
Parallel HSL port

FastHSL
board

HSL links

Ethernet
Control Network

Node 1

PC
mother
board

PCI Bus

PCI-DDC

Rcube

PC
mother
board

Node 3

PCI-DDC

Rcube

Node 2

PC
mother
board

PCI-DDC

Rcube

THE MPC PARALLEL COMPUTER : HARDWARE, LOW-LEVEL
PROTOCOLS AND PERFORMANCES

A. ZERROUKI, O. GLUCK, J.L. DESBARBIEUX, A. FENYÖ, A. GREINER, C. SPASEVSKI, F. WAJSBÜRT, F.
SILVA, E. DREYFUS

University P. & M. Curie, Laboratoire LIP6, ASIM Team
4 Place Jussieu 75252 Paris Cedex 05 France

Tel : (+331) 44 27 54 15 Fax : (+331) 44 27 72 80
E-mail : {Amal.Zerrouki, Olivier.Gluck , Jeanlou.Desbarbieux, Alain.Greiner, Alexandre.Fenyo, Cyril.Spasevski,

Franck.Wajsburt, Fabricio.Silva }@lip6.fr
Web : http://mpc.lip6.fr

ABSTRACT
This paper presents the MPC parallel computer and

its MPI implementation performed at the Laboratoire
LIP6 of Univ. Pierre and Marie Curie, Paris. MPC is a
low cost and high performance parallel computer using
standard PC motherboards as processing nodes
connected through the specific FastHSL board to a high
speed communication network using HSL 1 Gbits/s serial
links, IEEE 1355 compliant. Two Asics are presented :
RCUBE which is the HSL network router, and PCI-DDC
the network controller implementing the Direct Deposit
State Less receiver protocol.

The software part of the MPC parallel computer
consists of 2 zero-copy layers leading to a latency of 5 to
40µs and a throughput of 490Mbits/s. An efficient MPI
implementation based on MPICH is presented and
evaluated on an MPC parallel computer. Measures show
a latency of 26µs and an useful throughput of 450Mbits/s.

Keywords: PC-cluster, parallel computing systems,
Interconnection networks, Message passing.

1. INTRODUCTION

The MPC computer (MultiPC) is the result of a 5-year
research project at the LIP6. The goal was the design of a
very low cost and high performance parallel computer
under the form of a PC cluster. From the hardware point
of view, MPC consists of several processing nodes
interconnected by a high speed communication network
(HSL) which complies with the IEEE-1355 standard[1].
Figure 1 presents the architecture of the MPC computer.

The low cost objective is attained through the use of
off-the-shelf products. Nodes are nothing more than
standard monoprocessor/multiprocessor mother-boards.
The only specific hardware element is the single board
network controller FastHSL which connects the nodes to
the HSL network and implements the communication
protocol.

The differentiating and original element of the MPC
computer resides in its HSL (High Serial Links) network
designed at UPMC. It is a high performance network
using 1 Gbit/s serial links.

Basically, a MPC node is a PC mother-board on which
is plugged on the PCI bus, the FastHSL board developed
by the Architecture Department of the LIP6. This board
carries 2 ASICs, both developed by the Architecture
Department of the LIP6 : The PCIDDC chip[2] is a PCI
controller that implements the communication protocol.
The RCUBE router[3] is a single chip 8*8 dynamic cross-
bar that offers 8 bi-directional HSL ports. Thanks to the
highly integrated RCUBE router, there is no centralized
switch in this architecture, as each node contains a routing
capability.

Figure 1 : MPC architecture

2. THE HSL NETWORK

2.1 The HSL link

The physical media is a point-to-point, full duplex and
high speed serial link supported by coaxial cables.

Communication on the link is asynchronous : emitter
sends data at its own speed and the receiver recovers both

the emitter’s clock and the data. Such a technology avoids
the distribution of a synchronous signal over all the nodes
and the resulting skew issues. The link carries data bytes
encoded as shown in figure 2.

Figure 2 : HSL 12 bits symbol coding

8 bits of data are enclosed in the stream. Start and Stop
bits are used to create a rising edge every 12 bits. Such an
edge is used by the receiving end for synchronizing its
local clock with the one of the emitting end clock. A
parity bit is also provided to allow error detection in the
stream. In addition to the 256 possible data bytes, specials
symbols are defined to ensure flow control, packet
signaling, etc.

