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Plan

• Introduction - Problématique.

• Acquisition

• Stockage, structuration des données.

• Rendu généralisé.
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Continuum Réel-Virtuel

• Le rendu classique est un sous ensemble du 
rendu généralisé.

Réel VirtuelRéalité 
augmentée

Virtualité 
augmentée

Rendu généralisé

Rendu 
classiqueAcquisition
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Rendu généralisé

• 3 tâches : Co-
localisation, co-visibilité, 
co-éclairement.

• La plupart du temps : 
réalisme pas essentiel.

• Guidage, assistance...

• Co-éclairement : pas 
indispensable.
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Rendu généralisé

• Réalisme : 
important dans 
certaines 
applications.

• Apporte des 
informations via 
des indices 
visuels.

5



Approches possibles

• Approche traditionnelle

• Approches non-classiques

• Pour la réalité augmentée ?

6



Approches possibles

• Approche traditionnelle

• Approches non-classiques

• Pour la réalité augmentée ?
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Rendu

• Pipeline de rendu «classique» :

• Transformation de modélisation / 
visualisation / projection.

• Calcul éclairement.

• Assemblage des primitives.

• Rasterization.

• Calcul de la couleur des pixels («shading»).
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Rendu

• Pipeline de rendu «classique» :

• Transformation de modélisation / 
visualisation / projection.

• Calcul éclairement.

• Assemblage des primitives.

• Rasterization.

• Calcul de la couleur des pixels («shading»).

Données 
acquises ? 
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Approches «classique»

• Reconstruire géométrie et éclairage sous 
une forme «connue».

• Modèle de géométrie (facettes).

• Modèle de transfert d’énergie.

• Radiosité, rayons, sources ponctuelles.

• Cas «complexe» mais pas intraitable.

• Des algorithmes «classiques» existent.

• Comment les adapter à la problématique ?
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Exemple

• Insertion de bâtiments virtuels.

• Cas simple : source unique, pas d’ombre.
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«A montage method : the overlaying of the computer generated images onto a background 
photograph», Nakamae et al.



Approche «classique»

• Technique de la radiosité :

• Calcul d’éclairement basé sur la thermique.

12



Exemple

• Ajout d’une source de lumière virtuelle

• Modélisation manuelle de l’environnement
13

Common illumination between real and computer generated scenes, Fournier et al.



Exemple

• Pour des matières non diffuses : 
Détermination itérative.
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Image-based rendering of diffuse, specular and glossy surfaces from a single image, Boivin et.al



Approches «classique»

• Autre algorithme classique : tracé de chemin.
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Approches «classique»

• Avec des données acquises : différenciation
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Chemins réels purs Chemins virtuels purs



Approches «classique»

• Avec des données acquises : différenciation
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Chemins mixtes



Approches «classique»
• Modification de l’environnement

18

Chemins réels purs interceptés



Approches «classique»

• Transport de la lumière : rayons.

• Position des sources ?

• Renseigné manuellement. Pas pratique.

• Détermination automatique depuis la 
capture : carte d’environnement.
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Image-based lighting

20

40 Chapitre 2. Introduction au rendu augmenté réaliste

Figure 2.15 – Principe de l’acquisition de cartes d’environnement (Schémas et
images issus des travaux de Debevec [Deb98]) : La caméra acquiert dans un premier
temps des images d’une sphère réfléchissante ( a) ) stockant les luminances dans
un système de coordonnées angulaires. L’image peut ensuite être convertie dans un
autre système de repérage si la construction du modèle d’éclairement le nécessite (
b) ). Enfin, connaissant la géométrie locale de la scène, une méthode d’éclairement
globale va lire dans ce modèle et calculer une image augmentée d’objets synthétiques
( c) ).

• Stockage de la carte 
d’environnement 
sous la forme d’un 
cube englobant.

• Cubemap = carte de 
sources de lumières 
distantes.

• Si sources locales : 
modélisation 
manuelle.

Rendering Synthetic Objects Into Real Scenes : Bridging Traditional and Image-Based Graphics With Global 
Illumination and High Dynamic Range Photography, Paul Debevec.



Image-based lighting

• Problème : carte d’environnement = 
beaucoup de sources.

• Pour réduire :

• Echantillonnage performant.

• Pré-convolution par un matériau connu.

