Complexity Dichotomies for a Generic Hypergraph Problem

Nathann Cohen, Frédéric Havet, Dorian Mazauric, Ignasi Sau, Rémi Watrigant

Université Claude Bernard Lyon 1
Laboratoire de l'Informatique du parallélisme, ENS Lyon

Séminaire AIGCo, 8 février 2018
(1) Motivations
(2) Definition of the problem
(3) Complexity dichotomy

4 Parameterized complexity
(5) Conclusion

Motivations

- Structural biology: studies the structure of biological macromolecules
- which sub-units a given complex is made of?
- how are these sub-units organized?

- Experimental (chemical) methods provide either
- high resolution (atomic level) of small complexes: X-ray cristallography
- low resolution of large complexes: mass spectrometry
\rightarrow structure of large complexes?
- Goal: find the interaction graph:
- nodes are the sub-units
- edge between two sub-units if they are adjacent

- Goal: find the interaction graph:
- nodes are the sub-units
- edge between two sub-units if they are adjacent

- What is the input of the problem?
- by modifying the chemical conditions, one can split the complex into smaller pieces
- then, mass spectrometry allows us to know:
\star the list of all sub-units of the complex
\star the sub-units involved in each piece
\rightarrow they form connected subgraphs in the interaction graph
\Rightarrow we obtain a hypergraph

Motivations

Minimum Connectivity Overlay Problem

Input: a hypergraph $H=(V, \mathcal{E})$
Output: a graph $G=(V, E)$ such that:

- for every $S \in \mathcal{E}, G[S]$ is connected
- $|E(G)|$ is minimum

Motivations

Minimum Connectivity Overlay Problem

Input: a hypergraph $H=(V, \mathcal{E})$
Output: a graph $G=(V, E)$ such that:

- for every $S \in \mathcal{E}, G[S]$ is connected
- $|E(G)|$ is minimum

Related work

- studied in different contexts
- network design
- users sharing topics of interest (social network)
- NP-hard, $O(\log (n))$-approximable, $o(\log (n))$-inapproximable, FPT, \ldots

Motivations

Minimum Connectivity \mathcal{F} Overlay Problem

Input: a hypergraph $H=(V, \mathcal{E})$
Output: a graph $G=(V, E)$ such that:

- for every $S \in \mathcal{E}, G[S]$ is connected <your favourite graph property here>
- $|E(G)|$ is minimum

Related work

- studied in different contexts
- network design
- users sharing topics of interest (social network)
- ...
- NP-hard, $O(\log (n))$-approximable, $o(\log (n))$-inapproximable, FPT, ...

Our objective:

- generalization of the problem to other properties
- for which graph properties the problem is Polynomial/NP-hard and FPT/W[.]-hard?

Let \mathcal{F} be a graph family

Minimum \mathcal{F}-Overlay

Input: a hypergraph $H=(V, \mathcal{E})$
Output: a graph $G=(V, E)$ such that:

- for every $S \in \mathcal{E}, G[S]$ has a spanning subgraph in \mathcal{F}
\rightarrow we say that G overlays \mathcal{F} on H
- $|E(G)|$ is minimum

Example: $\mathcal{F}=$ the set of all stars

Let \mathcal{F} be a graph family

Minimum \mathcal{F}-Overlay

Input: a hypergraph $H=(V, \mathcal{E})$
Output: a graph $G=(V, E)$ such that:

- for every $S \in \mathcal{E}, G[S]$ has a spanning subgraph in \mathcal{F}
\rightarrow we say that G overlays \mathcal{F} on H
- $|E(G)|$ is minimum

Example: $\mathcal{F}=$ the set of all stars

Let \mathcal{F} be a graph family

Minimum \mathcal{F}-Overlay

Input: a hypergraph $H=(V, \mathcal{E})$
Output: a graph $G=(V, E)$ such that:

- for every $S \in \mathcal{E}, G[S]$ has a spanning subgraph in \mathcal{F}
\rightarrow we say that G overlays \mathcal{F} on H
- $|E(G)|$ is minimum

Some observations:

- if \mathcal{F} is the set of all trees, then we obtain the previous connectivity problem
- G overlays \mathcal{F} on $H \Rightarrow G$ plus any edge overlays \mathcal{F} on H \Rightarrow the complete graph on $|V|$ vertices (almost) always overlay \mathcal{F} on H