Given that 12 bits are necessary for each character, the
maximum effective throughput is of 80 Mbytes/s
(1Gbit/s/12bits/symbol = 80 Mbytes/s).

The maximum length of the HSL link in the coaxial
version is of 5 meters. This limits the use of this
technology to a local interconnection network. Optical
fibers could extend the maximum length to 70 meters.
However, this requires the use of external optical
transceivers.

2.2 The serializing/de-serializing cell

This macro-cell developed at UPMC in collaboration
with BULL performs the serialization/de-serialization of
data for the HSL link as well as clock recovery. It has
been designed in a portable technology and has been
integrated in several ASICs and in various technologies
from 0.5µm to 0.25µm. In a 0.5µm process its area is of
1mm2 and its power consumption is of 300mW. Such a
cell can be easily integrated in a VLSI component at low
cost and does not require any external device.

2.3 The router

RCUBE (Rapid Reconfigurable Router) is a low
latency dynamic router (150ns without contention) for
transputing and networking applications. Designed with
an internal clock of 80 MHz, it includes 8 bi-directional
high speed links, 8 independent programmable routing
tables (one routing table per input link), and one 8x8 non
blocking crossbar switch which enables the routing of a
packet from any input link to any output link. The
architecture of the router is fully parallel and the transfer
of a packet between one pair of links does not affect the

data rate nor the latency of any other packet flowing
through another pair of links.

It implements a wormhole flow control to reduce
latency, prefix and interval routing schemes, and provides
efficient supports for adaptativity.

RCUBE can route packets of any length. A packet is
composed of a header which includes the destination
address in the network, followed by a sequence of
characters which compose the payload of the packet and
ended by an end of packet character (figure 3). RCUBE
uses a basic packet format to simplify the implementation
of application specific protocols.

Figure 3 : IEEE 1355 Packet Format

The flow control uses a credit mechanism : a router
sends data to its neighbor if and only if it received the
necessary emission credit corresponding to a flit (32 bytes
of data). This technique introduces 3% penalty on the
bandwidth but in return guaranties zero-loss
transmissions.

Based on CMOS serializing/de-serializing cells, it
delivers a global throughput of 1 Gigabit/s per link per
direction, achieving a peak global throughput of 640
MByte/s.

The RCUBE chip contains 500K transistors and has
been fabricated by SGS-THOMSON in 0.5µm, 3.3 V
technology.

2.4 The network controller

Each processor node is connected to an RCUBE router
using a dedicated PCI to HSL interface named PCI-DDC.
The chip implements the Direct Deposit State Less
Receiver Protocol (DDSLRP) [4], developed at LIP6 to
reduce the processor overhead. Classical data transfer
protocols usually require several copies of data in
intermediate buffers before and after transmission through
the network.

PCI-DDC has been designed to act as a master on the
PCI bus so that it can access directly the host memory. In
order to enhance performance, PCI-DDC implements a
"remote write" primitive. This can be seen as a DMA
request where PCI-DCC directly fetches data from the
host memory and writes data directly into the remote
memory. This is a "Direct Deposit" protocol.
Furthermore, the sender processor defines the physical
address where it wants the data to be written into the
remote memory; this is a "State Less Receiver" protocol.

DC balance

Start bit
Parity
Data

Stop bit

1 001110100110001

12 bit code of the character

Packet

Time

EP HeaderPayload

Page descriptors of a message are pushed by software
into the LPE, a specific list located in host memory. This
list contains the descriptors of pages to be emitted (local
and remote page address, length, destination node, etc…).
The emitting PCI-DDC reads the message descriptor
through DMA accesses on the PCI-bus. Then, it starts
data transmission, using again DMA accesses to the host
memory relieving thus the processor from data
transmission.

The physical remote address is transmitted with every
packet. At the receiver end, as soon as PCI-DDC receives
a packet, it starts writing incoming data at the
corresponding memory location.

When the last page is written, the receiving PCI-DDC
can notify its host processor, either with an interrupt
signal, and/or by writing in a specific table located in the
memory of the destination node.

The PCI-DDC chip is 32-bit 33MHz PCI-compliant
interface which can operate at up to 120 MHz with an
HSL port. The chip contains 200K transistors an has been
fabricated by ALCATEL/MIETEC in a 0.5µm, 3.3 V
technology.

