Complexity Dichotomies for a Generic Hypergraph Problem

Nathann Cohen, Frédéric Havet, Dorian Mazauric, Ignasi Sau, Rémi Watrigant

Université Claude Bernard Lyon 1 Laboratoire de l'Informatique du parallélisme, ENS Lyon

Séminaire AlGCo, 8 février 2018

- 2 Definition of the problem
- Complexity dichotomy
- Parameterized complexity

- Structural biology: studies the structure of biological macromolecules
 - which sub-units a given complex is made of?
 - how are these sub-units organized?

- Experimental (chemical) methods provide either
 - high resolution (atomic level) of small complexes: X-ray cristallography
 - Iow resolution of large complexes: mass spectrometry
 - \rightarrow structure of large complexes?

- Goal: find the interaction graph:
 - nodes are the sub-units
 - edge between two sub-units if they are adjacent

- Goal: find the interaction graph:
 - nodes are the sub-units
 - edge between two sub-units if they are adjacent

• What is the input of the problem?

- by modifying the chemical conditions, one can split the complex into smaller pieces
- then, mass spectrometry allows us to know:
 - ★ the list of all sub-units of the complex
 - the sub-units involved in each piece

 \rightarrow they form connected subgraphs in the interaction graph

 \Rightarrow we obtain a hypergraph

Minimum Connectivity Overlay Problem

Input: a hypergraph $H = (V, \mathcal{E})$

Output: a graph G = (V, E) such that:

- for every $S \in \mathcal{E}$, G[S] is connected
- |E(G)| is minimum

Minimum Connectivity Overlay Problem

Input: a hypergraph $H = (V, \mathcal{E})$

Output: a graph G = (V, E) such that:

- for every $S \in \mathcal{E}$, G[S] is connected
- |E(G)| is minimum

Related work

- studied in different contexts
 - network design
 - users sharing topics of interest (social network)
 - ▶ ...
- NP-hard, $O(\log(n))$ -approximable, $o(\log(n))$ -inapproximable, FPT, ...

Minimum Connectivity \mathcal{F} Overlay Problem

Input: a hypergraph $H = (V, \mathcal{E})$ Output: a graph G = (V, E) such that:

- for every $S \in \mathcal{E}$, G[S] is connected <your favourite graph property here>
- |E(G)| is minimum

Related work

- studied in different contexts
 - network design
 - users sharing topics of interest (social network)
 - <u>►</u> ...
- NP-hard, $O(\log(n))$ -approximable, $o(\log(n))$ -inapproximable, FPT, ...

Our objective:

- generalization of the problem to other properties
- for which graph properties the problem is **Polynomial/NP-hard** and **FPT/W[.]-hard**?

Let \mathcal{F} be a graph family

Minimum \mathcal{F} -Overlay

Input: a hypergraph $H = (V, \mathcal{E})$ Output: a graph G = (V, E) such that:

• for every $S \in \mathcal{E}$, G[S] has a spanning subgraph in \mathcal{F}

```
\rightarrow we say that G overlays \mathcal{F} on H
```

• |E(G)| is minimum

Example: $\mathcal{F} =$ the set of all stars

Let \mathcal{F} be a graph family

Minimum \mathcal{F} -Overlay

Input: a hypergraph $H = (V, \mathcal{E})$ Output: a graph G = (V, E) such that:

• for every $S \in \mathcal{E}$, G[S] has a spanning subgraph in \mathcal{F}

```
\rightarrow we say that G overlays \mathcal{F} on H
```

• |E(G)| is minimum

Example: $\mathcal{F} =$ the set of all stars

Let ${\mathcal F}$ be a graph family

Minimum \mathcal{F} -Overlay

Input: a hypergraph $H = (V, \mathcal{E})$ Output: a graph G = (V, E) such that:

• for every $S \in \mathcal{E}$, G[S] has a spanning subgraph in \mathcal{F}

```
\rightarrow we say that G overlays \mathcal{F} on H
```

|E(G)| is minimum

Some observations:

