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Abstract Seismic hazard assessment in active fault zones can benefit of strain rate measurements
derived from geodetic data. Producing a continuous strain rate map from discrete data is an inverse
problem traditionally tackled with standard interpolation schemes. Most algorithms require user-defined
regression parameters that determine the smoothness of the recovered velocity field and the amplitude of
its spatial derivatives. This may lead to biases in the strain rates estimation which could eventually impact
studies on earthquake hazard. Here we propose a transdimensional Bayesian method to estimate surface
strain rates from Global Navigation Satellite System (GNSS) velocities. We parameterize the velocity field
with a variable number of Delaunay triangles and use a reversible-jump Monte-Carlo Markov Chain
algorithm to sample the probability distribution of surface velocities and spatial derivatives. The solution
is a complete probability distribution function for each component of the strain rate field. We conduct
synthetic tests and compare our approach to a standard b-spline interpolation scheme. Our method

is more resilient to data errors and uneven data distribution, while providing uncertainties associated
with recovered velocities and strain rates. We apply our method to the Southwestern United States, an
extensively studied and monitored area and infer probabilistic strain rates along the main fault systems,
including the San Andreas one, from the inversion of interseismic GNSS velocities. Our approach provides
a full description of the strain rate tensor for zones where strain rates are highly contrasted, with no

need to manually tune user-defined parameters. We recover sharp velocity gradients, without systematic
artifacts.

Plain Language Summary Mapping the amplitude, type and direction of crustal
deformation is of great help to detect active faults and ultimately estimate seismic hazard. However,
systematic biases remain in the standard methods used to produce continuous maps of the strain rate
components from discrete observations such as Global Navigation Satellite System (GNSS) long-term
velocities. It is notably difficult to properly assert the uncertainties on the results. We propose a new
method based on Bayesian inference to get the full probability distribution on the strain rate components.
Proper uncertainties can therefore be attributed to these values that can be included correctly in seismic
hazard assessment studies. We perform a synthetic test to compare this Bayesian method to a bicubic
spline interpolation. We apply successfully this method to the California highly straining San Andreas
system and neighboring Basin and Range.

1. Introduction
1.1. Surface Strain, Fault Behavior, and Space Geodesy

Imaging and quantifying the present-day lithospheric deformation is crucial to understanding how and
where long-term tectonic loading is accommodated. Plate tectonics theory assumes that the relative motion
of rigid lithospheric blocks is accommodated on a limited set of localized fault zones, where the lithosphere
either deforms elastically during the interseismic period of the seismic cycle, or in a brittle way during the
coseismic rupture (Isacks et al., 1968; Le Pichon, 1968; Morgan, 1968). In a simple elastic framework, the
surface deformation generated by slip on a dislocation buried in an elastic half-space can be computed (e.g.,
Okada, 1985), as well as the surface deformation produced by full or partial locking of the buried fault using
the “backslip” hypothesis (Savage, 1983). Analyzing the spatial patterns of surface deformation and their
temporal variations around active faults can therefore help constraining the behavior of fault systems at
each stage of the seismic cycle.
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With the advent of space geodesy in the 1990s, and in particular the growing development of Global Naviga-
tion Satellite System (GNSS) networks in active fault zones, precise measurements of surface displacements
made it possible to detect and model various processes of tectonic deformation, thus revolutionizing our
understanding of fault seismic cycle (e.g., Birgmann & Thatcher, 2013). The last decades have seen the
number of geodetic observations of large earthquakes and interseismic strain along major faults increase
significantly (e.g., Blewitt et al., 2018). Combined with an improved knowledge of the past seismic history
of faults, such observations have highlighted a spatial correlation between portions of the seismogenic zone
locked during the interseismic period and the coseismic rupture zones, while portions of faults aseismically
slipping during the interseismic phase appeared as potential nucleation zones or barriers to earthquakes
(e.g., Chlieh et al., 2008; Métois et al., 2016; Simons et al., 2011). This paved the way to provide plausible
scenarios for future earthquakes based on the monitoring of interseismic surface strain rates (e.g., Avou-
ac, 2015; Beauval et al., 2018; Kaneko et al., 2010).

If most of the deformation due to relative block motions is indeed taken up on well localized and mapped
plate boundaries, the lithosphere can also deform in a more diffuse way on wider zones, in particular in
and around collisional belts (e.g., Thatcher, 2009). Such diffuse deformation may be accommodated elasti-
cally by series of multiple active faults, or through other nonelastic processes within the lithosphere (Cop-
ley, 2008; D'Agostino et al., 2014; England & Molnar, 1997). In combination with geological, tectonic, and
seismological data, geodetic measurements of surface deformation can then help to refine the degree of
localization of the deformation over wide intracontinental areas, to identify active structures and constrain
the style of the deformation, as well as the underlying mechanical processes.

Modern geodetic techniques now offer measurements of surface velocities with accuracy of the order of
1 mm/yr or below for the interseismic period. They each have their own contributions and specificities con-
cerning the components of the ground motion that they capture, their resolution and their uncertainties,
and appear to be very complementary. While horizontal and vertical motion can be measured by GNSS and
optical image correlation, Interferometric Synthetic Aperture Radar (InSAR) only provide the projection
of ground displacements in the line-of-sight (LOS) of the satellite. GNSS measurements remain spatially
sparse, at discrete stations, but benefit from a temporal sampling up to ~1 Hz. Space geodesy based on op-
tical and radar images, on the contrary, provide data at all satellite image pixels, with a temporal resolution
dependent on the return time of the satellites. Finally, depending on the technique, uncertainties can be
spatially and temporally correlated or not. Taking advantage of the large amount and diversity of geodetic
data available today to constrain spatio-temporal variations of the strain rate field is a challenge for the
community involved in seismic hazard studies.

1.2. The Strain Rate Tensor: Formulation, Assumptions, and Analysis

The variations of the strain rate field can be explored through the analysis of the velocity gradient VV = 9,V
.1 . . s .
its symmetrical part, and the strain rate tensor ¢; = E(@Vj +0,V;). Spotting regions with high strain rates

may help identify active faults prone to high seismic hazard (e.g., Elliott et al., 2016). To this end, maps
of the second invariant I, of € are built either at the local to regional scale (e.g., D'’Agostino, 2014; Metois
et al., 2015), or at the continental to global scale (e.g., Kreemer et al., 2014). Following Kreemer et al. (2003),
Pérouse et al. (2012), D'Agostino (2014), and Metois et al. (2015), we define the second invariant of the
horizontal strain rate tensor as:

Note that most GNSS studies only consider the horizontal 2D tensor € (D'Agostino, 2014; Ward, 1998) or a
partially 3D tensor (Mazzotti et al., 2011; Shen et al., 2015) for two main reasons: (a) the vertical component
of the GNSS velocity is often associated with large uncertainties (Bennett & Hreinsdéttir, 2007), and (b) we
have no access to the vertical derivative of the velocity components (8,V5, 0,V}, 0;V). Joint GNSS-InSAR
studies also remain limited to a 2D strain tensor analysis (e.g., Weiss et al., 2020). In this study, we only
consider the horizontal velocity field and corresponding 2D strain rate tensor, while discussing in Section 6
the possibility to include V, in future analysis.
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Providing continuous maps of the different components or combinations of components of the hori-
zontal strain rate tensor can help to understand the tectonic regime and style of deformation of a given
area (e.g., Chousianitis et al., 2015; Kreemer et al., 2018; Metois et al., 2015; Pérouse et al., 2012). For
example, the second invariant analysis gives clues on the variations of strain amount and localization
across faults. The divergence of the velocity field d = tr(¢) highlights areas experiencing dilation or
compression (a positive divergence stands for dilation while negative divergence is compression), while
the horizontal vorticity defined as rotV = 0,V, — 0,V allows the identification of nearly rigid blocks.
The principal directions of the strain rate tensor may also be compared to directions of stress when
the lithosphere is considered fully elastic. They are therefore often plotted against focal mechanisms
or long-term stress orientations related to the geological setting (e.g., England et al., 2016; Mathey
et al., 2020).

