implies that there exists a k-partition of cost at most C.

Let us now recall the LIST-GRAPH HOMOMORPHISM TO H (L-HOMH) prob-
lem [2], given a fixed pattern graph H = (Vi, Fg):

LIST-GRAPH HOMOMORPHISM TO H
Input: a graph G = (Vg, E¢) and for all v € Vi, a list L(v) C Vg
Question: Is there a graph homomorphism h : Vg — Vi such that for allv € Vg
h(v) C L(v) ?

Thus, U-SUM-MAX GRAPH PARTITIONING is related to a special case of L-
HOMH, where all lists are equal to V.

In [2], the authors study a variant of L-HOMH, called ONE OR ALL LIST
HOMOMORPHISM TO H (OAL-HOMH), where for all v € Vi, L(v) is either a

! Recall that G = (Vg, Eg) is homomorphic to H = (Vg, Efr) iff there is a function
h: Vg — Vg such that for all {u,v} € Eq, {f(u), f(v)} € En.

Sum-Max Graph Partitioning Problem 303

singleton or V. Thus, U-SUM-MAX GRAPH PARTITIONING WITH FIXED VER-
TICES consists in finding the minimum k vertices graph H (in terms of number
of edges) such that G is homomorphic to H, with singletons for vertices that are
fixed, and Vg for others.

It is clear that a polynomial algorithm for OAL-HOMH would imply a
O(nf™®)) algorithm for U-SUM-MAX GRAPH PARTITIONING (by enumerating all
possible patterns for any possible value of the optimal). Unfortunately, the au-
thors show that depending on the shape of H, OAL-HOMH (and thus HOMH)
can be N'P-hard. More formally, they show that OAL-HOMH is N'P-hard if
H contains a chord-less cycle of size k¥ > 4 as an induced sub-graph, and is
polynomial otherwise. Actually, it appears that the reduction presented in [2] is
very close to our proof of Proposition

3 A Polynomial-Time Approximation Algorithm

In this section we consider a simple greedy algorithm for SUM-MAX GRAPH PAR-
TITIONING and prove that its approximation ratio is better than k/2. Moreover,
we show that our analysis is tight.

3.1 Presentation of the Greedy Algorithm

It is clear that a feasible solution can be obtained by removing edges, until the
number of connected components (which will represent clusters) reaches k. As
the cost of such a solution depends on the weight of removed edges, it is natural
to consider them in non decreasing order of weights. Thus, we consider the
greedy algorithm given by Algorithm [l whose running time is clearly bounded
by O(|E|log |E|). Actually, this algorithm corresponds to the SPLIT algorithm of
[13], which gives a (2 — 2/k)-approximation algorithm for MIN-K-CUT.

Algorithm 1. a greedy algorithm for SUM-MAX GRAPH PARTITIONING
Sort F in non decreasing order of weights (ties are broken arbitrarily)
Jj<=0
fori=1tok—1do

while G has i connected components do
G — G\{e;}
je—j+1
end while
// we denote by w; the weight of the last removed edge
end for
return connected components of G

304 R. Watrigant et al.

3.2 Analysis of the Algorithm

Notations. Let Z = (G, k) be an instance of SUM-MAX GRAPH PARTITIONING.
We define 2, = k(kz_l), and 6 = max{ 5((:,)) re,ef € Eye# e w(e’) > w(e)}. For
a solution S = {51, ..., Sk} of the problem, we associate the set Cs = {c1, ..., ¢p, }
of edges of maximum weight between each pair of clusters, with pg < (2. The
value of the solution is then defined by val(S) = Y%, w(c;).