- $\bullet\,$ if ${\mathcal F}$ is the set of all trees, then we obtain the previous connectivity problem
- *G* overlays \mathcal{F} on $H \Rightarrow G$ plus any edge overlays \mathcal{F} on H
 - \Rightarrow the complete graph on |V| vertices (almost) always overlay \mathcal{F} on H

Our results

- complexity dichotomy: for every \mathcal{F} , we can tell whether Minimum \mathcal{F} -Overlay is Polynomial or NP-complete
- parameterized algorithms: for almost every \mathcal{F} for which the problem is NP-complete, we can tell whether the problem is FPT or W-hard

Some obvious polynomial cases:

- $\bullet\,$ if ${\mathcal F}$ contains all edgeless graphs, then the edgeless graph is optimal
- $\bullet\,$ if $\mathcal{F}=$ all cliques, then "a clique on every hyperedge" is optimal

Input: a hypergraph $H = (V, \mathcal{E})$ Output: a graph G = (V, E) such that: • for every $S \in \mathcal{E}$, G[S] has a spanning subgraph in \mathcal{F} \rightarrow we say that G overlays \mathcal{F} on H• |E(G)| is minimum

Some obvious polynomial cases:

- $\bullet\,$ if ${\mathcal F}$ contains all edgeless graphs, then the edgeless graph is optimal
- $\bullet\,$ if $\mathcal{F}=$ all cliques, then "a clique on every hyperedge" is optimal

These cases are more or less the only polynomial ones

Let \mathcal{F}_p = graphs of \mathcal{F} with p vertices

Theorem (easy part)

If, for every
$$p > 0$$
, either $\mathcal{F}_p = \emptyset$ or $\mathcal{F}_p = \{K_p\}$ or $\overline{K}_p \in \mathcal{F}_p$, then **Minimum** \mathcal{F} -**Overlay is polynomial**

Input: a hypergraph $H = (V, \mathcal{E})$ Output: a graph G = (V, E) such that:

• for every $S \in \mathcal{E}$, G[S] has a spanning subgraph in \mathcal{F}

```
\rightarrow we say that G overlays \mathcal{F} on H
```

|E(G)| is minimum

Let \mathcal{F}_p = graphs of \mathcal{F} with p vertices

Theorem (easy part)

If, for every p > 0, either $\mathcal{F}_p = \emptyset$ or $\mathcal{F}_p = \{K_p\}$ or $\bar{K}_p \in \mathcal{F}_p$, then **Minimum** \mathcal{F} -**Overlay is polynomial**

Input: a hypergraph $H = (V, \mathcal{E})$ Output: a graph G = (V, E) such that:

• for every $S \in \mathcal{E}$, G[S] has a spanning subgraph in \mathcal{F}

```
\rightarrow we say that G overlays \mathcal{F} on H
```

|E(G)| is minimum

Let \mathcal{F}_p = graphs of \mathcal{F} with p vertices

Theorem (easy part)

If, for every p > 0, either $\mathcal{F}_p = \emptyset$ or $\mathcal{F}_p = \{K_p\}$ or $\bar{K}_p \in \mathcal{F}_p$, then **Minimum** \mathcal{F} -**Overlay is polynomial**

Theorem

If, for some
$$p > 0$$
, $\mathcal{F}_p \neq \emptyset$, $\mathcal{F}_p \neq \{K_p\}$ and $\bar{K}_p \notin \mathcal{F}_p$, then **Minimum** \mathcal{F}_p -**Overlay is NP-complete**

If, for some p > 0, $\mathcal{F}_p \neq \emptyset$, $\mathcal{F}_p \neq \{K_p\}$ and $\bar{K}_p \notin \mathcal{F}_p$, then **Minimum** \mathcal{F}_p -**Overlay is NP-complete**

Sketch of the proof (by induction on p)

Def.: $\mathcal{F}^- =$ graphs obtained from \mathcal{F}_p by removing a vertex (all possibilities)