• Instant radiosity.
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Approche classique

• Instant Radiosity : ensemble de sources 
ponctuelles «virtuelles».
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5.3. Rendu augmenté basé sur un ensemble de sources ponctuelles 171

(a) (b)

(c) (d)

Figure 5.13 – Principe de fonctionnement d’instant radiosity (schémas issus de
l’état de l’art proposé par Radax [Rad08]). (a) Scène à éclairer. (b) Tracer de
chemin suivant l’importance du flux. (c) Placement des VPL aux point de rebonds
des chemins. (d) Évaluation de l’éclairement global (voir Figure 5.14).



Approche «classique»

• Pour les 
ombres ?

• Technique 
usuelle : 
«shadow 
mapping».
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5.3. Rendu augmenté basé sur un ensemble de sources ponctuelles 185

Figure 5.17 – Principe du shadow mapping. De haut en bas : Détails des deux
grandes phases de la technique. Chaque phase est illustrée par 2 schémas explicatifs
(en 2D) ainsi que l’image résultat de la phase (prise dans une scène 3D correspondant
aux schémas).



Exemple

• Eclairement local capturé avec une envmap.

• Transformation en VPLs.
24

in the textures which were copied in the first step must be copied
to system memory. Then, for each primary light source, the radiant
flux of the assigned VPLs is estimated using the copied data, and the
number of VPLs, which get assigned to each primary light source,
is calculated. Each primary light source is responsible for creating
VPLs on its own by directly rendering into the VPL-Buffer.

After the new VPLs have been created, the imperfect shadow
maps introduced by Ritschel et al. [27] are rendered. Each object
in the scene has a corresponding point cloud, and these point clouds
are used to create the ISMs. The point clouds itself are created at
loading time by simply distributing a given number of points over
the total surface area of all objects. Each point gets a unique id
which is used to assign the point to a VPL.

During ISM creation, the information whether the depth value
belongs to a real or virtual object is again stored using the sign of
the depth.

Once the VPL-Buffer is created and the imperfect shadow maps
are available, illumination computation can start. In Figure 3, these
steps are surrounded by a grey box. The output of the grey box
is a difference image that will be applied to the video frame. All
other steps in the grey box render into two buffers simultaneously,
the VR-Buffer and the R-Buffer. The VR-Buffer stores the complete
GI solution including real and virtual objects. The R-Buffer only
stores the GI solution computed from the real objects. Note that
these buffers are double buffered because simultaneous read and
write operations are not possible.

First indirect illumination is computed for both buffers. This is
done by drawing a mesh consisting of quads that corresponds to
the split G-Buffer in screen space. The mesh has the same amount
of quads as there are VPLs in the VPL-Buffer. Each quad has a
unique id attached that is used to lookup the corresponding VPL in
the VPL-Buffer. Note that both buffers are manipulated in parallel,
and indirect illumination is accumulated in one single draw call. In
this shading process the flags are used to determine how to calculate
the illumination on a per-pixel basis (see Section 3).

Afterwards the split buffers are merged. During the merging
step, the results from the previous frames are reused to temporally
smooth the indirect illumination calculation (see Section 4.4) and
filtered. Then for each primary light source direct illumination is
added. The resulting buffers must be tone mapped and for that the
tone mapper calculates the average world luminance based on the
VR-Buffer. Then both buffers are mapped to low dynamic range.
The resulting VR-Buffer and R-Buffer contain illumination caused
by the VPLs and primary light sources as shown in Figure 3. In the
last step the background image is added to the difference between
the tone mapped VR- and R-Buffers. Note that the background im-
age is masked and only added where there are no virtual objects.

5.2 Primary Light Sources
The rendering system currently supports three types of primary
light sources. A spotlight, an environment light and a special pri-
mary light source that performs one light bounce.

Spot Light The spot light source behaves like a standard spot
light except that it can be set to be a real or virtual light source.
It stores a reflective shadow map that is rendered from the point
of view of the light source. Beside the depth, which is used for
standard shadow mapping, it stores the surface color, the material
parameter, the normal of the surface and an importance factor simi-
lar to the reflective shadow maps from Dachsbacher et al. [3]. When
VPLs are created, the importance factor is used to perform impor-
tance sampling as proposed by Clarberg et al. [2] on the RSM. After
a proper sample position has been found, the information from the
RSM is used to create a new VPL in the VPL-Buffer.