In the past decades, the geodetically derived strain rate tensor has also been used to derive the equiv-
alent seismic energy stored as elastic deformation that could be released during earthquakes. In par-
ticular, Ward (1998) proposes to use the formula from Kostrov (1974) to calculate geodetic moment
rates M,f from ¢, in the case of a uniaxial strain. For a region of given area A, its geodetic moment rate
is expressed as:

M} = 2uH A, @

where u is the rigidity modulus, H; the seismogenic thickness, and ¢,,,, is the largest eigenvalue of the strain

max
rate tensor €. Comparing M¢ to the released seismic energy based on historical and instrumental seismic
catalogs provides information on the energy that remains to be released either seismically or aseismically

(Angelica et al., 2013; D'Agostino, 2014; Mazzotti et al., 2011; Pancha et al., 2006; Ward, 1998).

1.3. Aim of the Study

As shown above, mapping continuous surface velocities together with their spatial derivatives and as-
sociated uncertainties can benefit a broad community. However, two main methodological limitations
remain:

1. As in situ geodetic data provide spatially discrete and unevenly distributed information on the surface
displacement rate, these data need to be interpolated in order to recover a continuous strain rate map.
This also applies to InSAR data in case of low coherence. Such computing formally constitutes an inverse
problem with a highly nonunique solution and a strong trade-off between model complexity and model
constraints, that is, between the level of spatial resolution and the level of errors in the solution (Bodin,
Sambridge, et al., 2012).

2. Uncertainties on the interpolated velocity field and their propagation onto the strain rate tensor compo-
nents are often poorly estimated. These uncertainties are nonetheless required and crucial if we want ge-
odetic estimates of the strain rates to integrate probabilistic seismic hazard assessment schemes (Beauval
et al., 2018; Gerstenberger et al., 2020).

In this study, we propose to tackle these issues by applying a transdimensional Bayesian approach (Bodin,
Salmon, et al., 2012) to the strain rate reconstruction problem. We first describe the different approaches
used in the community to produce strain rate maps. We then present our inversion method and illustrate its
potential benefits with synthetic tests. Because the San Andreas fault system has been extensively studied
in the past and is particularly well instrumented, we build our synthetic tests from its simplified geometry
and kinematics. We then propose a first application to real observations of a GNSS velocity field spanning
the interseismic deformation across this fault system and the Southwestern United States. Finally, we dis-
cuss the main outcomes, advantages, and limitations of the proposed method. We show that we are able to
provide a full probabilistic description of the strain rate tensor for zones where strain rates are highly con-
trasted, with no need to introduce user-defined parameters. Our method recovers sharp velocity gradients,
therefore localizing strain, and distinguishing creeping from locked fault segments, without systematic
biases.

PAGANI ET AL.

3 of 25



. Yeldd
ra\* 1 V)
ADVANCING EARTH
AND SPACE SCIENCE

Journal of Geophysical Research: Solid Earth 10.1029/2021JB021905

2. Inverting for the Strain Rate Tensor: State of the Art

Since the first geodetic observations of ground movements by triangulation or leveling (e.g., Frank, 1966;
Savage & Burford, 1970), several methods have been developed to infer surface strain rates from velocity
fields. Today, they mainly use GNSS data (e.g., Kreemer et al., 2018; Masson et al., 2019; Shen et al., 1996;
Vergnolle et al., 2007) and start to incorporate space geodetic data from InSAR and optical imagery (e.g.,
Barnhart et al., 2020; H. Wang et al., 2019). Some of these methods rely on geophysical models, such as elas-
tic or visco-elastic block models with predefined active faults (e.g., McCaffrey et al., 2013; Parsons, 2006), to
calculate surface velocity and strain rates. Others aim at deriving the strain rate tensor from surface obser-
vations alone, without any underlying physical model.

Among the “model-free” methods, two main approaches coexist in the literature. The most standard ap-
proach requires to first spatially interpolate local displacement rates measured at GNSS stations to build
a continuous velocity field. The strain rate tensor is then simply obtained by taking the gradient of the
interpolated velocity field. The interpolation (or 2D regression) is often conducted by fitting a spline func-
tion to the data (Beavan & Haines, 2001; Kreemer et al., 2003; Metois et al., 2015). The level of smoothing
to interpolate the velocity field is usually arbitrarily defined by the user. For instance, in the SPARSE code
developed in Beavan and Haines (2001), it is controlled by the interpolation grid spacing and the variance
attributed to each grid cell (it can therefore be spatially variable). In the adjusted bi-cubic spline-in-tension
method (referred to as the B-spline method in the following), a tension parameter must be chosen as well
(Gan et al., 2007; Hackl et al., 2009; Smith & Wessel, 1990; Wessel & Becker, 2008; Wessel & Bercovici, 1998).
This tension parameter is unique for the whole study area. In the case of unevenly spaced geodetic data,
regions with the densest sampling may thus be over-smoothed and information may be lost. Other inter-
polation techniques have been proposed to limit this weakness. For instance, the velocity for each cell of
the interpolation grid can be computed as the weighted average of velocities at neighboring GPS stations
(Mazzotti et al., 2011). However, here again, the weighting function defining the smoothness of the solu-
tion needs to be defined by the user. The level of smoothness of the velocity field (i.e., the amplitude of its
derivatives) directly determines the amplitude of the strain rate tensor. An arbitrarily fixed smoothing level
is therefore a serious limitation to proper strain rate assessment. Finally, B-spline methods are based on a
regularized optimization scheme, and thus do not offer any constraint on the uncertainties regarding the
velocity field and the strain rate tensor (Aster et al., 2018), which is problematic in the context of hazard
assessment.

In a second type of approach, geodetic strain rates are directly inverted from the GNSS data without the
need for a velocity interpolation scheme (Shen et al., 1996; Spakman & Nyst, 2002; Ward, 1998). At each
point on a regular geographical grid, assuming a constant strain rate field, a system of linear equations can
relate the displacement and deformation at that point and GPS velocities at neighboring stations. The ob-
served velocities at GPS stations can thus be inverted through a standard least-square scheme to recover the
unknown deformation at any given point. This method offers more robust strain rate estimates as such rates
are directly computed as weighted averages. It provides also a first-order estimate on strain uncertainties.
Many studies have used such least-square inversion schemes for studying surface deformation in specific
areas, as for instance Sagiya et al. (2000) in Japan, Chousianitis et al. (2015) in Greece, or Palano et al. (2018)
in Iran. However, the parameter controlling the weighting decay with distance in the least-square inversion
remains again arbitrarily chosen, and acts as a smoothing factor that affects the resulting solution. Efforts
have been made to optimize the level of smoothing and to account for spatial variability of data density
(Shen et al., 2007, 2015). In particular, Kreemer et al. (2018) propose an algorithm in which, for any given
evaluation point, multiple least-square inversions from different stations triplets are conducted. The median
strain rates over the ensemble of inverted ones are then provided at that point.

However, the standard techniques presented above remain sensitive to the GNSS network geometry (with
unevenly spaced data in most cases), data outliers and ad hoc user parameters. This is now acknowledged
as a major issue in the community, potentially leading to systematic artifacts that could be mis-interpreted
as tectonic signals (e.g., Baxter et al., 2011; Hackl et al., 2009; Titus et al., 2011). In the Southwestern United
States for instance, where seismic hazard is high, a wide range of methods have been applied in the last
decades to recover the strain rate tensor (e.g., Hackl et al., 2009; Kreemer et al., 2012), with results that
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may differ significantly (Sandwell et al., 2010). The remaining limitations in these methods are therefore
preventing further integration of geodetic measurements in seismic assessment methods.