 \bullet if \mathcal{F}^- satisfies the statement, we reduce from Minimum $\mathcal{F}^-\text{-}\textsc{Overlay:}$

If, for some p > 0, $\mathcal{F}_p \neq \emptyset$, $\mathcal{F}_p \neq \{K_p\}$ and $\bar{K}_p \notin \mathcal{F}_p$, then **Minimum** \mathcal{F}_p -**Overlay is NP-complete**

Sketch of the proof (by induction on p)

Def.: $\mathcal{F}^- =$ graphs obtained from \mathcal{F}_p by removing a vertex (all possibilities)

- \bullet if \mathcal{F}^- satisfies the statement, we reduce from Minimum $\mathcal{F}^-\text{-}\mathsf{Overlay:}$
 - add a vertex to every hyperedge
 - ▶ *G* overlays \mathcal{F}_p on the new hypergraph iff it overlays \mathcal{F}^- on the former one

If, for some p > 0, $\mathcal{F}_p \neq \emptyset$, $\mathcal{F}_p \neq \{K_p\}$ and $\bar{K}_p \notin \mathcal{F}_p$, then **Minimum** \mathcal{F}_p -**Overlay is NP-complete**

Sketch of the proof (by induction on p)

Def.: $\mathcal{F}^- =$ graphs obtained from \mathcal{F}_p by removing a vertex (all possibilities)

- \bullet if \mathcal{F}^- satisfies the statement, we reduce from Minimum $\mathcal{F}^-\text{-}\mathsf{Overlay:}$
 - add a vertex to every hyperedge
 - ▶ *G* overlays \mathcal{F}_p on the new hypergraph iff it overlays \mathcal{F}^- on the former one

If, for some p > 0, $\mathcal{F}_p \neq \emptyset$, $\mathcal{F}_p \neq \{K_p\}$ and $\bar{K}_p \notin \mathcal{F}_p$, then **Minimum** \mathcal{F}_p -**Overlay is NP-complete**

Sketch of the proof (by induction on p)

Def.: $\mathcal{F}^- =$ graphs obtained from \mathcal{F}_p by removing a vertex (all possibilities)

- if \mathcal{F}^- satisfies the statement, we reduce from Minimum \mathcal{F}^- -Overlay:
 - add a vertex to every hyperedge
 - \blacktriangleright G overlays \mathcal{F}_p on the new hypergraph iff it overlays \mathcal{F}^- on the former one
- what if \mathcal{F}^- is a polynomial case?
 - if $\mathcal{F}^- = \{K_{p-1}\}$, then $\mathcal{F}_p = \{K_p\}$ (impossible)
 - ▶ if $\bar{K}_{p-1} \in \mathcal{F}^-$, then \mathcal{F}_p contains a subgraph of the star $K_{1,p}$

Minimum \mathcal{F}_p -**Overlay** is NP-hard if there is a graph J of order p and two distinct non-edges e_1, e_2 of J such that:

- no subgraph of J (including J itself) is in \mathcal{F}_p
- $J \cup e_1$ has a subgraph in \mathcal{F}_p
- $J \cup e_2$ has a subgraph in \mathcal{F}_p

Minimum \mathcal{F}_p -**Overlay** is NP-hard if there is a graph J of order p and two distinct non-edges e_1, e_2 of J such that:

- no subgraph of J (including J itself) is in \mathcal{F}_p
- $J \cup e_1$ has a subgraph in \mathcal{F}_p
- $J \cup e_2$ has a subgraph in \mathcal{F}_p

Minimum \mathcal{F}_p -**Overlay** is NP-hard if there is a graph J of order p and two distinct non-edges e_1, e_2 of J such that:

- no subgraph of J (including J itself) is in \mathcal{F}_p
- $J \cup e_1$ has a subgraph in \mathcal{F}_p
- $J \cup e_2$ has a subgraph in \mathcal{F}_p

Minimum \mathcal{F}_p -**Overlay** is NP-hard if there is a graph J of order p and two distinct non-edges e_1, e_2 of J such that:

- no subgraph of J (including J itself) is in \mathcal{F}_p
- $J \cup e_1$ has a subgraph in \mathcal{F}_p
- $J \cup e_2$ has a subgraph in \mathcal{F}_p

<u>Reduction from Vertex Cover</u>: gadget for an edge $\{u, v\} \in E$

Minimum \mathcal{F}_p -**Overlay** is NP-hard if there is a graph J of order p and two distinct non-edges e_1, e_2 of J such that:

- no subgraph of J (including J itself) is in \mathcal{F}_p
- $J \cup e_1$ has a subgraph in \mathcal{F}_p
- $J \cup e_2$ has a subgraph in \mathcal{F}_p

<u>Reduction from Vertex Cover</u>: gadget for an edge $\{u, v\} \in E$

Minimum \mathcal{F}_p -**Overlay** is NP-hard if there is a graph J of order p and two distinct non-edges e_1, e_2 of J such that:

- no subgraph of J (including J itself) is in \mathcal{F}_p
- $J \cup e_1$ has a subgraph in \mathcal{F}_p
- $J \cup e_2$ has a subgraph in \mathcal{F}_p

<u>Reduction from Vertex Cover</u>: gadget for an edge $\{u, v\} \in E$

Minimum \mathcal{F}_p -**Overlay** is NP-hard if there is a graph J of order p and two distinct non-edges e_1, e_2 of J such that:

- no subgraph of J (including J itself) is in \mathcal{F}_p
- $J \cup e_1$ has a subgraph in \mathcal{F}_p
- $J \cup e_2$ has a subgraph in \mathcal{F}_p

If \mathcal{F}_p contains a subgraph S of the star $K_{1,p}$: (assume minimality of S)

• if $S \neq K_{1,p}$: ok

Minimum \mathcal{F}_p -**Overlay** is NP-hard if there is a graph J of order p and two distinct non-edges e_1, e_2 of J such that:

- no subgraph of J (including J itself) is in \mathcal{F}_p
- $J \cup e_1$ has a subgraph in \mathcal{F}_p
- $J \cup e_2$ has a subgraph in \mathcal{F}_p

If \mathcal{F}_p contains a subgraph S of the star $K_{1,p}$: (assume minimality of S)

 Q_p :

- if $S \neq K_{1,p}$: ok
- if $S = K_{1,p}$

• if \mathcal{F}_p contains no subgraph of Q_p : ok

Minimum \mathcal{F}_p -**Overlay** is NP-hard if there is a graph J of order p and two distinct non-edges e_1, e_2 of J such that:

- no subgraph of J (including J itself) is in \mathcal{F}_p
- $J \cup e_1$ has a subgraph in \mathcal{F}_p
- $J \cup e_2$ has a subgraph in \mathcal{F}_p

If \mathcal{F}_p contains a subgraph S of the star $K_{1,p}$: (assume minimality of S)

- if $S \neq K_{1,p}$: ok
- if $S = K_{1,p}$
 - if \mathcal{F}_p contains no subgraph of Q_p : ok
 - If *F_p* contains a subgraph *Q* of *Q_p*: (take *Q* minimal)
 - \star if Q has a vertex of degree 1: ok

Q:

Minimum \mathcal{F}_p -**Overlay** is NP-hard if there is a graph J of order p and two distinct non-edges e_1, e_2 of J such that:

- no subgraph of J (including J itself) is in \mathcal{F}_p
- $J \cup e_1$ has a subgraph in \mathcal{F}_p
- $J \cup e_2$ has a subgraph in \mathcal{F}_p

If \mathcal{F}_p contains a subgraph S of the star $K_{1,p}$: (assume minimality of S)

- if $S \neq K_{1,p}$: ok
- if $S = K_{1,p}$
 - if \mathcal{F}_p contains no subgraph of Q_p : ok
 - if \$\mathcal{F}_p\$ contains a subgraph \$Q\$ of \$Q_p\$: (take \$Q\$ minimal)
 - \star if Q has a vertex of degree 1: ok

Q:

Minimum \mathcal{F}_p -**Overlay** is NP-hard if there is a graph J of order p and two distinct non-edges e_1, e_2 of J such that:

- no subgraph of J (including J itself) is in \mathcal{F}_p
- $J \cup e_1$ has a subgraph in \mathcal{F}_p
- $J \cup e_2$ has a subgraph in \mathcal{F}_p

If \mathcal{F}_p contains a subgraph S of the star $K_{1,p}$: (assume minimality of S)

- if $S \neq K_{1,p}$: ok
- if $S = K_{1,p}$
 - if \mathcal{F}_p contains no subgraph of Q_p : ok
 - If *F_p* contains a subgraph *Q* of *Q_p*: (take *Q* minimal)
 - \star if Q has a vertex of degree 1: ok
 - \star if Q has no vertex of degree 1:

Q:

Minimum \mathcal{F}_p -**Overlay** is NP-hard if there is a graph J of order p and two distinct non-edges e_1, e_2 of J such that:

- no subgraph of J (including J itself) is in \mathcal{F}_p
- $J \cup e_1$ has a subgraph in \mathcal{F}_p
- $J \cup e_2$ has a subgraph in \mathcal{F}_p

If \mathcal{F}_p contains a subgraph S of the star $K_{1,p}$: (assume minimality of S)

 R_p :

- if $S \neq K_{1,p}$: ok
- if $S = K_{1,p}$
 - if \mathcal{F}_p contains no subgraph of Q_p : ok
 - if \$\mathcal{F}_p\$ contains a subgraph \$Q\$ of \$Q_p\$: (take \$Q\$ minimal)
 - \star if Q has a vertex of degree 1: ok
 - ★ if *Q* has no vertex of degree 1:
 - \rightarrow if \mathcal{F}_p contains no subgraph of R_p : ok

Minimum \mathcal{F}_p -**Overlay** is NP-hard if there is a graph J of order p and two distinct non-edges e_1, e_2 of J such that:

 T_p :

- no subgraph of J (including J itself) is in \mathcal{F}_p
- $J \cup e_1$ has a subgraph in \mathcal{F}_p
- $J \cup e_2$ has a subgraph in \mathcal{F}_p

If \mathcal{F}_p contains a subgraph S of the star $K_{1,p}$: (assume minimality of S)

• if $S \neq K_{1,p}$: ok

• if
$$S = K_{1,p}$$

- if \mathcal{F}_p contains no subgraph of Q_p : ok
- ▶ if *F_p* contains a subgraph *Q* of *Q_p*: (take *Q* minimal)
 - \star if Q has a vertex of degree 1: ok
 - \star if Q has no vertex of degree 1:
 - ightarrow if \mathcal{F}_p contains no subgraph of R_p : ok
 - \rightarrow if \mathcal{F}_p contains a subgraph R of R_p :

Minimum \mathcal{F} -Overlay is NP-hard for most non-trivial \mathcal{F}

• for which \mathcal{F} the problem is FPT or W[1]-hard?

Here: k = "natural parameter" = total number of edges in a solution

Minimum \mathcal{F} -Overlay is NP-hard for most non-trivial \mathcal{F}

• for which \mathcal{F} the problem is FPT or W[1]-hard?

Here: k = "natural parameter" = total number of edges in a solution

- If $\mathcal{F} =$ the set of all trees. Bounded search tree:
 - if there is a hyperedge with $\geq k + 2$ vertices, answer "No"
 - otherwise: branch on every possible connected graph for every hyperdege $\Rightarrow O^*(2^{k \log(k)})$ algorithm

Minimum \mathcal{F} -Overlay is NP-hard for most non-trivial \mathcal{F}

• for which \mathcal{F} the problem is FPT or W[1]-hard?