Environment Light The environment light source uses the
input image from a fish-eye lens camera to capture the surrounding

illumination. It does this by placing virtual point lights on a hemi-
sphere around the scene center. Figure 9 shows the virtual point
lights placed on the hemisphere. To get a better approximation, the
VPLs are first importance sampled according to the illumination in-
tensity. This is again done using the method from Clarberg et al. [2].
Since the environment light source uses the image from the camera,
it is set to be a real light source. Note that the environment light is
different to the spot light as it uses the VPLs for direct illumination.

Figure 9: Illustrates incident illumination from the surrounding envi-
ronment captured with the fish-eye lens camera. The red dots show
the positions of the VPLs

Multiple Bounces The multiple bounce light is a special
kind of primary light source. The idea behind it is to see the geome-
try as light source itself. The sources of light are the already placed
virtual point lights and from that new ones can be created (see Sec-
tion 3.8). All VPLs in the VPL-Buffer of the previous frame are
used to generate new VPLs, but importance sampling ensures that
stronger VPLs are used more often than weaker ones. In the first
step, each sample point is assigned to a VPL slot. Then a source
VPL dependent on the VPL slot is selected via a lookup texture.
Afterwards a glossy light bounce from the source VPL is calcu-
lated. For visibility testing the ISM texture from the last frame is
used. In the last step we use the depth buffer to find the most impor-
tant sample point. This is simply done by writing out a depth value
for each sample point that is related to the maximum outgoing ra-
diance from the new VPL candidate. The compare function of the
depth buffer must be reversed and the final VPL slot will contain
only the VPL which has the highest contribution to the scene.

6 RESULTS

All the results were rendered at a resolution of 1024x768 pixels on
an Intel Core2 Quad CPU Q9550 at 2.8GHz with 8GB of memory.
As graphics card we used an NVIDIA Geforce GTX 285 with 1GB
video memory. The operating system is Microsoft Windows 7 64-
bit and the rendering framework is developed in C#. As graphics
API we use DirectX 10 in conjunction with the SlimDX library.
Our system uses a standard webcam from Logitech for see-through
video and a Stingray F-125 camera with a fish-eye lens from Allied
Vision to acquire the environment map. Our tests took place in an
office with some incident light through the window and one spot
light illuminating the scene directly. The surrounding illumination
is captured using the fish-eye camera. Furthermore we have a small
pocket lamp to simulate some direct incident light. We use Studier-
stube Tracker for tracking the camera and the position of the pocket
lamp. Unless otherwise mentioned, we use 256 virtual point lights
and represent the scene using 1024 points per VPL. The imperfect

Differential Instant Radiosity for Mixed Reality, Knecht et al. (a) (b)

(c) (d)

Figure 10: (a) Virtual object shadows a real one. (b) The pocket lamp points towards the virtual Cornell box causing red color bleeding through
indirect illumination towards the desk and the cardboard box. (c) The pocket lamp illuminates the real cardboard box. Indirect illumination via
VPLs causes the green wall of the Cornell box to appear brighter. (d) The pocket lamp illuminates parts of the Cornell box and our system tries
to cancel out the highlight on the cardboard box.

shadow map size for one VPL is 128x128 and we split the G-Buffer
into 4x4 tiles.

Figure 10(a) shows a virtual Cornell box and a real cardboard
box illuminated by the captured environment. The Cornell box
shadows the real box. The image is rendered at 24 fps with multiple
bounces enabled.

Figure 10(b) shows the same scene with additional light of a real
pocket lamp. It points towards the virtual Cornell box causing indi-
rect illumination towards the real box. Note the red color bleeding
on the box and the desk. The same illumination effect but reversed
is shown in Figure 10(c). Here the pocket lamp partly illuminates
the real desk and the real cardboard box, again causing indirect il-
lumination. Our system is capable of handling these different cases
in a general way. Both images are rendered at 22 fps.

Figure 10(d) shows the scenario when the pocket lamp shines
into the virtual Cornell box. In this image some artifacts are visible.
The real spot light actually illuminates the area behind the virtual
Cornell box. Our system tries to cancel out this highlight. How-
ever, our current method is insufficient, because the pocket lamp
approximation is not accurate enough and tone mapping does not
correspond with the response curves of the webcam.