In an attempt to overcome such limitations, we propose a method based on Bayesian inference to invert dis-
crete GNSS velocities for the continuous 2D surface displacement field and the associated velocity gradients
and strain rate tensor. We follow from the work of Bodin, Salmon, et al. (2012) who proposed a transdimen-
sional Bayesian surface reconstruction algorithm to estimate the Moho topography beneath Australia from
adiscrete set of local observations. In this approach, the reconstructed surface is parameterized with a mesh
that self-adapts to the level of information in the data. This proves to be well suited for very heterogeneous
data (spatially or in terms of data type and noise level). Choblet et al. (2014) used the same approach to
reconstruct probabilistic maps of relative variations of coastal sea level from tide gauge records. The ap-
proach was also used by Husson et al. (2018) to reconstruct maps of vertical displacement rates from GPS
measurements, and by Hawkins, Bodin, et al. (2019) and Hawkins, Husson, et al. (2019) to reconstruct maps
of seal level rise by combining vertical GPS velocities, satellite altimetry, and tide gauge measurements. In
this work, the reconstructed surface is defined by two parameters: the two components of the interseismic
horizontal velocities measured at GNSS stations. Details of the method are presented in Section 4.

3. Tectonic Context of the Southwestern United States and GNSS Velocity
Field

To test and illustrate the potential of our methodology, we need a data set that is heterogeneous in several
aspects: heterogeneous in data coverage, with a combination of densely monitored and poorly sampled ar-
eas, heterogeneous in data quality with variable uncertainties, and spatially heterogeneous in the expected
strain rate amplitude and style.

In all these regards, our study area, located in the Southwestern United States (31° to 43°N, 110° to 124°W,
see Figure 1) is a good test case. The plate boundary between the Pacific and North American plates accom-
modates ~5 cm/yr of relative right-lateral motion (Altamimi et al., 2017) partitioned over several active
structures. The most famous one is the San Andreas strike-slip fault system that takes up to 78% of the rela-
tive plate motion (Bennett et al., 2003; Freymueller et al., 1999), the remaining motion being accommodated
on a set of distributed active faults further inland. Eastward, the Sierra Nevada, and Central Valley behave
as a nearly rigid microplate that moves 11.4 mm/yr Northwestward relative to the stable North American
plate (Bennett et al., 2003; Pérouse & Wernicke, 2017). This microplate is bounded to the East by the Walk-
er Lane and East California Shear Zone where right-lateral shearing is dominant, with a small amount
of extension, and that hosted significant historical earthquakes (Bennett et al., 2003; Niemi et al., 2004;
Wesnousky et al., 2012). The Garlock fault zone, near which the recent Ridgecrest sequence (July 2019, Mw
max 7.1 [e.g., K. Wang & Biirgmann, 2020]) occurred, is a SW-NE left-lateral strike-slip structure perpen-
dicular to the San Andreas and East California Shear Zone (Peltzer et al., 2001). The large Basin and Range
province farther east extends up to the Wasatch mountain belt and is characterized by a series of normal
faults accommodating on the order of 3 mm/yr of the relative plate motion (e.g., Niemi et al., 2004). The
Wasatch fault zone, marking the boundary between the Basin and Range and the Colorado stable plateau,
is the easternmost active structure of the plate boundary zone and is extending at low rates (1-2 mm/yr)
that may allow for Mw 7 earthquakes with large recurrence time (Machette et al., 1991; Niemi et al., 2004;
Pérouse & Wernicke, 2017).

This complex plate boundary area is one of the best studied fault zones on Earth and geodetic measurements
have been conducted there since 1923 (date of the first leveling studies in the Parkfield area) and more
extensively since the 1980s (e.g., Murray & Langbein, 2006; Snay et al., 1983). Since then, modern GNSS
networks have been installed to monitor the ongoing surface deformation, for instance in the framework of
the PBO (Herring et al., 2016), NEARNET/MAGNET (Blewitt et al., 2009), or SCIGN (Hudnut et al., 2001)
initiatives. The observed deformation is due to a wide variety of physical phenomena: eulerian plate or mi-
croplate motions (Altamimi et al., 2016), interseismic loading on active faults (e.g., McCaffrey, 2005; Peltzer
et al., 2001), coseismic and postseismic deformation due to relatively moderate but destructive earthquakes
(e.g., Milliner & Donnellan, 2020; Murray & Langbein, 2006; Shen et al., 1994), volcanic inflation and de-
flation of the Long Valley caldera (e.g., Hammond et al., 2019; Marshall et al., 1997), and hydrological de-
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Figure 1. Horizontal GPS velocities from the Median Interannual Difference Adjusted for Skewness (MIDAS) data set
in IGS14 reference frame in the Southwestern United States (this study area). Ellipses represent the uncertainties at 95%
level. Black lines: active faults (Quaternary Fault and Fold Database, 2019). Note that the density of Global Navigation
Satellite System stations is highly variable and higher near the San Andreas fault system. Key features of this plate
boundary zone are labeled: 1—Monarch Peek creeping section (Central section) of the main San Andreas fault, 2—
Salton Sea Lake zone, 3—Wasatch mountains fault zone, 4—Basin and Range province, 5—East California Shear Zone,
6—Walker Lane, 7—Long Valley Caldera, 8—Central Valley and Sierra Nevada.

pletion or infill of aquifers in particular in the Central Valley (Amos et al., 2014; Chaussard et al., 2017) or
elsewhere (Silverii et al., 2020).

To represent the current deformation in Southwestern United States, we choose here to use the Median Inter-
annual Difference Adjusted for Skewness (MIDAS) velocity field that compiles long-term velocities derived
from GNSS daily times-series. It is provided by the Nevada Geodetic Laboratory (Blewitt et al., 2016, 2018).
In our study area, the MIDAS data set, downloaded on February 2020 (see corresponding velocity file in Ta-
ble S1), provides velocities for 2,441 stations with at least 4 years of recording from different local networks
(PBO, MAGNET, SCIGN, see Figure 1). The velocities are calculated for the 1994-2020 time-span in the
1GS14 reference frame.

In the densest parts of the velocity field, in particular near the San Andreas fault or in the Long Valley
Caldera, baselines between stations are around 10 km (even shorter near some large city centers), while
they reach more than 250 km in the less densely instrumented areas within the Basin and Range (Figure 1).

The MIDAS algorithm computes velocities for each individual time series as the median of the linear trends
obtained between two dates separated by approximately 1 year (Blewitt et al., 2016). As a result, MIDAS
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estimated velocities should be less affected by seasonality than when using classical regressions, and give ro-
bust estimates for surface average velocities (Hammond et al., 2016), except where nonlinear deformation,
such as postseismic deformation or multi-annual hydrological loading, occurs. These types of deformation
must be present in our data. Several major earthquakes occurred during the time period considered in the
study area (notably the 1994 Northridge, 1999 Hector Mine, 2004 Parkfield, 2010 El Mayor-Cucapah, and
2019 Ridgecrest earthquakes). There is also evidence that multi-annual hydrological variation affects hori-
zontal motion to some extent (e.g., Kim et al., 2021). However, we assume that the data set mostly captures
the interseismic deformation in the area and we take into account the existence of nonlinear deformation
effects by increasing the uncertainties on the MIDAS velocities. We remove only four stations from our data
set, either because their velocities were computed on a too short time-span (lower than 1 year of continuous
recording) or because their velocities were larger than 150 mm/yr on at least one component. In our study
area, average uncertainties are of 0.31, 0.28, and 0.81 mm/yr on the East, North, and Up components, re-
spectively. The uncertainties estimated by the MIDAS algorithm may be considered slightly overestimated
compared to those obtained with usual techniques for long and clean time series (Mazzotti et al., 2020).
However, because we chose to use on purpose the raw MIDAS interseismic velocity field provided online,
without very restrictive quality criterion (see above), our data set may still include velocities that are not
fully consistent with the long-term interseismic trends (when calculated on a too short time period or in
cases of large data gaps for instance). To take into account this remaining heterogeneity in the data set, we
thus chose to increase the MIDAS uncertainties by 10%. In the Bayesian inversion carried out in this study,
we assume that errors affecting the velocities are Gaussian, uncorrelated between different stations and
independent on each horizontal component. This is a strong first-order hypothesis. Indeed, the structure
of noise on a single GPS station is usually considered to be composite, both white and flicker (Santama-
ria-Gémez et al., 2011; Williams et al., 2004), and spatially correlated noise has been identified on regional
to global scale (also called common-mode error, see Benoist et al., 2020; Dong et al., 2006; Wdowinski
et al., 1997). This hypothesis and its implications will be discussed further in Section 6.