Here: k = "natural parameter" = total number of edges in a solution

If $\mathcal{F} =$ the set of all trees. Bounded search tree:

- if there is a hyperedge with $\geq k + 2$ vertices, answer "No"
- otherwise: branch on every possible connected graph for every hyperdege $\Rightarrow O^*(2^{k\log(k)}) \text{ algorithm}$

Same approach gives:

Theorem

If there is a non-decreasing function $f : \mathbb{N} \to \mathbb{N}$ with $\lim_{n \to \infty} f(n) = \infty$ such that for all $F \in \mathcal{F}$ we have $|E(F)| \ge f(|V(F)|)$ then **Minimum** \mathcal{F} -**Overlay is FPT**

Theorem

If there is a non-decreasing function $f : \mathbb{N} \to \mathbb{N}$ with $\lim_{n\to\infty} f(n) = \infty$ such that for all $F \in \mathcal{F}$ we have $|E(F)| \ge f(|V(F)|)$ then **Minimum** \mathcal{F} -**Overlay is FPT**

Examples of \mathcal{F} satisfying the statement:

- \bullet whenever ${\mathcal F}$ is finite
- $\mathcal{F} = \mathsf{all stars}$
- $\mathcal{F} = hamiltonian graphs$
- $\mathcal{F} =$ graphs of minimum degree d
- $\mathcal{F} = c$ -connected graphs

...

Theorem

If there is a non-decreasing function $f : \mathbb{N} \to \mathbb{N}$ with $\lim_{n\to\infty} f(n) = \infty$ such that for all $F \in \mathcal{F}$ we have $|E(F)| \ge f(|V(F)|)$ then **Minimum** \mathcal{F} -**Overlay is FPT**

Examples of \mathcal{F} not satisfying the statement:

- graphs having an arbitrary number of isolated vertices
 - graphs of maximum degree D
 - graphs containing a matching of size at least c

▶ ...

Theorem

If there is a non-decreasing function $f : \mathbb{N} \to \mathbb{N}$ with $\lim_{n\to\infty} f(n) = \infty$ such that for all $F \in \mathcal{F}$ we have $|E(F)| \ge f(|V(F)|)$ then **Minimum** \mathcal{F} -**Overlay is FPT**

Examples of \mathcal{F} not satisfying the statement:

- graphs having an arbitrary number of isolated vertices
 - graphs of maximum degree D
 - graphs containing a matching of size at least c
 - ▶ ...

 $\mathcal{F} \textbf{ loose family} \Leftrightarrow \text{ for all } F \in \mathcal{F}, \ F+ \text{ isolated vertices} \in \mathcal{F} \\ \Rightarrow \text{ removes the "spanning" constraint on every hyperedge}$

Theorem

If there is a non-decreasing function $f : \mathbb{N} \to \mathbb{N}$ with $\lim_{n\to\infty} f(n) = \infty$ such that for all $F \in \mathcal{F}$ we have $|E(F)| \ge f(|V(F)|)$ then **Minimum** \mathcal{F} -**Overlay is FPT**

Examples of \mathcal{F} not satisfying the statement:

- graphs having an arbitrary number of isolated vertices
 - graphs of maximum degree D
 - graphs containing a matching of size at least c

```
▶ ...
```

 $\mathcal{F} \text{ loose family} \Leftrightarrow \text{ for all } F \in \mathcal{F}, \ F+ \text{ isolated vertices} \in \mathcal{F} \\ \Rightarrow \text{ removes the "spanning" constraint on every hyperedge}$

Theorem

Let \mathcal{F} be a loose family of graphs. If $\overline{K_p} \in \mathcal{F}$ for some p, then Minimum \mathcal{F} -Overlay is FPT, otherwise, it is W[1]-hard

W[1]-hardness Let U, S, k be a **Hitting Set** instance (U=Universe, S=subsets of $U, k \in \mathbb{N}$) F_1 = graph of \mathcal{F} with min. number of non-isolated vertices r_1 F_2 = graph of \mathcal{F} with min. number of edges

W[1]-hardness

Let U, S, k be a **Hitting Set** instance (U=Universe, S=subsets of $U, k \in \mathbb{N}$) F_1 = graph of \mathcal{F} with min. number of non-isolated vertices r_1 F_2 = graph of \mathcal{F} with min. number of edges