Let A = {A,..., A;} be the solution returned by Algorithm [Il and {?4y, ...,
tA;} the partial solution at the beginning of step i. The while loop consists in
separating a cluster *A; (for some ¢t € {1,...,i}) into two clusters *A} and "A?.
Thus, when separating *A;, we add to C4 the edge of maximum weight between
‘Al and “A?, and at most (i — 1) edges (called the unezpected edges) between
A} or "A7 and the other clusters (cf Figure). We thereby add to the solution
value one term w; (between “A} and “Af) and (i — 1) terms (o)j—y1. (j—1). For
j€{l,...,(i— 1)}, if the edge of maximum weight between *A4; and ?A; has one
endpoint in A} (resp. “A?), then a{ is equal to the edge of maximum weight
between ‘A7 (resp. ‘A}) and “Aj, or 0 if the two clusters are not adjacent. By

k—1 i—1
definition, we have val(A) = Z(wl + Zag) .
i=1 j=1

Fig. 2. Dashed lines represent edges of maximum weight between ‘A, and other clus-
ters, already in Ca, solid lines represent the at most (i — 1) new edges added to Ca

Preliminaries. Let us now state several properties of the algorithm that will
be the base of the approximation result (Theorem [B)). First, It is clear by con-
struction that w; < wy < ... < wg—1. Then, we have the following result:

Lemma 1. Let us consider the beginning of step i, and the corresponding i
partition {*A1,...,"A;}. Then, for any t € {1,...,i} we have > ;-1 w(es;) <
, g7t ,
Z;;ll w;, where ey ; denotes the edge of mazimum weight between *A; and *A;.

Proof. We prove it by induction over i. Statement is clearly true for the first
steps (case i = 1 is meaningless since we have only 1 cluster, and case i = 2 is

Sum-Max Graph Partitioning Problem 305

true since there is only two clusters, and thus only one edge of maximum weight
between them). We are at the beginning of Step i + 1: during Step i, ‘A4; has
been separated into *A} and A%, thus incurring an additional weight of w;.
For jo # t, notice that edge e;, ; (edge between A4, and *A;, before the split)
is now replaced by two edges ej,+, and ej, +,, with max(w(ejo 1,), w(€jo,t,)) =
w(ej, ¢). Let us now bound the weight of edges out-coming from *A;,. W.Lo.g.,
suppose that w(ej, +,) = w(ej, +), and let *S;, be the sum of all heaviest edges
linking *A;, to each one of the other clusters (including zA1 and tA?). Thus, we
have ZSJo = Zz Jj=1 w(ejo ;) + w(e]mtl) + w(ejo t2) < Z 1 wj +w; (using the

J7#Jo,J#t
w(eJO) Swi

induction hypothesis).
Same arguments hold for sets A} and *A?, which completes the proof.

Corollary 2. Let us consider the beginning of step i, and the corresponding i
partition {*A1,...,°A;}. When splzttmg PAy, the total weight of the unexpected
edges is upper bounded as follows: Zj Lol < ‘923 1w

Proof. We re-use notation e;; of Lemmal[ll Let &;, (with j # t) be the unex-
pected edge between *A; and * A;. For example, if e; ; was in fact an edge between
iA; and “A}, € is the edge between ‘A; and ‘A?. By definition of 6, we have

i—1 4 i—1
w(éj) < Bwlejy), and thus Zai = Z w(éjy) < Hij (by Lemma [T]).
Jj=1 J=1,57#t Jj=1

Let us now prove the following lower bound on the optimal value.

Lemma 2. Let S be any (i + 1)-partition, with Cs = {c1,...,cps . We have:

Z?il w(c;) = Z;‘:l wj

Proof. We prove it by induction over i. The statement is clearly true for the first

step, since Algorithm [gives an optimal 2-partition. Consider now an (i + 1)-

partition S, with Cs = {c1, ..., ¢ps ;. Let war = max w(c;), and let (S;,,S:,)
J=1L...ps

be the two sets in S containing both endpoints of an edge of weight wys. Con-
sidering the i-partition created when merging S5;, and 512 in S, and using the
induction hypothesis, we have: Z S w(e)—war > Z 1 w;. Finally, notice that
by construction any (i 4+ 1)- partltlon must have an edge of weight at least w;,
since after removing all edges of weight strictly smaller than w; in our algorithm,
we still not have an (i + 1)-partition. This leads to wys > w; and to the desired
inequality.

Proof of the Approximation Ratio. We now turn to our main theorem, and
prove that Algorithm [Il has an approximation ratio better than ’5

Theorem 3. Algorithm [0 is a (1+ (5 — 1)0)-approzimation algorithm.