We have also implemented a small game to test our method in an
interactive environment. It consists of a UFO and several goodies
that must be collected so that the UFO is able to land on top of the

tower. Figure 11 shows the game environment and the UFO. Please
note the illuminated area on the desk caused by the virtual spotlight
of the UFO. Furthermore the UFO circles around the tower and our
method is able to handle occlusions correctly.

Figure 11: The UFO has its own spot light which illuminates the real
desk.



Approche «classique»

• Eclairage sans carte d’environnement ?

• Ce qui est capté par la caméra : 
échantillonnage de la lumière.

• => Reconstitution de l’environnement 
photométrique à partir de ce qui est vu.

• Difficile sans faire d’hypothèses assez 
restrictives.
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Approches possibles

• Approche traditionnelle.

• Construire une image à partir d’autres 
images.

• Pour la réalité augmentée ?
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Image-based rendering

• Que faire avec des images 2.5D calibrées ?

• Simplifier la géométrie.

• Synthétiser un nouveau point de vue.

• Synthétiser un nouvel éclairage.

27



Simplifier la géométrie

• Remplacer le rendu d’un 
objet par un ensemble 
d’images.

• Imposteurs («billboard»).

• Ajouts de détails 
géométriques sur la surface.

• Autres ?

Dynamic Parallax Occlusion Mapping with Approximate Soft Shadows  
 

Natalya Tatarchuk
 

ATI Research, Inc. 

 

 

 
Figure 1. Realistic city scene rendered using parallax occlusion mapping applied to the cobblestone sidewalk in (a) and using the 

normal mapping technique in (b). 

 
Abstract 

 
This paper presents a per-pixel ray tracing algorithm with dy-
namic lighting of surfaces in real-time on the GPU. First, we 
propose a method for increased precision of the critical ray-
height field intersection and adaptive height field sampling. We 
achieve higher quality results than the existing inverse displace-
ment mapping algorithms. Second, soft shadows are computed by 
estimating light visibility for the displaced surfaces. Third, we 
describe an adaptive level-of-detail system which uses the infor-
mation supplied by the graphics hardware during rendering to 
automatically manage shader complexity. This LOD scheme 
maintains smooth transitions between the full displacement 
computation and a simplified representation at a lower level of 
detail without visual artifacts. The algorithm performs well for 
animated objects and supports dynamic rendering of height fields 
for a variety of interesting displacement effects. The presented 
method is scalable for a range of consumer grade GPU products. 
It exhibits a low memory footprint and can be easily integrated 
into existing art pipelines for games and effects rendering. 
 
CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional 

Graphics and Realism: Color, shading, shadowing, and texture; 
Visible line/surface algorithms  

 
Keywords: image-based rendering, motion-parallax, real-time 

rendering, displacement mapping, soft shadows, surface details, 

adaptive level-of-detail system. 

 

 

1  Introduction 
 

Texture mapping is essential for creating a compelling impression 

of a realistic scene without paying the full cost of rendering 

complex geometry. Bump mapping was introduced in the early 

days of computer graphics in [Blinn 1978]  to avoid rendering 

high polygonal count models. Despite its low computational cost 

and ease of use, bump mapping fails to account for important 

visual cues such as shading due to interpenetrations and self-

occlusion, nor does it display perspective-correct depth at all 

angles.  

Displacement mapping, introduced by [Cook 1984], addressed the  

issues above by actually modifying the underlying surface geome-

try. Ray-tracing based approaches dominated in the offline 

domain [Pharr and Hanrahan 1996;  Heidrich and Seidel 1998]. 

These methods adapt poorly to current programmable GPUs and 

are not applicable to the interactive application domain due to 

high computational costs. Other approaches included software-

based image-warping techniques for rendering perspective-correct 

geometry [Oliveira et al. 2000] and precomputed visibility infor-

mation [Wang et al. 2003; Wang et al. 2004; Donnelly 2005]. 

Despite being interactive, these methods suffer from a large 

memory footprint. The majority of these techniques require high 

amounts of specialized precomputed data, thus making their 

integration into existing art pipelines for game development 

unnecessarily complex. Our proposed method requires a low 

memory footprint comparable to bump mapping and can be used 

for dynamically rendered height fields.  