W[1]-hardness

Let U, S, k be a **Hitting Set** instance (U=Universe, S=subsets of $U, k \in \mathbb{N}$) F_1 = graph of \mathcal{F} with min. number of non-isolated vertices r_1 F_2 = graph of \mathcal{F} with min. number of edges

 $k' = \binom{|V(F_1)|-1}{2}|E(F_2)| + k\delta(F_1)$

W[1]-hardness Let U, S, k be a **Hitting Set** instance (U=Universe, S=subsets of $U, k \in \mathbb{N}$) F_1 = graph of \mathcal{F} with min. number of non-isolated vertices r_1 F_2 = graph of \mathcal{F} with min. number of edges

 $k' = \binom{|V(F_1)|-1}{2}|E(F_2)| + k\delta(F_1)$

Conversely: right part must be a clique ⇒ left part covers ≤ kδ(F₁) edges.
The non-isolated vertices of the left part is a hitting set But: no guarantee that it is an independent set (e.g.: F₁ disconnected)
⇒ What is the maximum number of (non-isolated) vertices that can cover kδ(F₁) edges?

W[1]-hardness Let U, S, k be a **Hitting Set** instance (U=Universe, S=subsets of $U, k \in \mathbb{N}$) F_1 = graph of \mathcal{F} with min. number of non-isolated vertices r_1 F_2 = graph of \mathcal{F} with min. number of edges

 $k' = \binom{|V(F_1)|-1}{2}|E(F_2)| + k\delta(F_1)$

 Conversely: right part must be a clique ⇒ left part covers ≤ kδ(F₁) edges.
 The non-isolated vertices of the left part is a hitting set But: no guarantee that it is an independent set (e.g.: F₁ disconnected)
 ⇒ What is the maximum number of (non-isolated) vertices that can cover kδ(F₁) edges? 2kδ(F₁) (matching)

W[1]-hardness

Let U, S, k be a **Hitting Set** instance (U=Universe, S=subsets of $U, k \in \mathbb{N}$) F_1 = graph of \mathcal{F} with min. number of non-isolated vertices r_1 F_2 = graph of \mathcal{F} with min. number of edges

Theorem [Chen, Lin, FOCS 2016]

Approximating Hitting Set to any constant is W[1]-hard

 \Rightarrow reduce from $Gap_{2\delta(F_1)}$ Hitting Set

Conversely: right part must be a clique ⇒ left part covers ≤ kδ(F₁) edges.
The non-isolated vertices of the left part is a hitting set But: no guarantee that it is an independent set (e.g.: F₁ disconnected) ⇒ What is the maximum number of (non-isolated) vertices that can cover

 $k\delta(F_1)$ edges? $2k\delta(F_1)$ (matching)

Open problems, further research

Parameterized algorithms

- \bullet what about ${\cal F}$ which are not loose, but does not fall into the FPT case?
 - ▶ "almost loose": for all $F \in \mathcal{F}$, $F + \overline{K}_{g(i)} \in \mathcal{F} \ \forall i$
 - W[1]-hard if g = polynomial
 - what if $g(i) = 2^i$?

Open problems, further research

Parameterized algorithms

- \bullet what about ${\mathcal F}$ which are not loose, but does not fall into the FPT case?
 - ▶ "almost loose": for all $F \in \mathcal{F}$, $F + \bar{K}_{g(i)} \in \mathcal{F} \ \forall i$
 - W[1]-hard if g = polynomial
 - what if $g(i) = 2^i$?

Variants of the problem

require that for every hyperedge S ∈ E, G[S] is isomorphic to some F ∈ F
 ⇒ forbids additional edges

now, testing satisfiability is no longer polynomial NP-hard even if $\mathcal{F} = \{P_3\}$ complexity dichotomy?

- add some constraints on the output graph:
 - $\Delta(G) \leq d$
 - bounded treewidth?
 - already some work with "planarity" constraint (hypergraph drawing)

Voilà ! Questions ?