To assess the behavior and the performances of our algorithm, we first create a realistic synthetic set of ve-
locity measurements that mimics the real MIDAS velocity field described above. We compute a theoretical
(target) velocity field, and sample it at each GNSS station used in MIDAS (see Section 5.1 for details on the
synthetic model used). We then add random Gaussian errors to each measurement with a variance as given
by MIDAS uncertainties. The resulting data set is inverted using our Bayesian algorithm and the results are
compared with those obtained with a bi-cubic spline-in-tension interpolation method. In a second step, we
apply the inversion scheme to the real MIDAS velocity field described above. Both data sets share the exact
same characteristics and can be considered as an ensemble of displacement rates measured at n GNSS sta-
tions that can be formally described by the vector:

dops = [V V),

.oy

Ve, V)]

where (V,,,V,.) define the observed ground velocities for the ith of our n GNSS stations used as an input.
Similarly, uncertainties associated with these observations are given by a vector

Oobs = |:(O-,\’| ’O-)'l ),

.oy

©4:7,,)]

4. Method: Inverting for the Geodetic Strain Rate
4.1. Parameterizing the Velocity Field

To parameterize the continuous horizontal velocity field at the surface, we use a set of nodes scattered on
the surface as represented in red in Figure 2. A horizontal velocity vector is assigned to each node. Note
that nodes are independent of the location of the GNSS stations: their number, position, and velocity value

PAGANI ET AL.

7 of 25



A7
ra\%“1%
ADVANCING EARTH
AND SPACE SCIENCE

Journal of Geophysical Research: Solid Earth

10.1029/2021JB021905

I | Horizontal velocity () GNSS stations * Nodes
(on ’ Vy ’ Xo ’
O
O
o

ij, Nyjz

Figure 2. Example of surface meshing using Delaunay triangulation.
Each node (in red) is assigned an horizontal velocity and the full

velocity field (green gradient) can be obtained using a first-order linear
interpolation between the vertices on each triangle. Vertices can be added,
suppressed, or displaced during the algorithm, and their values can be
modified. They are distinct from fixed Global Navigation Satellite System
stations (in purple) where data are available.

4.2. Bayesian Inference

are unknown parameters to be inverted for. They can be freely modified
during the inversion. This surface parametrization is given by the vector:

m=[k (N,.N,.x.)

(N Ny o030 |

where k is the number of nodes, and (ij ,N v XY ;) define the horizon-
tal velocities and position for the jth node of the parametrization.

A continuous planar surface can be constructed from the vector m. The
nodes are used to partition the plane into Delaunay triangles, so that no
node is inside the circumcircle of any triangle. The velocity field within
a triangle is then defined by a linear interpolation between the veloci-
ties assigned at each node defining the triangle. Within each triangle,
the velocity field is a linear function of space, and the gradient (which
is constant within the triangle) can be obtained from the node velocities
through an analytical expression.

Delaunay triangulation schemes have previously been used to compute
geodetic strain rates (Kreemer et al., 2018). In these techniques, the ver-
tices are usually fixed, for example at the location of GNSS stations (Cai
et al., 2008; Farolfi & Del Ventisette, 2017). In contrast, we propose here
an evolutive triangulation: the nodes' location and velocity are the un-
known of the inversion and will adapt to the level of information pro-
vided by the data. Higher concentration of nodes are mostly linked to
deformation gradients rather than GPS data location, as can be seen in
Figure S4.

Additional nodes are added at the four corners of the area of interest to
insure that every point in this area is within the convex hull of the Delau-
nay triangulation.

The solution m of our regression problem is clearly nonunique, and a Bayesian approach can be used to
represent the solution in probabilistic terms (Tarantola, 2005). In a Bayesian framework, the solution to the
inverse problem is the a posteriori probability density function (PDF), that is the probability of the model
parameters m given the observed data dops. It can be written through Baye's theorem:

_ p(m)p(d,, | m)

Id =
p(m ObS) p(dohs) (2)

where p(m) is the a priori probability distribution on the model (or prior), which represents our knowledge
about the model before observing the data. In this work, we assume minimal prior knowledge, and use a
uniform prior distribution within a reasonable range for each parameter. p(dops) is the evidence and can be
ignored here as it is constant and does not depend on m.

The term p(depsim) is the likelihood distribution. It represents the probability of observing the data given
the model and the distribution of data errors. Assuming that data errors are normally distributed with
standard deviations given by g, the likelihood can be related to a L, misfit function, and expressed as:
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Algorithm 1. rj-MCMC main loop

Start with an initial model described by a set of vertices m(N X ,N yi+Xio ¥;), obtained by randomly selecting a
subset of the data and adding a random perturbation on position and velocity to each node.
for i = 1, Ngympies do

1: Propose a new model m by randomly perturbing the current model. Choose one of the following
perturbation at random:

- Birth of a node on a random point of the surface.
- Death of a node.
- Change the horizontal velocity of a node.
- Displacement of a node.
2: Calculate the a posteriori probability of the perturbed model p(m’ldpsl)

m/
3: Randomly accept the new model with probability ¢(m’ | m) = f pm’ 1 dgy) where f(.) is a
p(m | dg,)
function defined in Bodin and Sambridge (2009).

4: If accepted, m<m’. Else, m<m.

5: Compute the velocity field S(m) predicted for the model, and keep it in the ensemble solution. For each
point of the map (i.e., on an underlying small grid as defined in Section 4.4), calculate the velocity field
at the point, its spatial derivatives, the strain rate tensor, and any quantity of interest (second invariant,
divergence, vorticity, ...). Store these values for the final distribution.

end for

2 2
(VXi B le_ (m)) (V"i B S)'i (m))
pldge | m) oc exp| — 2 > + > , 3)
i€[l,n] 20 20

xi Yi

where Sx,- (m) and Sy’, (m) stand for the components of the surface velocity predicted by the model m at the
position of data points [d,,.d,,]. These values are compared with the observed velocities V,, and V|, at the
same positions, the differences being weighted by the corresponding uncertainties on the velocities (0.0 y,).

4.3. Sampling Models From the Posterior Distribution

We use a Markov chain Monte-Carlo (McMC) scheme to generate a large ensemble of models which distri-
bution asymptotically converges to the a posteriori PDF. Here we use the reversible-jump McMC algorithm
(Green, 1995, 2003) which is a generalization of the Metropolis-Hasting algorithm (Hastings, 1970; Metrop-
olis et al., 1953) to the case where the number of parameters is variable.

This algorithm randomly explores the model space by generating a chain of models. The starting model is
obtained by randomly selecting a subset of the data, creating a node for each GNSS station selected this way,
and adding a perturbation to the node (in position and velocity). At each step, the current model is perturbed
to produce a new proposed model. Then, the a posteriori probability of the current and proposed model are
compared, and the new model is either accepted in the chain or rejected according to an acceptance rule
depending on the ratio of posterior values. A pseudocode for the algorithm is given in table Algorithm 1 be-
low. For a general description of McMC sampling, see Geyer (1992), Brooks et al. (2011), and Sambridge and
Mosegaard (2002). For specific applications to transdimensional geophysical problems where the number
of parameter is variable, see Bodin and Sambridge (2009), Bodin, Sambridge, et al. (2012), and Sambridge
et al. (2013).

As the number of iterations in the Markov chain increases, the values of sampled parameters (e.g., the
number of nodes) progressively converge toward a statistically stationary distribution which approximates
the posterior distribution.

PAGANI ET AL.