Recent inverse displacement mapping approaches take advantage 

of the parallel nature of novel GPUs’ pixel pipelines to render 

displacement directly on the GPU ([Doggett and Hirche 2000; 

Kautz and Seidel 2001; Hirche et al. 2004; Brawley and 

Tatarchuk 2004; Policarpo et al. 2005]. One of the significant 

disadvantages of these approaches is the lack of correct object 

silhouettes since these techniques do not modify the actual ge-

ometry. Accurate silhouettes can be generated by using view-

To appear in proceedings of ACM Siggraph Symposium on Interactive 
3D Graphics and Games 2006 
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Exemple

• Géométrie 
support très 
simple.

• Plan, cube...

• Géométrie 
stockée dans 
plusieurs images 
de plusieurs 
types

29



Exemple

• Fonctionnement : 
implémentable 
sur GPU.

• Ray-casting 
local sur 
textures de 
hauteurs.

introduces an error along the silouhettes but we can bound the er-
ror. It is given by the local gradient of the heightfield as shown on
Figure 7. We will give more details on this error in next section.

3.5 Computation of the safety radius
For a given texel, we need to consider all rays that pass above it.
For each ray, we compute the distance to the second intersection
with the heightfield and take the minimum of these distances. Note
that we ignore rays that are blocked by the heightfield before they
pass above the texel (Fig. 8). We heavily sample the directions of

Texel considered

Those unblocked rays intersect 
only once the heightfield.

This ray has more  
intersections but is 
 blocked before the texel Safety region

Texel considered

Extremal ray defining the 
safety radius for texel and  
direction 

Safety region

Figure 8: (left) blocked rays are ignored when computing the safety
radius (right) the safety radius is defined by the extremal ray.

rays. For each direction, we compute the safety radius and keep the
maximum over all directions. For a given direction, the problem is
restricted to a 2D slice in which the safety radius is obtained by con-
sidering an extremal ray. It is the “most horizontal” ray that does
not intersect the heightfield before the considered texel and which is
tangent to the heightfield after the texel with the point of tangency
at a minimal distance (Fig. 8). Clearly it is defined by the two points
of tangency. We determine this ray by starting with the tangent at
the considered texel and iteratively moving the two tangent points
while maintaining the tangency. The algorithm is simple, fast and
can be implemented on the GPU. Our implementation takes about
10s to compute the safety radii for a 128×128 heightfield.
Our approach is very close to that of [19]. We first describe the

elements involved and analyse the problem of ray/heightfield inter-
section. We then describe our approach for fast accurate intersec-
tion.

4 REVERSE PERSPECTIVE HEIGHTFIELDS

In the previous section, we did not specify the projection used to
flatten the geometry into a depth texture. The most natural pro-
jection is an orthogonal one, resulting in a heightfield that’s easier
to understand. However, the algorithm does not actually place any
constraint on the kind of projection used, as long as a ray in world
space is transformed into a line. This can be used to increase the
expressiveness of relief mapping.
If we try to replace a building with an orthogonally projected re-

lief texture, we will not get any information about the facades. This
is a well known problem with image based rendering: some infor-
mation is not captured. Several methods have been proposed to
address this problem[15]. Reverse perspective consists in shooting
an image with an inverted frustum so that shortfortening of objects
works the other way. In cubist textures, [8] proposed to use it to get
textures that capture details on the sides of buildings. We incorpo-
rated their approach in relief mapping.
Instead of placing a bounding box around the geometry, the user

manually defines a reverse frustum around the object and this frus-
tum is used for projection (Fig. 9). The rendering algorithm is
barely changed: instead of rendering the bounding cube, we render
the frustum, and we pass the corresponding perspective projection

Orthogonal Projection

Distorted Projection

DepthDiffuse Normal

Figure 9: Reverse perspective heightfield (right) better captures the
shape of the van than orthogonal one (left).

matrix to the frustum to the shaders. This matrix is used to compute
the normalized coordinates of fragments on the frustum, and of the
eye. The remainder of the algorithm being expressed in the unit
cube does not change.

4.1 Clipped frustum
Reverse perspective heightfields can replace more complex geome-
try. However, using it naively incurs a performance penalty. Indeed,
the frustum is typically much larger than the bounding box, so more
fragments are rasterized. But for many of these fragments, the cor-
responding ray does not actually intersect the geometry. This is
very simply addressed by cutting the bounding box out of the frus-
tum and rendering it with the appropriate normalized coordinates.
This is done as a preprocess, does not change the shader at all, and
brings the performance rates back to those of the orthogonal pro-
jection.