3. THE MPC SOFTWARE

From the software point of view, MPC runs a standard
Unix-based operating system on top of which is added a
set of protocols to drive efficiently the FastHSL board.
The MPC software is build on top of Linux or FreeBSD-
3.x operating systems.

The software part of MPC consists of 2 major layers :
PUT, SLR. A zero-copy strategy is implemented in the
layers to take advantage of the performance offered by the
Direct Deposit protocol implemented in PCI-DDC.

3.1 The PUT layer

PUT is the lowest level software layer. It offers basic
kernel communication services using the remote-write
primitive of PCI-DDC. This layer provides a kernel API
that writes page descriptors into the list of page
descriptors to be sent (LPE), and handles event signaling.

PUT is located inside the kernel. It offers services to
kernel protocols through function calls and to user space
processes through system calls. To let multiple users call
PUT simultaneously, and to support fast signal
processing, PUT gives users disjoint sets of Message
Identifiers (later called MI). Each user must associate its
page descriptors with one MI, and PUT inserts it into the
LPE. Thus, when a message is received by a node, the
hardware inserts the MI associated to the data that has just
been received in a table that PUT can access : the LMI
(List of Message Identifiers).

Event signaling is implemented to notify message
transmission and reception. It can be done within a
polling loop or through hardware interrupts. Each PUT
user must indicate a callback function just after the
attribution of a set of MI. Signal processing is performed
by calling this function with the MI associated to the
received message as a parameter.

When the user requests an event-driven reception, an
interrupt handler within PUT is called when data is
received. PUT activates a callback function for each new
LMI entry. When interrupts are disabled, the user on the
reception node polls the LMI to check the arrival of new
messages. Here again, PUT calls the callback function
associated to the MI.

Latency measures for a short message containing 4
bytes is only 4 µs on a Pentium II 350MHz. It is
composed of 1.9 µs PUT latency, 1.7 µs hardware latency
and less than 0.4 µs for the signaling (polling). Figure 4
details the throughput measured for the PUT API.

0

100

200

300

400

500

600

1 10 100 1000 10000 100000

PC Pentium II 350 Mhz
Chipset 440BX

PC Pentium II 350 Mhz
Chipset 440BX

Page size (bytes)

T
hr

ou
gh

pu
t (

M
by

te
/s

))

Figure 4 : PUT Latency measures

3.2 The SRL layer

On top of PUT is implemented SLR (State Less
Receiver) communication layer. This layer offers higher
level communication services such as zero-copy virtual
channels, but it is only available on top of FreeBSD.

Moreover, the network is seen by users as a set of
virtual channels, multiplexed by this layer. Users indicate
the local memory address of the data to be
transferred/received and the associated virtual channel on
which data will be transmitted or received. Unlike the
PUT user, the SLR user does not need to know the data
location in the remote memory. The only necessary
information is the channel number on which data is to be
received or transmitted.

Virtual to physical address translation is taken in
charge by SLR, including the case of discontinuous
physical memory addresses. Address translation is fast

since SRL/V reads the Pentium MMU tables. Only two
memory reads are necessary to perform the translation
that has to be done for each 4Kbytes page.

SLR layers allows a throughput of up to 490Mbit/s of
useful data, nearly like PUT. However, SLR introduces an
additional latency of about 40 µs, essentially due to
virtual channel management.

4. MESSAGE PASSING
IMPLEMENTATION & RESULTS

On top of the SLR layer, an implementation of PVM
has been realized. However, the performances obtained
were poor because of the latency introduced by SLR and
the multiple memory copies generated by PVM making
useless the efforts spent in implementing a zero-copy
policy in the SLR layer.

Consequently, efforts have been concentrated on an
MPI implementation on top of the PUT layer. An
advantage of this choice is that MPI implementation is
available on both FreeBSD and Linux systems.

MPICH, developed by the Argonne National
Laboratory, has been chosen for this implementation
because it combines portability with performance due to
the “CH” interface [5]. Indeed, it is designed to ease the
porting on new platforms such as the HSL network [6].

However, MPICH requires that the interface layer
supplies queuing facilities and flow control not available
in the current PUT layer. The RESAM Laboratory (Lyon,
France) ported MPI on BIP [7],[8]. They implemented
their network specific layer at a non-documented interface
level, called the “Protocol interface”, because it allowed
the specification of custom protocols for different kinds of
MPI messages. Such an approach is also adopted for the
implementation of MPICH on PUT (MPI-MPC). Figure 5
shows the MPICH architecture considered.

