Introduction
Découpage fonctionnel
Modèles
Description de scène
Algorithme général

M2-Images Intro-Synthèse d'images

J.C. lehl

September 10, 2014

Introduction: synthèse d'images

```
qu'est ce que c'est?
```

produire une image à partir d'une description des objets représentés,

analyse d'images :

retrouver les modèles des objets représentés dans une image.

Introduction: synthèse d'images

plusieurs formes de synthèses :

- ▶ 2D, 3D,
- réaliste,
- stylisée,
- ▶ "simplifiée".

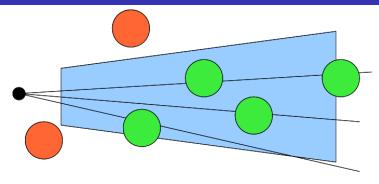
Introduction Découpage fonctionnel Modèles Description de scène Algorithme général

Algorithme général

Brave, Pixar 2012

Introduction
Découpage fonctionnel
Modèles
Description de scène
Algorithme général

3D réaliste



Gravity, 2013

qu'est ce qu'une image ?

- un ensemble de pixels colorés,
- ou un ensemble de vecteurs (image vectorielle) ?

déterminer pour chaque pixel de l'image la couleur de l'objet représenté (de l'objet *visible* à travers le pixel ...).

comment?

- problème 1 : déterminer où se trouve l'objet (par rapport à la camera),
- problème 2 : déterminer l'ensemble de pixels (correspondant à la forme de l'objet),
- problème 3 : donner une couleur à chaque pixel.

2 organisations:

- pour chaque objet : déterminer l'ensemble de pixels, (que se passe-t-il lorsque plusieurs objets se "dessinent" sur le même pixel ?)
- pour chaque pixel : trouver l'objet visible,

trouver l'objet visible pour chaque pixel : trouver l'objet le plus *proche* de l'observateur.

remarques:

- que se passe-t-il lorsque plusieurs objets sont visibles dans un seul pixel ?
- que se passe-t-il lorsque l'objet visible est transparent ?

Introduction: description des objets

modèle de l'objet :

- de sa forme,
- de sa matière / de son aspect,
- de sa position,
- de "comment" il est éclairé ?

modèle d'énergie :

et des sources de lumières.

Introduction: couleur

rouge, vert, bleu?

- perception ?
- physique ?

la couleur est une *perception* de l'énergie. même une photo ne correspond pas à notre perception d'une scène.

40,40,41,41, 1,000

Introduction: contenu du cours

ce cours présente :

- en première partie : la synthèse 3D temps réel, basée sur les fonctionnalités des cartes graphiques,
- en deuxième partie : la synthèse 3D réaliste, basée sur la physique et l'optique.

Introduction : découpage fonctionnel

$modèles \rightarrow$

- ▶ 3D
- objet
- matière
- lumière
- observateur

calculs \rightarrow

- passage 3D vers 2D,
- déterminer le point de l'objet visible à travers chaque pixel,
- déterminer l'énergie réfléchie par le point.

image 2D couleur

 déterminer la couleur du pixel.

la couleur de chaque pixel représente l'aspect du point de l'objet visible à travers le pixel.

Introduction: un peu de physique

 $\mathsf{lumi\`ere} \to$

réflexion → ou "interaction" avec la matière d'un objet

énergie réfléchie \rightarrow couleur des objets visibles par l'observateur

calculs dans le sens de propagation de la lumière. comment limiter les calculs aux objets visibles par l'observateur ?

Introduction: visibilité

$observateur \rightarrow$

- position et orientation de l'observateur
- position et forme des objets

déterminer les objets visibles matières des objets visibles → calculer l'énergie réfléchie vers l'observateur sources de lumères \rightarrow visibles par les objets

lumière →
énergie
associée à la
source de
lumière

ne faire le calcul que lorsque tous les éléments sont connus.

Modèles

choisir une représentation pour chaque élément manipulé pendant le calcul :

- modèle d'objets,
- modèle de source de lumières,
- représentation de l'énergie et des couleurs,
- modèle d'observateur.

comment placer et orienter les objets, l'observateur, etc. ?

Modèles d'objets

nombreuses représentations (et format de fichiers ...) :

- selon les besoins / métiers,
- pas de modèle complet,

le modèle dépend, en partie, de la méthode d'affichage (calcul de visibilité).

Modèles d'objets

représentation de la surface des objets :

- maillages (ensemble de triangles / quads),
- surfaces (carreau de Bézier, NURBS, surface de subdivision),
- scan 3D (position + orientation + couleur).