4.2 Multiple heightfields
Most objects are not globally representable as heightfields, but very
often they can be quite faithfully represented by the combination of
several heightfields. Oliveira et al. uses 6 relief textures mapped on
a bounding box to replace objects like statues[19]. We use a similar
approach with our reverse perspective heightfield except that we
split a bounding cube in 6 perspective frustums.

Figure 10: (left) Using 6 reverse persepective heightfields to repre-
sent an object (right) clipping the reverse persepective heightfields
to reduce fillrate.

4.3 Independent resolutions
The intersection search depends only on heights. Once it is found,
color is obtained with a color-texture lookup. Depth and color tex-

(a)

d.y

d.x

T.y
T.x

t=0

(b)

Figure 2: (a) Walking a ray by taking fixed steps yields redundant lookups and missed feature, no matter the sampling rate, as can be seen by
considering a ray arbitrarily close to a texel’s center (b) In Amanatides and Woo[1], the ray is walked from one centerline to the next; no texel
is missed and the correct intersection is found.

r(x,y,θ)

θ

(x,y)

r(x,y,θ')

θ'

(x,y)

Figure 4: The safety radius r(x,y,θ) indicates a region in which rays pass-
ing above pixel (x,y) with direction θ can have at most one intersection
with the heightfield.

of the safety radius, there can be at most one intersection between
positions t and t+ dt. If the new position is above the heightfield,
there is no intersection and we keep advancing. If it is below, there
is exactly one intersection between t and t+dt and we run a binary
search to find it. Figure 5 shows an example.

safety radius

zt

ht

t

θ

Figure 5: Example of robust binary search: from left, we walk along the
ray of amounts corresponding to safety radii (green steps) as soon as we
pass below the heightfield, we start a binary search (purple steps).

We encode a conservative discrete 2D version of the safety ra-
dius in a 2D texture. For a texel (i, j), the safety radius is now a
number of pixels n such that any ray, whose projection crosses the
centerlines within the texel, has at most one intersection with the

heightfield within the 2n×2n square centered on (i, j). As seen in
Figure 6, this square is supported by centerlines.

wit
hin
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t sq
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e
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one
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i

j

Figure 6: Conservative safety radius. For texel (i, j), the safety radius
is 2 meaning any ray crossing the texel has at most one intersection
with the heightfield in green square.

The intersection algorithm is as follows. We first determine if
the ray is more horizontal than vertical by comparing d.x and d.y
where d is the direction of the ray. Suppose the ray is horizontal
(d.x > d.y). We walk backwards on the ray to the first intersection
with a vertical centerline. Then we fetch the safety radius r for
the corresponding texel. If it is non zero, we advance by r vertical
centerlines. We keep doing this until we pass below the heightfield
at which point we run a binary search.
The case of zero radius is special. It occurs when the height-

field is locally non concave because we can always find a ray that
has two intersections with the local peak (Fig. 7). The problem with

texel A texel B

ε
B

ε
A

Figure 7: For texel A and B, the safety radius is 0 as we can clearly find
rays intersecting the heightfield twice arbitrarily close to the texel’s
centers. Setting a non zero radius will create incorrect silhouettes of
size ε.

zero radius is that we can no longer advance our position on the ray.
There are two ways of dealing with this. The first one is to move
“manually” to the next texel by performing up to two iterations of
the exact algorithm. This solution yields exact computations but
the code for the loop becomes more complex and there is a perfor-
mance penalty. The other solution is to clamp the radius to 1. This
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Synthétiser un nouveau 
PV

• Rendu uniquement à base de re-projections 
d’images.

• Idée principale : une image calibrée 2.5D est 
un échantillonnage de la fonction 
plénoptique.

• Image panoramique cylindrique.

• A partir de ces données : synthèse d’un 
point de vue quelconque de la scène.
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Quicktime VR

Figure 5. A perspective view created from warping a region enclosed by the yellow box in the panoramic image.

Figure 9. A stitched panoramic image and some of the photographs the image stitched from.
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Plenoptic modelingProceedings of SIGGRAPH 95 (Los Angeles, California, August 6-11, 1995)

7

annealing and method of differences stereo-correspondence rou-
tines. As these tiepoints were added, we also refined the epipolar
geometry and cylinder position estimates. The change in cylinder
position, however, was very slight. In Figure 5d, we show a cylin-
drical image with several epipolar curves superimposed. Notice how
the curves all intersect at the alternate camera’s virtual image and
vanishing point.