There are two kinds of messages at the “Ch_MPC”
level : control messages, and large data messages.

The following sections present the strategy used for
implementing MPI-MPC. On its initial implementation,
for the sake of simplicity and performance, each MPI
node runs only one task.

4.1 Control messages

Control messages are used to transfer rapidly on the
network some control information or limited size user-
data. The maximum size of a control message is set to 180

bytes in the current MPI-MPC implementation. There are
mainly four kinds of control messages :

− Small user-data message (encapsulated in a control
message);

− Request of transmission of a large data message;
− Acknowledgement, reply to a received request;
− Credits, used for flow control.

Figure 5 : MPICH architecture

The specifications of PUT create two main problems.
Firstly, data transmitted by PUT must be physically
located in a contiguous memory space. Secondly, the
sender has to know where to write data in the remote
physical memory. The MPC software allocates at boot
time an array of contiguous physical memory on all MPC
nodes. When an MPI task starts, it gets a slot of this
memory for control messages and maps it in virtual
process memory. Each node gets the physical address of
all remote slots through the control network (all nodes are
connected through an Ethernet network for configuration).

As shown in figure 6, a slot is composed of a set of
sub-slots used for emitting or receiving control messages.
The number of sub-slots is determined by the number of
nodes declared in the MPC machine (3 nodes in the
figure). Each sub-slot is associated to a node identifier.

For instance, sub-slots 2 and 3 of node 1 are used to
receive messages from nodes 2 and 3 respectively. Sub-
slot 1 of node 1 is used by the local task for emission
purposes. Moreover, each sub-slot actually consists of N
buffers of 180 bytes (N = 4 in the example).

Node 1 Node 3

node 1

node 2

node 3

node 1

node 2

node 3

180 bytes

Reception sub-
slots

id 0

Emission sub-
slots

id 3id 2id 1

id 8 id 9 id10 id11

buffer

Hsl
Network

Figure 6 : Memory slot structure

On the emission side, to send a message, it is
necessary to know the start address in the remote sub-slot.
This can be determined thanks to the start address of the
remote slot, the emitting node identifier, and the number
of messages already sent.

On the receiver side, when an incoming message is
detected, the only information available is the message
identifier (MI) delivered by PUT. The problem is to
determine not only the sub-slot holding the message, but
also the buffer within the sub-slot. This last is identified
using the MI in which the sender has included the buffer
identifier.

4.2 Large data messages

Large data messages are used to transfer messages
larger than the maximum size of a control message (180
bytes) or for MPI synchronous sends.

Large data messages cannot get into statically
allocated buffers. Therefore, it is required that a receiver
sends a message to the sender when the receiver is ready
to receive. This implies either a rendez-vous or an eager
protocol using control messages to get the physical
address on the receiver side.

The problem is that the sender/receiver supplies a
virtual process address and the corresponding buffer is not
necessarily a contiguous physical memory array.
Therefore, address translation is performed during the
Send/Receive which requires locking data into memory.

4.3 Preliminary results

This section presents the preliminary performance
results obtained for the MPI implementation on the MPC
parallel computer compared to the MPI implementation
on BIP on a Myrinet network.

Although the current MPC-LIP6 parallel computer is
composed of 4 Bi-Pentium PII-350 nodes running under
FreeBSD3.4, measurements have been realized using the
Linux MPC platform consisting of 2 standard PCs P166 to
enable the comparison with MPI-BIP. The BIP/Myrinet
platform consists of 2 PCs P200 also running Linux.

Both benches run the same application which is a
Ping-Pong using the MPI_send and MPI_Receive
primitives. Time measurements use the internal Pentium
clock counter (RDTSC).

For latency measurements, message size varies from 1
to 128 bytes (by a step of power of 2). Figure 7 presents
the latencies obtained. The latency observed on MPI-
MPC is of 26 µs compared to the 22 µs on MPI-BIP.

0

5

10

15

20

25

30

35

40

1 2 4 8 16 32 64 128

Size (bytes)

L
at

en
cy

 (
u

s)

MPI-BIP / P200 / Linux

MPI-MPC / P166 / Linux

Figure 7 : MPI-MPC and MPI-BIP latency
comparison

Regarding the throughput, results are presented in
figure 8. The throughput of MPI-MPC is about 450Mbit/s.
An inflection point is observed for messages of 128 bytes
in MPC results. This corresponds to messages longer than

128 bytes for which user data cannot be encapsulated in a
control message. The same inflection point can be
observed for MPI-BIP but for messages longer than 512
bytes; this last being the maximum size of control
messages.