Our results

- complexity dichotomy: for every \mathcal{F}, we can tell whether Minimum \mathcal{F}-Overlay is Polynomial or NP-complete
- parameterized algorithms: for almost every \mathcal{F} for which the problem is NP-complete, we can tell whether the problem is FPT or W-hard

Minimum \mathcal{F}-Overlay

Input: a hypergraph $H=(V, \mathcal{E})$
Output: a graph $G=(V, E)$ such that:

- for every $S \in \mathcal{E}, G[S]$ has a spanning subgraph in \mathcal{F}
\rightarrow we say that G overlays \mathcal{F} on H
- $|E(G)|$ is minimum

Some obvious polynomial cases:

- if \mathcal{F} contains all edgeless graphs, then the edgeless graph is optimal
- if $\mathcal{F}=$ all cliques, then "a clique on every hyperedge" is optimal

Minimum \mathcal{F}-Overlay

Input: a hypergraph $H=(V, \mathcal{E})$
Output: a graph $G=(V, E)$ such that:

- for every $S \in \mathcal{E}, G[S]$ has a spanning subgraph in \mathcal{F}
\rightarrow we say that G overlays \mathcal{F} on H
- $|E(G)|$ is minimum

Some obvious polynomial cases:

- if \mathcal{F} contains all edgeless graphs, then the edgeless graph is optimal
- if $\mathcal{F}=$ all cliques, then "a clique on every hyperedge" is optimal

These cases are more or less the only polynomial ones
Let $\mathcal{F}_{p}=$ graphs of \mathcal{F} with p vertices

Theorem (easy part)

If, for every $p>0$, either $\mathcal{F}_{p}=\emptyset$ or $\mathcal{F}_{p}=\left\{K_{p}\right\}$ or $\bar{K}_{p} \in \mathcal{F}_{p}$, then Minimum \mathcal{F}-Overlay is polynomial

Minimum F-Overlay

Input: a hypergraph $H=(V, \mathcal{E})$
Output: a graph $G=(V, E)$ such that:

- for every $S \in \mathcal{E}, G[S]$ has a spanning subgraph in \mathcal{F}
\rightarrow we say that G overlays \mathcal{F} on H
- $|E(G)|$ is minimum

Let $\mathcal{F}_{p}=$ graphs of \mathcal{F} with p vertices

Theorem (easy part)

If, for every $p>0$, either $\mathcal{F}_{p}=\emptyset$ or $\mathcal{F}_{p}=\left\{K_{p}\right\}$ or $\bar{K}_{p} \in \mathcal{F}_{p}$, then Minimum \mathcal{F}-Overlay is polynomial

Minimum \mathcal{F}-Overlay

Input: a hypergraph $H=(V, \mathcal{E})$
Output: a graph $G=(V, E)$ such that:

- for every $S \in \mathcal{E}, G[S]$ has a spanning subgraph in \mathcal{F}
\rightarrow we say that G overlays \mathcal{F} on H
- $|E(G)|$ is minimum

Let $\mathcal{F}_{p}=$ graphs of \mathcal{F} with p vertices

Theorem (easy part)

If, for every $p>0$, either $\mathcal{F}_{p}=\emptyset$ or $\mathcal{F}_{p}=\left\{K_{p}\right\}$ or $\bar{K}_{p} \in \mathcal{F}_{p}$, then Minimum \mathcal{F}-Overlay is polynomial

Theorem

If, for some $p>0, \mathcal{F}_{p} \neq \emptyset, \mathcal{F}_{p} \neq\left\{K_{p}\right\}$ and $\bar{K}_{p} \notin \mathcal{F}_{p}$, then Minimum \mathcal{F}_{p}-Overlay is NP-complete

Theorem

If, for some $p>0, \mathcal{F}_{p} \neq \emptyset, \mathcal{F}_{p} \neq\left\{K_{p}\right\}$ and $\bar{K}_{p} \notin \mathcal{F}_{p}$, then Minimum \mathcal{F}_{p}-Overlay is NP-complete

Sketch of the proof (by induction on p)

- if \mathcal{F}^{-}satisfies the statement, we reduce from Minimum \mathcal{F}^{-}-Overlay:

Theorem

If, for some $p>0, \mathcal{F}_{p} \neq \emptyset, \mathcal{F}_{p} \neq\left\{K_{p}\right\}$ and $\bar{K}_{p} \notin \mathcal{F}_{p}$, then Minimum \mathcal{F}_{p}-Overlay is NP-complete

Sketch of the proof (by induction on p)

- if \mathcal{F}^{-}satisfies the statement, we reduce from Minimum \mathcal{F}^{-}-Overlay:
- add a vertex to every hyperedge
- G overlays \mathcal{F}_{p} on the new hypergraph iff it overlays \mathcal{F}^{-}on the former one

Theorem

If, for some $p>0, \mathcal{F}_{p} \neq \emptyset, \mathcal{F}_{p} \neq\left\{K_{p}\right\}$ and $\bar{K}_{p} \notin \mathcal{F}_{p}$, then Minimum \mathcal{F}_{p}-Overlay is NP-complete

Sketch of the proof (by induction on p)

- if \mathcal{F}^{-}satisfies the statement, we reduce from Minimum \mathcal{F}^{-}-Overlay:
- add a vertex to every hyperedge
- G overlays \mathcal{F}_{p} on the new hypergraph iff it overlays \mathcal{F}^{-}on the former one

Theorem

If, for some $p>0, \mathcal{F}_{p} \neq \emptyset, \mathcal{F}_{p} \neq\left\{K_{p}\right\}$ and $\bar{K}_{p} \notin \mathcal{F}_{p}$, then Minimum \mathcal{F}_{p}-Overlay is NP-complete

Sketch of the proof (by induction on p)

- if \mathcal{F}^{-}satisfies the statement, we reduce from Minimum \mathcal{F}^{-}-Overlay:
- add a vertex to every hyperedge
- G overlays \mathcal{F}_{p} on the new hypergraph iff it overlays \mathcal{F}^{-}on the former one
- what if \mathcal{F}^{-}is a polynomial case?
- if $\mathcal{F}^{-}=\left\{K_{p-1}\right\}$, then $\mathcal{F}_{p}=\left\{K_{p}\right\}$ (impossible)
- if $\bar{K}_{p-1} \in \mathcal{F}^{-}$, then \mathcal{F}_{p} contains a subgraph of the star $K_{1, p}$

Lemma

Minimum \mathcal{F}_{p}-Overlay is NP-hard if there is a graph J of order p and two distinct non-edges e_{1}, e_{2} of J such that:

- no subgraph of J (including J itself) is in \mathcal{F}_{p}
- $J \cup e_{1}$ has a subgraph in \mathcal{F}_{p}
- $J \cup e_{2}$ has a subgraph in \mathcal{F}_{p}

Lemma

Minimum \mathcal{F}_{p}-Overlay is NP-hard if there is a graph J of order p and two distinct non-edges e_{1}, e_{2} of J such that:

- no subgraph of J (including J itself) is in \mathcal{F}_{p}
- $J \cup e_{1}$ has a subgraph in \mathcal{F}_{p}
- $J \cup e_{2}$ has a subgraph in \mathcal{F}_{p}

Lemma

Minimum \mathcal{F}_{p}-Overlay is NP-hard if there is a graph J of order p and two distinct non-edges e_{1}, e_{2} of J such that:

- no subgraph of J (including J itself) is in \mathcal{F}_{p}
- $J \cup e_{1}$ has a subgraph in \mathcal{F}_{p}
- $J \cup e_{2}$ has a subgraph in \mathcal{F}_{p}

Lemma

Minimum \mathcal{F}_{p}-Overlay is NP-hard if there is a graph J of order p and two distinct non-edges e_{1}, e_{2} of J such that:

- no subgraph of J (including J itself) is in \mathcal{F}_{p}
- $J \cup e_{1}$ has a subgraph in \mathcal{F}_{p}
- $J \cup e_{2}$ has a subgraph in \mathcal{F}_{p}

Reduction from Vertex Cover: gadget for an edge $\{u, v\} \in E$

Lemma

Minimum \mathcal{F}_{p}-Overlay is NP-hard if there is a graph J of order p and two distinct non-edges e_{1}, e_{2} of J such that:

- no subgraph of J (including J itself) is in \mathcal{F}_{p}
- $J \cup e_{1}$ has a subgraph in \mathcal{F}_{p}
- $J \cup e_{2}$ has a subgraph in \mathcal{F}_{p}

Reduction from Vertex Cover: gadget for an edge $\{u, v\} \in E$

Lemma

Minimum \mathcal{F}_{p}-Overlay is NP-hard if there is a graph J of order p and two distinct non-edges e_{1}, e_{2} of J such that:

- no subgraph of J (including J itself) is in \mathcal{F}_{p}
- $J \cup e_{1}$ has a subgraph in \mathcal{F}_{p}
- $J \cup e_{2}$ has a subgraph in \mathcal{F}_{p}

Reduction from Vertex Cover: gadget for an edge $\{u, v\} \in E$

Lemma

Minimum \mathcal{F}_{p}-Overlay is NP-hard if there is a graph J of order p and two distinct non-edges e_{1}, e_{2} of J such that:

- no subgraph of J (including J itself) is in \mathcal{F}_{p}
- $J \cup e_{1}$ has a subgraph in \mathcal{F}_{p}
- $J \cup e_{2}$ has a subgraph in \mathcal{F}_{p}

If \mathcal{F}_{p} contains a subgraph S of the star $K_{1, p}$: (assume minimality of S)

- if $S \neq K_{1, p}$: ok

Lemma

Minimum \mathcal{F}_{p}-Overlay is NP-hard if there is a graph J of order p and two distinct non-edges e_{1}, e_{2} of J such that:

- no subgraph of J (including J itself) is in \mathcal{F}_{p}
- $J \cup e_{1}$ has a subgraph in \mathcal{F}_{p}
- $J \cup e_{2}$ has a subgraph in \mathcal{F}_{p}

If \mathcal{F}_{p} contains a subgraph S of the star $K_{1, p}$: (assume minimality of S)

$$
Q_{p}:
$$

- if $S \neq K_{1, p}$: ok
- if $S=K_{1, p}$
- if \mathcal{F}_{p} contains no subgraph of Q_{p} : ok

Lemma

Minimum \mathcal{F}_{p}-Overlay is NP-hard if there is a graph J of order p and two distinct non-edges e_{1}, e_{2} of J such that:

- no subgraph of J (including J itself) is in \mathcal{F}_{p}
- $J \cup e_{1}$ has a subgraph in \mathcal{F}_{p}
- $J \cup e_{2}$ has a subgraph in \mathcal{F}_{p}

If \mathcal{F}_{p} contains a subgraph S of the star $K_{1, p}$: (assume minimality of S)

Q:

- if $S \neq K_{1, p}$: ok
- if $S=K_{1, p}$
- if \mathcal{F}_{p} contains no subgraph of Q_{p} : ok
- if \mathcal{F}_{p} contains a subgraph Q of Q_{p} : (take Q minimal)
* if Q has a vertex of degree 1 : ok

Lemma

Minimum \mathcal{F}_{p}-Overlay is NP-hard if there is a graph J of order p and two distinct non-edges e_{1}, e_{2} of J such that:

- no subgraph of J (including J itself) is in \mathcal{F}_{p}
- $J \cup e_{1}$ has a subgraph in \mathcal{F}_{p}
- $J \cup e_{2}$ has a subgraph in \mathcal{F}_{p}

If \mathcal{F}_{p} contains a subgraph S of the star $K_{1, p}$: (assume minimality of S)

$$
Q:
$$

- if $S \neq K_{1, p}$: ok
- if $S=K_{1, p}$
- if \mathcal{F}_{p} contains no subgraph of Q_{p} : ok
- if \mathcal{F}_{p} contains a subgraph Q of Q_{p} : (take Q minimal)
* if Q has a vertex of degree 1 : ok

Lemma

Minimum \mathcal{F}_{p}-Overlay is NP-hard if there is a graph J of order p and two distinct non-edges e_{1}, e_{2} of J such that:

- no subgraph of J (including J itself) is in \mathcal{F}_{p}
- $J \cup e_{1}$ has a subgraph in \mathcal{F}_{p}
- $J \cup e_{2}$ has a subgraph in \mathcal{F}_{p}