Modèles d'objets

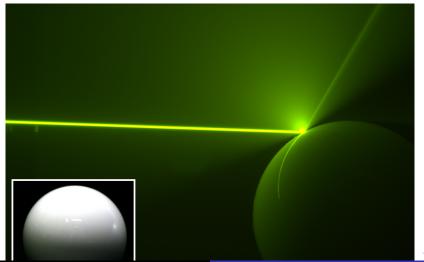
représentation du volume des objets :

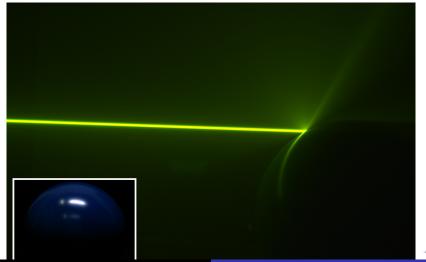
- primitives algébriques (plan, sphère, cone, tore, etc.),
- fonctions implicites,
- énumeration spatiale (grille, octree),

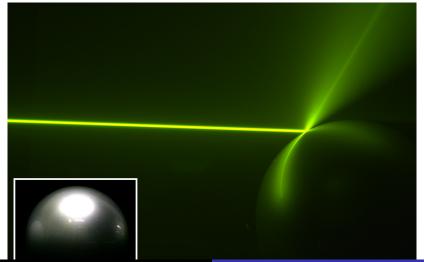
opérations ensemblistes sur les volumes : union, différence, intersection

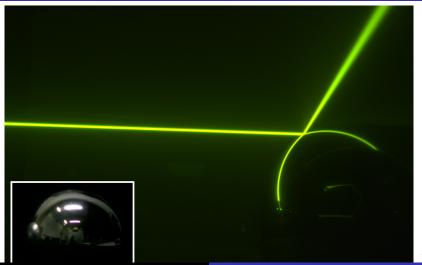
Modèles de matières

représenter l'aspect d'un objet indépendamment de sa forme :


- mat / diffus / lambertien : platre,
- spéculaire : miroir,
- réfléchissant : métal plus ou moins poli, bois verni, etc.
- transparent : eau, verre, etc.


ce sont les cas simples, "idéaux", la plupart des matériaux ne correspondent pas à une seule catégorie,


notation : BRDF, fonction de réflectance bidirectionnelle.


visualisation de la propagation de la lumière

résultats

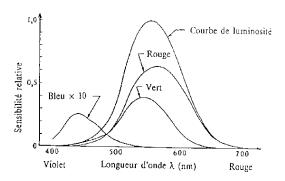
Modèles de sources (de lumière)

un objet dont la surface émet de l'énergie / de la lumière.

forme géométrique + fonction d'émission :

- uniforme, directionnelle,
- ou mesurée.

le plus rapide : un point avec une émission uniforme, le plus courant : un quad avec une émission uniforme (sur une seule face).

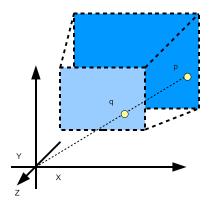

Représentation de l'énergie / couleur

l'oeil est sensible à un ensemble de longueur d'ondes : le domaine visible.

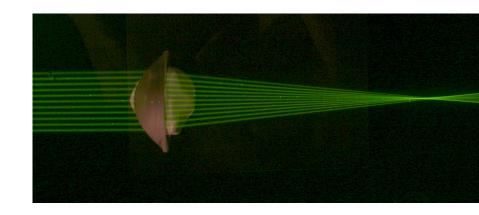
plusieurs types de cellules sur la rétine :

- longueurs d'ondes courtes : perception du bleu,
- moyennes : vert,
- longues : rouge.

Représentation de l'énergie / couleur


le plus rapide : énergie / couleur représentée par un triplet R, V, B.

Modèles d'observateur


```
projection idéale : un point,
mais un objectif optique réel est plus complexe (plan focal,
ouverture, ...)
```

Modèle d'observateur : pyramide de vision

observateur placé et orienté dans la scène :

Modèle d'observateur : optique

Modèle d'observateur : optique

Description de scène

(et composition de transformations)

placer et orienter les objets dans la scène :

- translation,
- rotation,
- changement d'échelle ?

placer et orienter l'observateur dans la scène :

- translation,
- rotation,
- projection ?

Représentation des positions et des orientations (et des "projections")

une représentation pour exprimer :

- une translation,
- une rotation,
- une "projection",
- un changement de repère.

et tout combiner / composer ensemble ?

Transformations affines et espace homogène

toutes les transformations citées se représentent sous forme d'une matrice ... sauf la translation.

idée

comment représenter une translation avec une matrice ?

espace homogène et matrices 4×4

$$\begin{bmatrix} 1 & 0 & 0 & t_{x} \\ 0 & 1 & 0 & t_{y} \\ 0 & 0 & 1 & t_{z} \\ 0 & 0 & 0 & t_{w} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x + t_{x} \\ y + t_{y} \\ z + t_{z} \\ t_{w} \end{bmatrix}$$

Points homogènes

$$p_h = \begin{bmatrix} x \\ y \\ z \\ w \not\equiv 0 \end{bmatrix}$$

on retrouve le point réel associé au point homogène en divisant par w :

$$p = p_h/w = \begin{vmatrix} x/w \\ y/w \\ z/w \\ 1 \end{vmatrix}$$

Vecteurs homogènes

$$v = \left[\begin{array}{c} x \\ y \\ z \\ w \equiv 0 \end{array} \right]$$

un vecteur ne subit pas de "translation".