306 R. Watrigant et al.

Proof. Using Lemma [with an optimal solution, it is sufficient to show that
val(A) < (1+ (5 —1)0) Zf:_f w;. Let us prove it by induction over k. Statement
is clear for k = 2. Suppose now that the result is true for all k = 1,2,...,¢ and
let us show that it remains true for £ = ¢t + 1. By the induction hypothesis, we
have:

t—1 t—1

t)

val(A) < (1+(2 71)0)5 w; + wy + E ol
i=1 j=1

: t—1 = =
—) J J
=1+ (2 - 1)9);% +we + Q;Qt + Q;Qt

t—1 t—1 t—1
t 1 1 .
< (1+ (2 - 1)) E w; + wy + 292 wi+ E a] using Lemmal/[Il
i=1 j=1 =1

t—1 t—1
t 1 1 .
<@+, —1)0)> wi + wy + 26§ wj + o (= Dw, s of < Gy
i=1 j=1

t+1
2

t—1
t+1
— 1)) w4 wi + (; ~ Dow,

=1

< (1 +(

Which gives the desired inequality.

Thus, Algorithm [becomes arbitrarily good as 6 tends to 0, i.e. when the
gap on the weight of any pair of edges becomes arbitrarily large. This is not
surprising, as Algorithm [{lonly focuses on edge weights, rather than the structure
of the graph. Moreover, notice that SUM-MAX GRAPH PARTITIONING remains
NP-hard even if all edge weights are different (and thus even when 6 tends to
0). Indeed, the reduction presented in the proof of Theorem [can be adapted
using classical scaling arguments (assigning weight 1 + e to edge 7).

It appears from the previous proof that the ’5 factor is mainly due to the
excessive number of edges in the solution given by Algorithm [Il Indeed, in the
worst case (of the unweighted problem) this solution forms a clique of size k over
the clusters, while the optimal forms a tree, resulting in a k(kz_l) J(k—1) = g
ratio on the number of edges. This insight is the key point of the following tight-
ness result, where the instance is designed such that the lower bound (3 (w,))
becomes tight.

Proposition 3. Approzimation ratio of Algorithm [is tight.

Proof. Let k € N. We define the instance Iy, composed of a split graph G =
(CUS,E,w) (with C as an induced clique and S as an induced stable set)
with as many edges as possible. We define C' = {¢1, ...,c;} and S = {s1, ..., Sk }.
Finally, w(e) =1 for all e € E. Let us now define three categories of edges:

Sum-Max Graph Partitioning Problem 307

— first category: X = {{¢;, s;} such that i # j or j = 1},
— second category: Y = {{¢;,¢;} such that i # j},
— third category: Z = {{c;, s;} such that i = j and j # 1}.

An example of such a graph is presented in Figure [3l

Fig. 3. (a): Example of a graph that reaches the ratio. First category of edges is
represented with dashed lines, second category with solid lines, third category with
bold lines (b): Solution given by Algorithm [] (¢): Optimal solution.

Since Algorithm [Ilsort edges of equal weight arbitrarily, suppose that it starts
by removing edges from X, then those from Y. At this point, it is easy to see that
a (k + 1)-partition is created. Then, since each pair of clusters is adjacent, the
value of this solution is *TV* On the contrary, consider the following (k+1)-
partition (V1, ..., Vy): forall j € {1, ..., k}, V; = {s;}, and V441 = C. The value of

this solution is k, (it is thus an optimal one). Then, notice that § = max{ ;j’((j)) :

e, el € Eje# e w(e') > w(e)} =1. Let A(I;) and OPT (1)) denote respectively
the value of the solution given by Algorithm [Il and the value of an optimal
solution for I;. We have Oég{ﬁf)w = *1 which proves the result (we are looking
for a (k+1)-partition). Notice that it is possible to obtain the same result without
using the fact that edges of equal weight are sorted arbitrarily in Algorithm [I1
by assigning different edge weights that will respect the order of removed edges
presented above, and are large enough compared with |E|.