9 of 25



At . .
NI Journal of Geophysical Research: Solid Earth 10.1029/2021JB021905

ADVANCING EARTH
AND SPACE SCIENCE

4.4. Extracting Relevant Information From the Ensemble Solution

It is important to note that the solution to our problem is not a single Delaunay velocity model that mini-
mizes a misfit function. A model with zero misfit could be easily obtained by placing a Delaunay node at
each GNSS station. However, such a model would be strongly unrealistic, as it would fit data errors, and
depict a constant velocity gradient in each triangle, with sharp and discontinuous changes in strain rate at
the triangle edges.

Instead, the solution of a Bayesian inverse problem is rather the entire a posteriori probability distribution
(PDF), that is, an ensemble of velocity models with varying number of Delaunay cells. To appraise this dis-
tribution, we define an underlying grid (which can be as fine as needed for visualization), and store at each
pixel of the grid the full distribution of all parameters of interest, such as velocity components, spatial de-
rivatives, divergence, vorticity, I,, or any other combination of the strain tensor components. By combining
the information from several tens of thousands of models, we therefore obtain at each pixel of the map the
entire probability distribution on any desired parameter.

For visualization, we exhibit 2D maps of statistical indicators for the parameter of interest: the representa-
tion of the posterior PDF is, at each point of the map, the average, the median value or the mode of maxi-
mum probability from all sampled models on that point. As an example, the mean vorticity map obtained for
the synthetic test case presented in Section 5.1 is shown in Figure 3. In this way, a large number of models
with different Delaunay parametrizations are stacked together. In a single model, the vorticity is constant
over each triangle (top-left panel in Figure 3). But the continuous mean model contains features common to
the entire family of models and considerably more information than any single Delaunay model.

Finally, it is important to insure that the algorithm has reasonably converged. A great number of models
(typically between 10* and 10°) are required to obtain an accurate depiction of the complete a posteriori
probability distribution function. The influence of the number of models on the mean solution is shown in
Figure 3, where the map of mean vorticity value is shown for different numbers of McMC iterations.

5. Results
5.1. Synthetic Tests on an Ideal San Andreas Fault

In order to assess the efficiency of our algorithm, we build a synthetic velocity field that results from the
relative plate motion and interseismic loading on a simplified San Andreas fault. We use the TDEFNODE
code developed by McCaffrey (2005) and based on Okada (1985)'s equations, and assume full locking of the
fault (from 0 to 30 km depth) embedded in an elastic homogeneous half-space (Figures 4 and 5). The fault is
designed as vertical and is forced to be purely strike-slip. The Pacific plate motion relative to the fixed North
American plate is described by an ad hoc Euler pole (21.9°E, 14.2°N, 0.48/Myr), that generates an overall
5 cm/yr relative right-lateral motion.

We then extract the velocities at the locations of stations used in the MIDAS data set (see Section 3 and
Blewitt et al., 2016), and add random Gaussian errors to each component with a variance given by the MI-
DAS uncertainties. We invert this synthetic data set to recover a continuous velocity field, its divergence,
vorticity, and the second invariant I, of the strain rate tensor using two methods: our Bayesian algorithm
presented above, and a standard bi-cubic spline-in-tension inversion method (see Figures 4 and 5). Our
method could also be compared to other strain rate estimation schemes such as those proposed by Beavan
and Haines (2001), Shen et al. (2015), or Kreemer et al. (2018). A large-scale comparison such as the one
performed by Sandwell et al. (2010) is underway in France and will include this method in its results. In
order to assess the quality of the inversion, we use the L, distance between maps of second invariant for the
recovered model and those for the true synthetic model:

13 e
Distance = |— X (I — I1")? “
ni=l1
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Figure 3. Convergence of the mean vorticity map. Convergence tests are performed on the synthetic velocity field built
for our study area. Each panel shows the mean of the vorticity in the ensemble solution that is composed of either 1,
20, 200, or 6,000 models. As the number of sampled models increases (i.e., the number of steps in the random walk),
the relevant characteristics of the vorticity field begin to appear while the triangle-shaped areas due to the Delaunay
triangulation tend to fade away.

where ;" and 15" are the second invariant derived from the true synthetic model and the inverted velocity
field, respectively, and n is the number of pixels in the maps. We choose to define the distance on I, rather
than on the velocity components since inversion artifacts appear on the spatial derivatives of the velocity
(Baxter et al., 2011; Hackl et al., 2009; Titus et al., 2011). This distance indicates the ability of a method to
recover the original signal over the entire region for a given data distribution, though it does not reflect the
level of data fit (measured only at stations).

To perform the B-spline interpolation, we use a minimum curvature approach, where the interpolated sur-
face minimizes the level of data fit, while having continuous second derivatives and minimal total squared
curvature (Smith & Wessel, 1990). We use the GMT blockmean and surface functions (Wessel et al., 2019),
and calculate independently the velocity components Vi, and V., 0n each node of a predefined grid. In
this procedure, the smoothness of the solution is determined by two parameters arbitrarily chosen by the
user: the size of the grid and a tension parameter (see Smith & Wessel, 1990 for more details on the meth-
od). Those user-defined inputs are critical and should be carefully chosen. On Figures 4 and 5, the B-spline
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Figure 4. Synthetic tests for velocity field recovery on an idealized San Andreas fault. Black line: fault location. (a) The
amplitude of the synthetic horizontal velocity is color coded. Blue and green arrows stands for the synthetic velocity
data sampled at the position of the Global Navigation Satellite System stations from the real MIDAS velocity field,
perturbed by the addition of a random Gaussian error. (b) Average velocity field obtained with our Bayesian scheme.
Areas where the probability density function displays a standard deviation >3 mm/yr are masked. (c) Interpolated
velocity field inverted with B-spline standard procedure.

solution that minimizes the distance to the true model (Equation 4) is obtained by manually adjusting the
tension and grid parameters. Of course, in a real data case, this manual adjustment could not be done.

Figures 4 and 5 show the comparison of the mean of the posterior PDF obtained with our Bayesian scheme
and that obtained with the B-spline interpolation, for the velocity field, vorticity, divergence, and second
invariant. Overall, both inversion methods retrieve reasonably well the synthetic target with a fit to the
true I, model of 37.6 and 39.5 nstrain/yr for the average of our Bayesian solution and B-spline best model,
respectively. Though, major differences arise locally on spatial derivatives of the velocity field. The distribu-
tions for I, vorticity, and divergence obtained from B-spline inversion contain small wavelengths that are
well known interpolation artifacts, mainly due to network geometry and data outliers (Baxter et al., 2011).
Moreover, I, is systematically underestimated in the near field of the fault due to over-smoothing (by around
100 nstrain/yr), and the divergence map is particularly affected by small scale artifacts that may lead to
incorrect interpretations. On the contrary, the average maps resulting from the Bayesian inversion are free
from these small scale artifacts and recover well both the amplitude and spatial variations of deformation.

5.1.1. Noise Sensitivity

One of the main limitation of conventional approaches used to produce strain rate maps is their high sen-
sitivity to noise. As shown in Figure 5, the Bayesian inversion appears significantly more resilient to errors
than the B-spline method. The patchy aspect of the divergence map obtained from the B-spline interpola-
tion could be reduced by using a higher level of smoothing but any significant signal in the near field of the
fault would then be lost.

We test the influence of the level of noise added to the synthetic data set on both inversion techniques.
Random errors are kept Gaussian and uncorrelated between stations. We test different synthetic data sets,
progressively increasing their noise using a scaling factor varying between 0 and 3 on the errors given by
the MIDAS uncertainties, and following the generation process described in Section 5.1. Because results
from the B-spline interpolation highly depends on user-defined parameters, as mentioned above, we sys-
tematically test different smoothing values (i.e., grid steps) for each noise level with a constant tension. We
compare in Figure 6 the results obtained for the B-spline and Bayesian methods. For the Bayesian inversion,
we represent both the average and the median of the I, PDF.