Transformation affine et projection

projection orthographique sur le plan z = 0

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 0 \\ 1 \end{bmatrix}$$

mais: on ne peut pas inverser cette transformation.

Transformation affine et projection

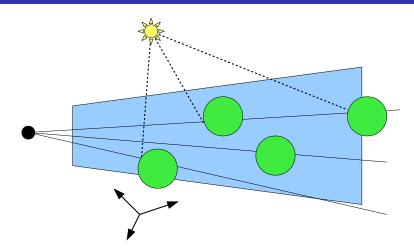
trouver une transformation affine qui n'est pas une projection mais qui fournit un résultat équivalent ...

les détails dans le cm sur les transformations.

Composition de transformations

toutes les transformations se représentent sous forme de matrices.

objet
$$\rightarrow$$
 scène \rightarrow observateur \rightarrow projection M V P


déterminer directement les coordonnées d'un point de l'objet dans le repère de l'observateur : q = PVMp

transformation globale :
$$q = Tp$$
 avec $T = PVM$

passer d'un repère à l'autre avec l'inverse de la transformation :

$$p = T^{-1}q$$

Pipeline graphique

Pipeline graphique

exercice:

- proposez au moins 3 solutions pour dessiner un triangle ou un quad :
- les coordonnées des sommets sont connues dans le repère de la scène,
- les pixels dans lesquels se projettent les sommets sont connus.
- (les transformations sont connues...)

exercice:

même question avec 2 objets ou plus.

Pipeline graphique

plusieurs traitements nécessaires :

- visibilité, trouver l'objet visible pour un pixel,
- trouver les sources de lumières visibles par le point,
- calculer l'énergie réfléchie,
- déterminer la couleur associée à l'énergie réfléchie,
- "insérer" la couleur dans le pixel de l'image.

Pipeline graphique

3 organisations des traitements : pipeline, chaîne de traitements.

Pipelines graphiques:

- lancer de rayons,
- REYES (Renderman),
- rasterisation (OpenGL / DirectX).

Pipeline graphique : lancer de rayons

visibilité:

- calculer le rayon associé à un pixel,
- calculer les intersections du rayon avec tous les objets de la scène,
- conserver la plus proche de l'observateur.
- + étapes suivantes du pipeline.

toute la scène doit être en mémoire.

Pipeline graphique: rasterisation

visibilité:

- pour chaque objet :
- pour chaque primitive de la surface de l'objet :
- déterminer les pixels sur lesquels se projette la primitive,
- + étapes suivantes du pipeline.

ne conserver que la couleur de la primitive la plus proche de l'observateur ?

Pipeline graphique : rasterisation

Z-buffer:

image de profondeur pour conserver le point de l'objet le plus proche de l'observateur.

les objets sont dessinés un par un, dans un ordre quelconque, mais l'image et le Z-buffer conservent la couleur et la profondeur du point (de l'objet) le plus proche (vu à travers le pixel).

Pipeline graphique: REYES

visibilité:

- pour chaque objet :
- déterminer les portions (a priori) visibles de l'objet,
- découper ces portions en éléments plus petits qu'un pixel,
- + étapes suivantes du pipeline sur chaque élément.

+ Z-Buffer un seul objet traité à la fois (cf. rasterisation).

Pipeline graphique : et alors ?

lancer de rayons :

- toute la scène est en mémoire,
- facile de déterminer si 2 points quelconques sont visibles,
- calculs effets globaux (très) simples (ombres, etc).

mais : stocker toute la scène.

REYES / rasterisation :

- traitement d'un seul objet à la fois,
- visibilité associée à l'observateur, pas d'effets globaux simples.

mais : traiter un seul objet, permet de calculer des scènes très complexes, cf. Pixar / La-Haut.

exemple

pipeline: lancer de rayons pipeline: rasterization pipeline: REYES et alors ?

exemple

exemple

Brave, Pixar 2012

+ reste du pipeline ?

finir de construire l'image?

- transparence ?
- plusieurs objets dans le même pixel ?

cf. cours traitement du signal : filtrage et reconstruction d'une fonction échantillonnée.

+ reste du pipeline ?

intuition:

- dessiner un point à l'intérieur d'un pixel ?
- dessiner 2 points (à l'intérieur d'un pixel) ?
- dessiner un segment (à l'intérieur d'un pixel) ?
- dessiner une partie d'un triangle (à l'intérieur d'un pixel) ?
- dessiner 2 triangles adjacents (1 arête commune) ?
- dessiner 2 triangles quelconques ?
- dessiner 2 triangles transparents quelconques ?

le filtre le plus simple est une moyenne...