If \mathcal{F}_{p} contains a subgraph S of the star $K_{1, p}$: (assume minimality of S)

$$
Q:
$$

- if $S \neq K_{1, p}$: ok
- if $S=K_{1, p}$
- if \mathcal{F}_{p} contains no subgraph of Q_{p} : ok
- if \mathcal{F}_{p} contains a subgraph Q of Q_{p} : (take Q minimal)

* if Q has a vertex of degree 1: ok
\star if Q has no vertex of degree 1 :

Lemma

Minimum \mathcal{F}_{p}-Overlay is NP-hard if there is a graph J of order p and two distinct non-edges e_{1}, e_{2} of J such that:

- no subgraph of J (including J itself) is in \mathcal{F}_{p}
- $J \cup e_{1}$ has a subgraph in \mathcal{F}_{p}
- $J \cup e_{2}$ has a subgraph in \mathcal{F}_{p}

If \mathcal{F}_{p} contains a subgraph S of the star $K_{1, p}$: (assume minimality of S)

$$
R_{p}:
$$

- if $S \neq K_{1, p}$: ok
- if $S=K_{1, p}$
- if \mathcal{F}_{p} contains no subgraph of Q_{p} : ok
- if \mathcal{F}_{p} contains a subgraph Q of Q_{p} : (take Q minimal)
\star if Q has a vertex of degree 1: ok
\star if Q has no vertex of degree 1 :
\rightarrow if \mathcal{F}_{p} contains no subgraph of R_{p} : ok

Lemma

Minimum \mathcal{F}_{p}-Overlay is NP-hard if there is a graph J of order p and two distinct non-edges e_{1}, e_{2} of J such that:

- no subgraph of J (including J itself) is in \mathcal{F}_{p}
- $J \cup e_{1}$ has a subgraph in \mathcal{F}_{p}
- $J \cup e_{2}$ has a subgraph in \mathcal{F}_{p}

If \mathcal{F}_{p} contains a subgraph S of the star $K_{1, p}$: (assume minimality of S)

$$
T_{p}:
$$

- if $S \neq K_{1, p}$: ok
- if $S=K_{1, p}$
- if \mathcal{F}_{p} contains no subgraph of Q_{p} : ok
- if \mathcal{F}_{p} contains a subgraph Q of Q_{p} : (take Q minimal)
\star if Q has a vertex of degree 1: ok
\star if Q has no vertex of degree 1 :
\rightarrow if \mathcal{F}_{p} contains no subgraph of R_{p} : ok \rightarrow if \mathcal{F}_{p} contains a subgraph R of R_{p} :

Parameterized complexity

Minimum \mathcal{F}-Overlay is NP-hard for most non-trivial \mathcal{F}

- for which \mathcal{F} the problem is FPT or W[1]-hard?

Here: $k=$ "natural parameter" $=$ total number of edges in a solution

Parameterized complexity

Minimum \mathcal{F}-Overlay is NP-hard for most non-trivial \mathcal{F}

- for which \mathcal{F} the problem is FPT or W[1]-hard?

Here: $k=$ "natural parameter" $=$ total number of edges in a solution

If $\mathcal{F}=$ the set of all trees. Bounded search tree:

- if there is a hyperedge with $\geq k+2$ vertices, answer "No"
- otherwise: branch on every possible connected graph for every hyperdege $\Rightarrow O^{*}\left(2^{k \log (k)}\right)$ algorithm

Parameterized complexity

Minimum \mathcal{F}-Overlay is NP-hard for most non-trivial \mathcal{F}

- for which \mathcal{F} the problem is FPT or W[1]-hard?

Here: $k=$ "natural parameter" $=$ total number of edges in a solution

If $\mathcal{F}=$ the set of all trees. Bounded search tree:

- if there is a hyperedge with $\geq k+2$ vertices, answer "No"
- otherwise: branch on every possible connected graph for every hyperdege

$$
\Rightarrow O^{*}\left(2^{k \log (k)}\right) \text { algorithm }
$$

Same approach gives:

Theorem

If there is a non-decreasing function $f: \mathbb{N} \rightarrow \mathbb{N}$ with $\lim _{n \rightarrow \infty} f(n)=\infty$ such that for all $F \in \mathcal{F}$ we have $|E(F)| \geq f(|V(F)|)$ then Minimum \mathcal{F}-Overlay is FPT