0

50

100

150

200

250

300

350

400

450

1 4 16 64 256 1024 4096 16384 65536
Size (bytes)

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

MPI-BIP / P200 / Linux

MPI-MPC / P166 / Linux

Figure 8 : MPI-MPC and MPI-BIP throughput
comparison

5. CONCLUSIONS & PERSPECTIVES

In this paper , MPC, a high performance and low cost
parallel computer has been presented. MPC is a PC-
cluster built around the high speed HSL network using
Gbit/s HSL links. FastHSL, a specific board to be plugged
on each PC has been designed to connect each processing
node to the HSL network. This board holds two ASICs :
RCUBE which implements the routing function on the
HSL network and PCIDDC the network controller. This
last implements a low-level protocol (DDSLR) using the
“remote-write” primitive which performs data transfers
from the node memory to the HSL network (and vice
versa) relieving thus the processor from communications.

From the software point of view, basically two zero-
copy layers taking advantage of the parallel capability of
the hardware have been presented. Results show that
latency varies from 5 to 40µs and throughput of
490Mbits/s has been obtained.

The first generation of MPC is now available in 5
laboratories. The MPC computer of the LIP6 contains 8
processors and will soon be extended to 16. The software
part of MPC is distributed as a freeware and is
downloadable from the MPC web site. FastHSL boards as
well as their two specific components, i.e., PCI-DDC and
RCUBE are now distributed by Tachys, a start-up of
UPMC. RCUBE is now used for Gigabit and ATM
switching fabrics. Such an evolution guarantees both the
availability and the low cost of the MPC components and
goes towards the cost reduction of parallel computers.

An MPI implementation on MPC has also been
presented in this paper. Measures show a latency of 26µs
and a useful throughput of 450Mbits/s. These encouraging
results are similar to the MPI-BIP results, even though the
MPI-MPC platform processor was less powerful. The
implementation is still under evaluation, and significant
improvements can be expected in the near future.
Modifications of the PUT API include a drastic reduction
of system calls.

Regarding the hardware, two major research directions
are currently investigated. The first concerns the
development of a new 2.5Gbits/s serial links. The second
concerns the development of a programmable network
controller that will replace PCI-DDC on the second
generation FastHSL board. This will allow the evaluation
of new protocols to improve the overall performance of
the MPC parallel computer.

7. REFERENCES

[1] IEEE 1355, IEEE1355 Standard for Heterogeneous
Interconnect (HIC) Low Cost Low Latency Scalable
Serial Interconnect for Parallel System Construction,
(IEEE Standards Department, Aug. 1994).

[2] F. Wajsbürt, J.L. Desbarbieux, A. Greiner, C.
Spasevski, S. Penain, An Integrated PCI component for
IEEE 1355 Networks, In Proc. of EMMSEC’97, Florence,
Italy, 1997.

[3] V. Reibaldi, Conception et réalisation d’un router de
paquets à hautes performances, PhD thesis of University
Pierre et Marie Curie, France, 1997.

[4] F. Potter, Conception et réalisation d’un réseau
d’interconnexion à faible latence et haut débit pour
machines multiprocesseurs, PhD thesis of University
Pierre et Marie Curie, France, 1996.

[5] W. Gropp, E. Lusk, MPICH working note : Creating a
new MPICH device using the channel interface, technical
report, (Argonne National Laboratory, Chicago, 1995).

[6] W. Gropp, E. Lusk, N. Doss, A. Skjellum, A high
performance, Portable Implementation of the MPI
Message Passing Interface Standard, In Parallel
Computing, 22(6), 1996, 789-828.

[7] L. Prylli, B. Tourancheau, R. Westrelin, Modeling of a
High Speed Network to maximize throughput
performance : the experience of BIP over Myrinet, In
Proc. of Parallel and Distributed Processing Techniques
and Applications, Vol. 2, Las Vegas, USA, 1998, 341-49.

[8] L. Prylli, B. Tourancheau, R. Westrelin, The design
for a high performance MPI implementation on the
Myrinet network, In EURO PVM/MPI’99, vol 1697 in
LNCS, Barcelona, Spain, 1999, 223-230.