As expected, the quality of both interpolations decreases with the level of noise. However, the Bayesian
scheme performs better that the B-spline inversion, whatever the smoothing factor (i.e., grid step) consid-
ered. Figure 6 also illustrates well the sensitivity of the B-spline interpolation to the smoothing parameter
(grid step): low smoothing produces data over-fitting and unstable results, whereas high smoothing causes
information loss. Our Bayesian inversion scheme avoids having to arbitrarily choose the level of complexity
in the reconstructed model (Bodin & Sambridge, 2009).
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Figure 5. Strain rate tensor recovery from our synthetic test on an idealized San Andreas fault. Maps of the second
invariant (left), vorticity (center), and divergence (right, compression is negative, dilation is positive) of the strain

rate tensor are shown. The values expected from our synthetic model are shown on the upper panels (“true model”),
together with results from our Bayesian inversion (average of the posterior distribution, middle), and from standard
B-spline inversion (model obtained with optimal tension and grid parameters, lower panels). Black line: simplified San
Andreas fault trace. Areas where the standard deviation of the horizontal velocity probability density function is higher
than 3 mm/yr are masked since our Bayesian inversion is insufficiently constrained there (see Figure 4). Parameters of
the B-spline inversion were chosen to minimize the distance to the true model on the second invariant (see Equation 4).

5.1.2. Visualizing and Interpreting the Posterior Solution

Obtaining a comprehensive estimate of the posterior uncertainties affecting the interpolated velocity field
and its spatial derivatives can be challenging. One option is to consider at each geographical point the stand-
ard deviation of the posterior PDF for each inverted parameter (velocity, I, vorticity, divergence). We plot
in Figure 7 this error map for the norm of the horizontal velocities. The standard deviation is the highest
where data are scarse or missing: there, the solution is not constrained and the PDF is nearly flat. We chose
to mask these unconstrained zones based on a threshold value fixed at 3 mm/yr (see gray areas in Figure 5
for instance). On the other hand, zones where the velocity field is well captured by the data set are charac-
terized by low error values (<0.5 mm/yr). Intermediate levels of errors are observed in areas with a strong
velocity gradient, that is, in the very near field of the San Andreas fault in our synthetic model.

A careful inspection of the posterior distribution can be conducted on areas of interest to better interpret
the results. A convenient way to do so is to plot the full distribution on chosen cross sections. In Figure 8,
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Figure 6. Distance to the true model calculated on the second invariant for the Bayesian inversion (based on the
average model) and the B-spline method, for increasing level of data noise (see Equation 4). Different B-spline
inversions with increasing grid steps, corresponding to an increased level of smoothing are presented.

we present the posterior distribution for both components of horizontal velocity (b and c), second invariant
I, (d), divergence (e), and vorticity (f) along a 230-km-long profile roughly perpendicular (azimuth N55) to
the southernmost section of the San Andreas fault (see Figure 8a). The normalized probability distribution

1200 800 1000 1200
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400
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0

Figure 7. Standard deviation of the probability density function obtained
for the norm of the horizontal velocity using our Bayesian method on
synthetic noisy data set (noise factor of 1). The color scale is saturated for
o 2 3 mm/yr, this threshold help masking the poorly constrained areas in
Figures 4, 5 and 9. Areas of high velocity gradients are characterized by
intermediate standard deviations, while zones with no or few data exhibit
higher standard deviations (e.g., edges of the studied area). This statistic
measure can be used as a proxy for the robustness of the result (see
Figure 5).

is color coded for each pixel. The mean and 90% credible interval of the
distribution are indicated as well as the result from the B-spline interpo-
lation method and the true synthetic model. The posterior distributions
for the velocity components are very narrow (<1.5 mm/yr wide), and
centered on the true model. The distribution is wider for the derivatives
because small oscillations in the velocity field can lead to substantial var-
iations on the components of the strain rate tensor. The true model is
enclosed in the 90% confidence interval and is in general well estimated
by the mean of the distribution, except in the very near field of the fault,
where deformation is strongly localized.

Results from the B-spline interpolation often deviate significantly from
the true model with misplaced or nonexistent oscillations, that are direct-
ly due to noisy data and that correspond to the small-wavelength patches
seen in Figure 5. It is therefore difficult to conduct a proper interpreta-
tion of spatial derivatives of the velocity field obtained from direct in-
terpolation schemes, especially since these artifacts resemble the signal
that could be expected around active faults (Baxter et al., 2011; Hackl
et al., 2009; Titus et al., 2011).

5.2. Bayesian Inversion of the MIDAS Data Set

We finally invert the real observations from the MIDAS data set (Blewitt
et al., 2016) with associated uncertainties described in Section 3. We pres-
ent in Figure 9 the map of posterior mean for I, and the divergence (see
Figures S1-S3 in the supplementary materials for map of the vorticity,
standard deviation, and velocity residuals). Figure 10 shows the full dis-
tribution plotted along two distinct profiles, perpendicular to the San An-
dreas fault, of the fault-parallel velocity component and second invariant
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Figure 9. (a) Average of the a posteriori probability density function (PDF) of the second invariant of the strain rate tensor I, in nstrain/yr. The color scale is
saturated for values above 1,000 nstrain/yr. Black lines: active faults from Quaternary Fault and Fold Database (2019). Box 1 and 2 stand for the chosen cross
sections presented in Figure 10 for the creeping segment north of Parkfield (Monark peek segment) and Salton Sea Lake segments, respectively. (b) Same but
for the divergence. Positive divergence stands for extension, negative for compression. Black arrows: mean of the principal directions of the strain rate tensor for
an arbitrarily chosen set of points, scaled by their amplitude. Box 3 is the area represented in Figure 11.

L. These profiles in Figures 10a and 10b cross the creeping, Monarch Peek and locked, Salton Sea lake
segments of the San Andreas fault, respectively.

The recovered map of second invariant is rather smooth, except in the near field of the San Andreas fault
zone where high values of I, (higher than 1,000 nstrain/yr) are observed on relatively narrow zones around
the main fault. In the Walker Lane, I, reaches intermediate values (~100 nstrain/yr) while it is lower than
10 nstrain/yr in the Basin and Range area with a slight increase over the Wasatch mountains.

The Salton sea lake segment (box 2 in Figures 9 and 10b) shows a 80 km wide zone of deformation around
the fault. An extreme situation is observed along the Monarch Peek segment (box 1 in Figures 9 and 10a)
where I, reaches values well above 1,000 nstrain/yr on a 15 km narrow zone around the main fault. Both
zones are relatively well constrained by the data set since the posterior distribution of the velocity compo-
nents is narrow all along the profile line, except in the very near field of the fault along the Monarch Peek
segment. Distributions are wider for I, than for velocities, in particular when crossing the active faults. The
average, median and maximum probabilities are plotted, together with the 90% confidence interval. Differ-
ences are small between the average and median in the velocity profiles (less than 1 mm/yr) and trends are
very similar in I, cross section. Some significant variations arise when looking at the maximum probability
mode that exhibits sharper transitions in particular in the Monarch Peek profile (Figure 10a).

The map showing the mean of the distribution for the divergence exhibits much more complex spatial
variations (Figure 9b). Values range from —500 to 300 nstrain/yr, with extrema located in the vicinity of the
San Andreas main fault zone (color scale is saturated in Figure 9b for clarity). Compression is dominant in
the Garlock-San Andreas junction zone, while extension occurs at low rates in the Wasatch mountains in a
nearly E-W direction. Slightly higher dilation rates are observed in the Walker Lane region (20-30 nstrain/
yr) and in the Long Valley caldera (up to 200 nstrain/yr locally). Some localized extensional areas are also
found in the vicinity of the main San Andreas fault zone in agreement with previously published dilatation

Figure 8. Slices of the entire probability density function (PDF) for different parameters along the cross section displayed on pannel a. The location of the
fault is materialized by a vertical black line on the profiles. The horizontal axis represents the distance along the section and the vertical axis corresponds to
the range of the prior, that is, the allowed range of values for the parameter. The color scale indicates the probability for the parameter on each point to take
the corresponding value in the posterior. Profiles of the true model, the mean Bayesian model, and the B-spline inversion are superposed on the PDF. The
black dotted line delimits the interval of 90% confidence. Profile stands for the PDF of the velocity along (b) and across profiles (c), of the second invariant (d),
divergence (e) and vorticity (f) of the strain rate tensor.
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Figure 10. Variations of the profile-perpendicular velocity component

(or fault-parallel velocity component, panel a) and I, (panel b) along two

profiles shown in Figure 9. The full posterior probability (normalized)
is plotted together with its average (orange line), median (green line),
maximum (purple), and 90% of probability envelop (dashed black line).