Parameterized complexity

Theorem

If there is a non-decreasing function $f: \mathbb{N} \rightarrow \mathbb{N}$ with $\lim _{n \rightarrow \infty} f(n)=\infty$ such that for all $F \in \mathcal{F}$ we have $|E(F)| \geq f(|V(F)|)$ then Minimum \mathcal{F}-Overlay is FPT

Examples of \mathcal{F} satisfying the statement:

- whenever \mathcal{F} is finite
- $\mathcal{F}=$ all stars
- $\mathcal{F}=$ hamiltonian graphs
- $\mathcal{F}=$ graphs of minimum degree d
- $\mathcal{F}=c$-connected graphs
- ...

Parameterized complexity

Theorem

If there is a non-decreasing function $f: \mathbb{N} \rightarrow \mathbb{N}$ with $\lim _{n \rightarrow \infty} f(n)=\infty$ such that for all $F \in \mathcal{F}$ we have $|E(F)| \geq f(|V(F)|)$ then Minimum \mathcal{F}-Overlay is FPT

Examples of \mathcal{F} not satisfying the statement:

- graphs having an arbitrary number of isolated vertices
- graphs of maximum degree D
- graphs containing a matching of size at least c

Parameterized complexity

Theorem

If there is a non-decreasing function $f: \mathbb{N} \rightarrow \mathbb{N}$ with $\lim _{n \rightarrow \infty} f(n)=\infty$ such that for all $F \in \mathcal{F}$ we have $|E(F)| \geq f(|V(F)|)$ then Minimum \mathcal{F}-Overlay is FPT

Examples of \mathcal{F} not satisfying the statement:

- graphs having an arbitrary number of isolated vertices
- graphs of maximum degree D
- graphs containing a matching of size at least c
- ...
\mathcal{F} loose family \Leftrightarrow for all $F \in \mathcal{F}, F+$ isolated vertices $\in \mathcal{F}$
\Rightarrow removes the "spanning" constraint on every hyperedge

Parameterized complexity

Theorem

If there is a non-decreasing function $f: \mathbb{N} \rightarrow \mathbb{N}$ with $\lim _{n \rightarrow \infty} f(n)=\infty$ such that for all $F \in \mathcal{F}$ we have $|E(F)| \geq f(|V(F)|)$ then Minimum \mathcal{F}-Overlay is FPT

Examples of \mathcal{F} not satisfying the statement:

- graphs having an arbitrary number of isolated vertices
- graphs of maximum degree D
- graphs containing a matching of size at least c
- ...
\mathcal{F} loose family \Leftrightarrow for all $F \in \mathcal{F}, F+$ isolated vertices $\in \mathcal{F}$
\Rightarrow removes the "spanning" constraint on every hyperedge

Theorem

Let \mathcal{F} be a loose family of graphs.
If $\bar{K}_{p} \in \mathcal{F}$ for some p, then Minimum \mathcal{F}-Overlay is FPT, otherwise, it is $\mathrm{W}[1]$-hard

W[1]-hardness

Let U, \mathcal{S}, k be a Hitting Set instance ($U=$ Universe, $\mathcal{S}=$ subsets of $U, k \in \mathbb{N}$) $F_{1}=$ graph of \mathcal{F} with min. number of non-isolated vertices r_{1}
$F_{2}=$ graph of \mathcal{F} with min. number of edges

W[1]-hardness

Let U, \mathcal{S}, k be a Hitting Set instance ($U=$ Universe, $\mathcal{S}=$ subsets of $U, k \in \mathbb{N}$) $F_{1}=$ graph of \mathcal{F} with min. number of non-isolated vertices r_{1}
$F_{2}=$ graph of \mathcal{F} with min. number of edges

W[1]-hardness

Let U, \mathcal{S}, k be a Hitting Set instance ($U=$ Universe, $\mathcal{S}=$ subsets of $U, k \in \mathbb{N}$) $F_{1}=$ graph of \mathcal{F} with min. number of non-isolated vertices r_{1}
$F_{2}=$ graph of \mathcal{F} with min. number of edges

$$
k^{\prime}=\binom{\left|V\left(F_{1}\right)\right|-1}{2}\left|E\left(F_{2}\right)\right|+k \delta\left(F_{1}\right)
$$