After the disparity images are computed, they can be interac-
tively warped to new viewing positions. The following four images
show various reconstructions. When used interactively, the warped
images provide a convincing kinetic depth effect.

6. CONCLUSIONS
The plenoptic function provides a consistent framework for image-
based rendering systems. The various image-based methods, such as
morphing and view interpolation, are characterized by the different
ways they implement the three key steps of sampling, reconstructing,
and resampling the plenoptic function.

We have described our approach to each of these steps. Our
method for sampling the plenoptic function can be done with equip-
ment that is commonly available, and it results in cylindrical samples
about a point. All the necessary parameters are automatically esti-
mated from a sequence of images resulting from panning a video
camera through a full circle.

Reconstructing the function from these samples requires esti-
mating the optic flow of points when the view point is translated.
Though this problem can be very difficult, as evidenced by thirty
years of computer vision and photogrammetry research, it is greatly
simplified when the samples are relatively close together. This is
because there is little change in the image between samples (which
makes the estimation easier), and because the viewer is never far from

a sample (which makes accurate estimation less important).
Resampling the plenoptic function and reconstructing a planar

projection are the key steps for display of images from arbitrary view-
points. Our methods allow efficient determination of visibility and
real-time display of visually rich environments on conventional
workstations without special purpose graphics acceleration.

The plenoptic approach to modeling and display will provide
robust and high-fidelity models of environments based entirely on a
set of reference projections. The degree of realism will be determined
by the resolution of the reference images rather than the number of
primitives used in describing the scene. Finally, the difficulty of pro-
ducing realistic models of real environments will be greatly reduced
by replacing geometry with images.
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projection are the key steps for display of images from arbitrary view-
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(14)

where is the unknown position of the cylinder’s
center of projection, φa is the rotational offset which aligns the angu-
lar orientation of the cylinders to a common frame, ka is a scale factor
which determines the vertical field-of-view, and  is the scanline
where the center of projection would project onto the scene (i.e. the
line of zero elevation, like the equator of a spherical map).

A pair of tiepoints, one from each image, establishes a pair of
rays which ideally intersect at the point in space identified by the tie-
point. In general, however, these rays are skewed. Therefore, we use
the point that is simultaneously closest to both rays as an estimate of
the point’s position, , as determined by the following derivation.

(15)

where  and  are the tiepoint coordinates on cylin-
ders A and B respectively. The two points,  and , are given by

(16)

where

(17)

This allows us to pose the problem of finding a cylinder’s position
as a minimization problem. For each pair of cylinders we have two
sets of six unknowns, [(Ax,Ay,Az,φa,ka,Cva), (Bx,By,Bz,φb,kb, Cvb)]. In
general, we have good estimates for the k and Cv terms, since these
values are found by the registration phase. The position of the cyl-
inders is determined by minimizing the distance between these
skewed rays. We also choose to assign a penalty for shrinking the ver-
tical height of the cylinder in order to bring points closer together.
This penalty could be eliminated by accepting either the k or Cv val-
ues given by the registration.

We have tested this approach using from 12 to 500 tiepoints, and
have found that it converges to a solution in as few as ten iterations
of Powell’s method. Since no correlation step is required, this process
is considerably faster than the minimization step required to deter-
mine the structural matrix, S.

The use of a cylindrical projection introduces significant geo-
metric constraints on where a point viewed in one projection might
appear in a second. We can capitalize on these restrictions when we
wish to automatically identify corresponding points across cylinders.
While an initial set of 100 to 500 tiepoints might be established by
hand, this process is far too tedious to establish a mapping for the
entire cylinder. Next, we present a geometric constraint for cylindri-
cal projections that determines the possible positions of a point given
its position in some other cylinder. This constraint plays the same role
that the epipolar geometries [18], [9], used in the computer vision
community for depth-from-stereo computations, play for planar pro-
jections.