Black arrows stand for the main mapped faults (Fialko, 2006; Quaternary
Fault and Fold Database, 2019): SAF: San Andreas fault, SJF: San Jacinto

fault, CCF: Coyote Creek fault, and Elsinore fault.

maps (e.g., Kreemer & Hammond, 2007). However, similarly to the sec-
ond invariant, the divergence in the vicinity of the creeping segment
should be examined with extreme caution: at the position of the Mon-
arch Peek segment, the distribution is widely spread out as the 90% confi-
dence interval ranges from —850 to 420 ns/yr and display a rather homo-
geneous shape (Figure S5). Therefore the mean or median values are not
representative of the distribution and should not be used for geophysical
interpretations.

To further discuss the tectonic style in the area, we also compute the dis-
tribution for principal strain rate directions, and plot the mean directions
in Figure 9b. Figure 11 shows a representation of the full distribution
corresponding to box 3 in Figure 9b as rose diagrams. It provides a con-
venient way to jointly plot the principal strain rate direction, its ampli-
tude (length of the histogram bin), style (compression is blue, extension
is red), and the associated normalized probability (color coded, see Fig-
ure 11). Using such a representation, one can assess how well constrained
is the strain rate tensor and whether the tectonic style is robustly defined:
for instance, the dispersion is lower around the principal directions to
the East (Walker Lane) than to the West (Sierra Nevada). In the Sierra
(Figure 11, left), the windrose shows a large dispersion both in the direc-
tion of the principal strain and in their amplitude: while the maximum
probability mode, represented by the directions in brightest red and blue,
shows a dominant roughly N160 compression and a limited N70 exten-
sion, a few models, represented by the bars in lightest red and blue, pro-
pose a dominant N110 extension and a limited N20 compression, that is,
a completely distinct tectonic regime. Such poorly constrained principal
strain rate components should therefore be considered with extreme cau-
tion if used for tectonic interpretation.

6. Discussion

6.1. Advantages and Limits of the Bayesian Surface
Reconstruction

As shown with synthetics tests, our method provides better strain rate es-
timates compared to conventional interpolation schemes, where the lev-
el of smoothing is manually adjusted by the user. In a transdimensional
formulation, the number of parameters defining the surface is not fixed
in advance, and the complexity of the solution (smoothness) naturally
adapts to the level of information present in the data. A probabilistic solu-
tion also provides a full description of uncertainties for any parameter of
interests (here, vorticity, divergence, etc.) by the PDF visualization either
on one specific pixel, or in cross sections as presented in Figure 10. In the
case of nearly Gaussian PDF, the standard deviation o (Figure S1 for the
inversion of the MIDAS data set) is a good estimate of the overall uncer-
tainty on the inverted parameter. In particular, our approach can provide

uncertainty estimates on the largest eigenvalue of the strain rate tensor, which is used in the Kostrov formu-
lation for geodetic moment rate calculation (D'Agostino, 2014; Kostrov, 1974). Some PSHA techniques are
also starting to integrate geodetic estimates of surface strain (Beauval et al., 2018). The full posterior distri-
bution for principal directions, velocity derivatives, and strain rate invariants estimated with our approach
could directly be included in logic trees.

However, our method is based on a Monte-Carlo sampling scheme where a large number of Delaunay
models are tested against the data, and is therefore computationally intensive. Our final ensemble solution
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Figure 11. Zoom on Sierra Nevada (west) to Walker Lane (east) transition zone (zone 3 in Figure 9b). Black arrows
stand for the average of the probability density function (PDF) for the principal components of the strain rate tensor.
A more complete description of the PDF is proposed as windroses for both points: the amplitude (in nstrain/yr) and
normalized probability (color coded) is represented for each 10° bin. Blue stands for compression, red for extension.

represented in Figure 9 is obtained after 84 h of calculation on 92 parallel processors, which is much larger
than standard interpolation approaches.

‘We shall also acknowledge that a Bayesian formulation is entirely based on the mathematical model used to
describe the statistics of data errors. In this study, we assume that the errors are Gaussian, and uncorrelated
between different stations and between each horizontal component. A more accurate model could be used
to account for the spatial correlation of errors in regional velocity fields, as well as for the correlation of
errors between components (Benoist et al., 2020; Dong et al., 2006; Santamaria-Gomez et al., 2011; Wdowin-
ski et al., 1997; Williams et al., 2004). This can be done by using a full covariance matrix of data errors in the
likelihood function (Bodin, Sambridge, et al., 2012). A Bayesian scheme naturally propagates errors in the
data toward errors in the posterior solution, and the form of the probabilistic solution also depends on the
estimated amplitude of data uncertainties. If data errors are misestimated, posterior uncertainties will also
be misestimated. In the case where data uncertainties are difficult to quantify, the total level of errors can
be treated as an unknown parameter to be inverted for in a Hierarchical Bayes framework (Bodin, Salmon,
et al., 2012; Gouveia & Scales, 1998). This hierarchical approach was successfully used in this study for syn-
thetic tests: the level of noise added to the synthetic data was considered unknown in the inversion and was
correctly recovered by the algorithm. However, when the hierarchical approach is used for the MIDAS data
set, data uncertainties were clearly overestimated because of two effects: (a) the noise affecting observations
is not Gaussian, and (b) observations are partially inconsistent from one station to another because of local
effects unrelated to interseismic deformation. This led to important losses of structures, for example, in the
Wasatch mountains fault area. Conversely, fixing the level of uncertainties to MIDAS uncertainties resulted
in the addition of extra triangles needed to fit the data down to the level of observational noise, leading to
artifacts due to incoherent stations. We decided to increase the noise by 10% as it was the smallest value for
which we could get rid of said artifacts.

We shall also note that the method presented in this study has been implemented in Cartesian coordinates,
that is, assuming the effect of Earth's sphericity is negligible. This assumption requires the use of a pro-
jection adapted to the region of interest, and remains valid as long as one concentrates on relatively small
areas. In the present case, using a transverse Mercator projection, the deformation remains less than 1%
up to 800 km from the reference meridian, which includes the entire region studied. However the code
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should be adapted to spherical coordinates if to be applied to larger continental-scale regions (e.g., Haines
& Holt, 1993; Kreemer et al., 2014, 2018; H. Wang et al., 2019).

6.2. From a Probabilistic Solution to Tectonic Interpretations

The method is applied to one of the most extensively studied area in terms of active tectonics: the San
Andreas strike-slip fault system and the neighboring Basin and Range extensional area (see Section 3 and
references therein). The maps of second invariant and divergence presented in Figure 9 agree with previous
studies (e.g., Holt et al., 2000; Kreemer & Hammond, 2007; Kreemer et al., 2012; McCaffrey, 2005) which
have been compared by Sandwell et al. (2010). We confirm that (a) transtension is dominant in the Walker
Lane (Wesnousky et al., 2012), (b) the innermost Basin and Range (Central Great Basin) experiences very
low strain rates and could therefore be considered as rigid (Bennett et al., 2003), and (c) 10 nstrain/yr of
roughly E-W extension occurs in the Wasatch mountains (Niemi et al., 2004). Previous studies have argued
whether or not the Sierra Nevada and Central Valley can be considered to behave as a rigid block (Bennett
et al., 2003; Kreemer et al., 2014); our results tend to show that this area deforms internally and accommo-
dates some amount of NNW-SSE directed compression (I, > 10 nstrain/yr).