4 Conclusion

In this paper we investigated the complexity and approximability of a variant
of the classical graph partitioning problem with sum-max as objective function.
Concerning exact solving, we showed that the pattern enumeration strategy leads
to a polynomial algorithm for & = 3 but becomes hopeless for & > 4, since the
problem becomes NP-hard when fixing one vertex per cluster. Thus, it remains
now to close the complexity study of the problem for fixed k by either providing
a O(nf () algorithm (like for MIN-K-cUT [6]), or getting an N’P-hardness result.

308 R. Watrigant et al.

From the point of view of approximability, we showed that the greedy algorithm
presented in this paper behaves correctly regarding to the weights but neglects
somehow the structure of the graph, which should encourage other investigations
in this sense.

References

1. Downey, R.G., Estivill-castro, V., Fellows, M.R., Prieto, E., Rosamond, F.A.: Cut-
ting up is hard to do: The parameterized complexity of k-cut and related problems.
In: Electronic Notes in Theoretical Computer Science, vol. 78, pp. 205-218. Elsevier
Science Publishers (2003)

2. Feder, T., Hell, P.: List homomorphisms to reflexive graphs. Journal of Combina-
torial Theory, Series B 72(2), 236-250 (1998)

3. Feder, T., Hell, P., Klein, S., Motwani, R.: Complexity of graph partition prob-
lems. In: Proceedings of the Thirty-First Annual ACM Symposium on Theory of
Computing, STOC 1999, pp. 464-472. ACM, New York (1999)

4. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

6. Goldschmidt, O., Hochbaum, D.S.: Polynomial algorithm for the k-cut problem. In:
Proceedings of the 29th Annual Symposium on Foundations of Computer Science,
SFCS 1988, pp. 444-451. IEEE Computer Society, Washington, DC (1988)

7. Gonzalez, T.: On the computational complexity of clustering and related prob-
lems. In: Drenick, R., Kozin, F. (eds.) System Modeling and Optimization. LNCIS,
vol. 38, pp. 174-182. Springer, Heidelberg (1982), doi:10.1007/BFb0006133

8. Hansen, M., Delattre, P.: Complete-link cluster analysis by graph coloring. Journal
of the American Statistical Association 73(362), 397-403 (1978)

9. Hell, P.: Graphs and Homomorphisms. Oxford University Press (2004)

10. Koivisto, M.: An O(2") algorithm for graph coloring and other partitioning prob-
lems via inclusion-exclusion. In: Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2006), pp. 583-590. IEEE (2006)

11. Li, J., Behjat, L., Schiffner, B.: A structure based clustering algorithm with appli-
cations to vlsi physical design. In: Proceedings of the Fifth International Workshop
on System-on-Chip for Real-Time Applications, IWSOC 2005, pp. 270-274. IEEE
Computer Society, Washington, DC (2005)

12. Patkar, S.B., Narayanan, H.: An efficient practical heuristic for good ratio-cut
partitioning. In: Proceedings of the 16th International Conference on VLSI Design,
VLSID 2003, p. 64. IEEE Computer Society, Washington, DC (2003)

13. Saran, H., Vazirani, V.V.: Finding k cuts within twice the optimal. STAM J. Com-
put. 24(1), 101-108 (1995)

14. Schaeffer, S.E.: Graph clustering. Computer Science Review 1(1), 27-64 (2007)

15. Watrigant, R., Bougeret, M., Giroudeau, R., Konig, J.-C.: Sum-max graph parti-
tioning problem. Technical Report RR-12015, LIRMM-CNRS-UMR 5506 (2012)

16. Wiggerts, T.A.: Using clustering algorithms in legacy systems remodularization.
In: Proceedings of the Fourth Working Conference on Reverse Engineering (WCRE
1997), p. 33. IEEE Computer Society, Washington, DC (1997)

	Sum-Max Graph Partitioning Problem
	Introduction
	Description of the Problem
	Related Work
	Our Contributions

	Computational Complexity
	Hardness of sum-max graph partitioning
	Analysis of the Problem for Small k Values

	A Polynomial-Time Approximation Algorithm
	Presentation of the Greedy Algorithm
	Analysis of the Algorithm

	Conclusion
	References