W[1]-hardness

Let U, \mathcal{S}, k be a Hitting Set instance ($U=$ Universe, $\mathcal{S}=$ subsets of $U, k \in \mathbb{N}$) $F_{1}=$ graph of \mathcal{F} with min. number of non-isolated vertices r_{1}
$F_{2}=$ graph of \mathcal{F} with min. number of edges

$$
k^{\prime}=\binom{\left|V\left(F_{1}\right)\right|-1}{2}\left|E\left(F_{2}\right)\right|+k \delta\left(F_{1}\right)
$$

- Conversely: right part must be a clique \Rightarrow left part covers $\leq k \delta\left(F_{1}\right)$ edges.
- The non-isolated vertices of the left part is a hitting set

But: no guarantee that it is an independent set (e.g.: F_{1} disconnected) \Rightarrow What is the maximum number of (non-isolated) vertices that can cover $k \delta\left(F_{1}\right)$ edges?

W[1]-hardness

Let U, \mathcal{S}, k be a Hitting Set instance ($U=$ Universe, $\mathcal{S}=$ subsets of $U, k \in \mathbb{N}$) $F_{1}=$ graph of \mathcal{F} with min. number of non-isolated vertices r_{1}
$F_{2}=$ graph of \mathcal{F} with min. number of edges

$$
k^{\prime}=\binom{\left|V\left(F_{1}\right)\right|-1}{2}\left|E\left(F_{2}\right)\right|+k \delta\left(F_{1}\right)
$$

- Conversely: right part must be a clique \Rightarrow left part covers $\leq k \delta\left(F_{1}\right)$ edges.
- The non-isolated vertices of the left part is a hitting set

But: no guarantee that it is an independent set (e.g.: F_{1} disconnected) \Rightarrow What is the maximum number of (non-isolated) vertices that can cover $k \delta\left(F_{1}\right)$ edges? $2 k \delta\left(F_{1}\right)$ (matching)

W[1]-hardness

Let U, \mathcal{S}, k be a Hitting Set instance ($U=$ Universe, $\mathcal{S}=$ subsets of $U, k \in \mathbb{N}$) $F_{1}=$ graph of \mathcal{F} with min. number of non-isolated vertices r_{1}
$F_{2}=$ graph of \mathcal{F} with min. number of edges

Theorem [Chen, Lin, FOCS 2016]

Approximating Hitting Set to any constant is W[1]-hard
\Rightarrow reduce from Gap ${ }_{2 \delta\left(F_{1}\right)}$ Hitting Set

- Conversely: right part must be a clique \Rightarrow left part covers $\leq k \delta\left(F_{1}\right)$ edges.
- The non-isolated vertices of the left part is a hitting set But: no guarantee that it is an independent set (e.g.: F_{1} disconnected) \Rightarrow What is the maximum number of (non-isolated) vertices that can cover $k \delta\left(F_{1}\right)$ edges? $2 k \delta\left(F_{1}\right)$ (matching)

Open problems, further research

Parameterized algorithms

- what about \mathcal{F} which are not loose, but does not fall into the FPT case?
- "almost loose": for all $F \in \mathcal{F}, F+\bar{K}_{g(i)} \in \mathcal{F} \forall i$
- W[1]-hard if $g=$ polynomial
- what if $g(i)=2^{i}$?

Open problems, further research

Parameterized algorithms

- what about \mathcal{F} which are not loose, but does not fall into the FPT case?
- "almost loose": for all $F \in \mathcal{F}, F+\bar{K}_{g(i)} \in \mathcal{F} \forall i$
- W[1]-hard if $g=$ polynomial
- what if $g(i)=2^{i}$?

Variants of the problem

- require that for every hyperedge $S \in \mathcal{E}, G[S]$ is isomorphic to some $F \in \mathcal{F}$ \Rightarrow forbids additional edges
now, testing satisfiability is no longer polynomial
NP-hard even if $\mathcal{F}=\left\{P_{3}\right\}$
complexity dichotomy?
- add some constraints on the output graph:
- $\Delta(G) \leq d$
- bounded treewidth?
- already some work with "planarity" constraint (hypergraph drawing)

Voilà !
 Questions?