In addition, our mean map of second invariant depicts very clear along-strike variations in the width of
the highly straining area near the main fault of the San Andreas system, that are consistent with the along-
strike segmentation of the fault. In particular, our results clearly highlight creep along the Monarch Peek
segment (Ben-Zion et al., 1993; Jolivet et al., 2015; Rolandone et al., 2008), located in between locked fault
sections northwest and southeast of it. To investigate further the ability of our method to capture along-
strike segmentation without a priori information on the fault position, we plot the full PDF for I, and for
fault-parallel velocities on two selected profile across Monarch Peek and Salton Sea segments (Figures 9
and 10). The surface velocity gradient across the fault (between 40 and 45 mm/yr depending on the consid-
ered segment) is accommodated on a 80 km wide zone around the Salton Sea segment while it is concentrat-
ed on a narrow 15 km wide zone around the Monarch Peek creeping segment. There, the expected velocity
change should be even more abrupt (as seen from InSAR analysis for instance, Jolivet et al. 2015) but the
GNSS network is not dense enough to capture changes over distances smaller than 15 km. However, inter-
estingly, the mode of maximum probability exhibits such an abrupt change while the average and median of
the PDF are smoother (Figure 10a). The second invariant I, along the creeping segment increases abruptly
near the fault, starting around 10 km from it, well above 1,000 nstrain/yr.

In the Salton Sea Lake area, several faults are parallel to the main San Andreas fault and potentially active
(Figure 10b). Identifying the amount of relative motion that is taken by each of these structures is still de-
bated (Fialko, 2006; Lindsey & Fialko, 2013; Lundgren et al., 2009) and is needed to properly assess seismic
hazard. For instance, Lindsey and Fialko (2013) explore several physical models with distinct fault geome-
tries or spatial heterogeneities in the crustal elastic properties to estimate the slip rate on each of these faults
based on the inversion of GPS and InSAR surface velocities. The ambiguity between those models comes
from the very similar resulting surface velocity field. However, these models predict larger differences in
surface strain rates than in velocities and could be better distinguished by looking at the fit to the second
invariant I,, for instance. This requires uncertainties on I, to be correctly estimated, as done here and shown
in Figure 10b.

The Bayesian method developed in this study thus allows to identify creeping segments from locking seg-
ments and potentially active faults during the interseismic period without a priori constraints on the struc-
ture of deformation. It is also to note that it jointly retrieves the velocity field and its derivatives in areas of
large strain rates such as the San Andreas fault system, but also in areas of lower deformation rates such as
the Wasatch mountains experiencing a ~20 nstrain/yr extension. It appears robust enough to discuss with
confidence second-order features of the strain rate tensor that could be meaningful in well-resolved areas.
For instance, the surface strain pattern above an active locked fault can show some level of asymmetry de-
pending on the rheology and lithology contrast on either side of the fault (Chéry, 2008; Fialko, 2006; Jolivet
et al., 2008; Le Pichon et al., 2005). The posterior distribution for velocity or second invariant could show
whether this asymmetry is required by the data.
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Furthermore, having access to the uncertainties associated with the principal strain directions will help
comparing deformation over broader spatial scale and discuss more finely how strain is partitioned over ac-
tive structures and within lithospheric blocks. However, this method is primarily dependent on the density
and quality of observations, which remains the limiting factor in such discussions.

6.3. Future Developments

The development of modern geodetic techniques in the last decades (with GNSS continuously recording
networks, optical and radar satellite imagery, tiltmeters) has led to the generalization of the production of
strain rate maps, based on velocities averaged over several years. These maps have a very broad range of
applications, in long-term tectonics (e.g., Flesch & Kreemer, 2010; Kreemer et al., 2003), seismic cycle (e.g.,
D'Agostino, 2014; Klein et al., 2019; H. Wang et al., 2019), or hydrology (e.g., Silverii et al., 2020). Recently,
strain rates have been calculated on much shorter time-spans in order to capture the surface deformation
associated with phenomena such as ground water variations (Klein et al., 2019; Silverii et al., 2020), mag-
matic intrusions (Silverii et al., 2019) or slow-slip events (e.g., Delbridge et al., 2020). Our interpolation
method, with its ability to properly account for data errors, could prove useful in these cases where observa-
tions are associated with larger than usual uncertainties.

The algorithm presented in this study has been designed for and applied to GNSS horizontal velocity fields.
It could also be applied to a variety of interpolation problems in the geosciences, providing correct estimates
of uncertainties. For instance, one could easily apply our proposed approach to the interpolation of horizon-
tal coseismic displacements and associated strain tensor. Recently, Barnhart et al. (2020) use high-resolu-
tion optical images correlation technique to recover the horizontal coseismic displacement associated with
the Ridgecrest earthquake sequence that stroke the East California Shear Zone and Garlock fault in 2019
(Mw 6.4 and Mw 7.1 for the main shocks). Their interpretation of the derived dilatation maps in terms of
inelastic deformation in the very near field from the fault is highlighted by Feng and Almeida (2020) since
it would have important consequences on our understanding of faults and earthquakes. However, as previ-
ously shown, dilatation maps are prone to strong interpolation artifacts and should be carefully interpreted,
or built with our artifact-free method.

The next step is therefore to adapt our technique to more continuous pictures of the surface deformation as
produced by optical image correlation (e.g., Barnhart et al., 2020; Delorme et al., 2020; Vallage et al., 2015)
or InSAR (LOS velocities, e.g., Hussain et al., 2016; H. Wang et al., 2019; Weiss et al., 2020). One difficulty to
do so is to properly account for the spatially correlated noise between pixels, fully described by a covariance
matrix for InSAR (e.g., Lohman & Simons, 2005). Second, image correlation (when including elevation
information), and InSAR can provide the vertical displacement field and the projection of horizontal and
vertical velocities in the LOS direction, respectively. Our method should therefore be adapted to jointly
interpolate the three components of the velocity field (including the vertical velocities coming from high
quality GNSS measurements). The implementation is relatively straightforward and will be added in the
future, though it will add computational cost. Including vertical velocities will give us access to the horizon-
tal derivatives of V, that could help identifying active faults, subsidence and uplift patterns. However, even
with this more complete view of the 3D strain rate tensor, this latter will remain incomplete as derivative
with respect to the vertical direction will be missing. Note that some attempts to take into account the hori-
zontal gradients of the vertical velocity into a pseudo 3D strain rate tensor have been performed by Mazzotti
et al. (2005), Shen and Liu (2020), or Pifia-Valdés et al. (2020) and could be similarly conducted within our
Bayesian framework in the future.

7. Conclusion

We develop a transdimensional Bayesian method, adapted from seismic imaging (Bodin, Salmon, et al., 2012;
Bodin, Sambridge, et al., 2012) to estimate surface strain rates from discrete GNSS horizontal velocity fields.
Synthetic tests conducted on an idealized velocity field produced by the interseismic loading of the San An-
dreas fault zone show that this approach is more robust than a standard B-spline interpolation technique. In
particular, it is able to correctly recover the strain rate tensor on a wide range of rates, without need of man-
ually tuned user-defined parameters. The solution is a full probability distribution on model parameters de-
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fining the velocity field and its spatial derivatives. We propose several ways to visualize the solution through
maps of the mean, median, standard deviation, or maximum probability. We also show fault-perpendicular
profiles presenting the full posterior distribution. The probability distribution of principal directions of strain
rates can be plotted on wind rose diagrams, allowing for a better comparison with long-term tectonic studies.

We apply our method to the MIDAS velocity data set on the San Andreas and Basin and Range area and
find that, while in general agreement with previously published strain rate maps, our results are smoother
and artifact free. They allow for more rigorous tectonic interpretation, and help discriminating between
creeping and locked fault segments. Our Bayesian inversion method designed to solve this very common
interpolation and derivation problem will be applied in future work to continuous images of deformation
obtained from InSAR or image correlation, with the possibility of combining all types of data sets together.
‘We hope that the proposed approach will allow to take full profit of multi-scale geodetic measurements and
to better include them in probabilistic seismic hazard assessment techniques.
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license.
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