First, we will present an intuitive argument for the existence of
such an invariant. Consider yourself at the center of a cylindrical pro-
jection. Every point on the cylinder around you corresponds to a ray
in space as given by the cylindrical epipolar geometry equation.
When one of the rays is observed from a second cylinder, its path
projects to a curve which appears to begin at the point corresponding
to the origin of the first cylinder, and it is constrained to pass through
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the point’s image on the second cylinder.
This same argument could obviously have been made for a pla-

nar projection. And, since two points are identified (the virtual image
of the camera in the second projection along with the corresponding
point) and, because a planar projection preserve lines, a unique, so
called epipolar line is defined. This is the basis for an epipolar geom-
etry, which identifies pairs of lines in two planar projections such that
if a point falls upon one line in the first image, it is constrained to fall
on the corresponding line in the second image. The existence of this
invariant reduces the search for corresponding points from an O(N2)
problem to O(N).

Cylindrical projections, however, do not preserve lines. In gen-
eral, lines map to quadratic parametric curves on the surface of a cyl-
inder. Surprisingly, we can completely specify the form of the curve
with no more information than was needed in the planar case.

The paths of these curves are uniquely determined sinusoids.
This cylindrical epipolar geometry is established by the following
equation.

(18)

where

(19)
This formula gives a concise expression for the curve formed by

the projection of a ray across the surface of a cylinder, where the ray
is specified by its position on some other cylinder.

This cylindrical epipolar relationship can be used to establish
image flow fields using standard computer vision methods. We have
used correlation methods [9], a simulated annealing-like relaxation
method [3], and the method of differences [20] to compute stereo dis-
parities between cylinder pairs. Each method has its strengths and
weaknesses. We refer the reader to the references for further details.

4.4 Plenoptic Function Reconstruction
Our image-based rendering system takes as input cylindrically pro-
jected panoramic reference images along with scalar disparity
images relating each cylinder pair. This information is used to auto-
matically generate image warps that map reference images to
arbitrary cylindrical or planar views that are capable of describing
both occlusion and perspective effects.

FIGURE 2. Diagram showing the transfer of the known
disparity values between cylinders A and B to a new
viewing position V.

We begin with a description of cylindrical-to-cylindrical map-
pings. Each angular disparity value, α, of the disparity images, can
be readily converted into an image flow vector field,

 using the epipolar relation given by Equation 18
for each position on the cylinder, (θ, v). We can transfer disparity val-
ues from the known cylindrical pair to a new cylindrical projection
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Figure 6: Original image taken from results of [Liebowitz et al. 1999] and two novel views from the 3D model generated by our system.
Since the roof in our model is not slanted, the model generated by Liebowitz et al. is slightly more accurate, but their model is manually
specified, while ours is created fully automatically!

1. Image! superpixels via over-segmentation (Sec 4.1)
2. Superpixels! multiple constellations (Sec 4.2)

(a) For each superpixel: compute features (Sec 1)
(b) For each pair of superpixels: compute pairwise likelihood of same

label
(c) Varying the number of constellations:

maximize average pairwise log-likelihoods within constellations
(Eq 1)

3. Multiple constellations! superpixel labels (Sec 4.3)
(a) For each constellation:

i. Compute features (Sec 1)
ii. For each label 2 {ground, vertical, sky}: compute label

likelihood
iii. Compute likelihood of label homogeneity

(b) For each superpixel: compute label confidences (Eq 2) and assign
most likely label

4. Superpixel labels! 3D model (Sec 5)
(a) Partition vertical regions into a set of objects
(b) For each object: fit ground-object intersection with line
(c) Create VRML models by cutting out sky and “popping up” ob-

jects from the ground

Figure 7: Creating a VRML model from a single image.

the estimated position of the horizon, we abandon that estimate and
assume that the horizon lies slightly above the highest ground pixel.

6 Implementation

Figure 7 outlines the algorithm for creating a 3D model from an im-
age. We used Felzenszwalb’s [2004] publicly available code to gen-
erate the superpixels and implemented the remaining parts of the
algorithm using MATLAB. The decision tree learning and kernel
density estimation was performed using weighted versions of the
functions from the MATLAB Statistics Toolbox. We used twenty
Adaboost iterations for the learning of the pairwise likelihood and
geometric labeling functions. In our experiments, we set Nc to each
of {3,4,5,6,7,9,12,15}. We have found our labeling algorithm to be
fairly insensitive to parameter changes or small changes in the way
that the image statistics are computed.

In creating the 3D model from the labels, we set the minimum num-
ber of boundary points per segment mp to s/20, where s is the diag-
onal length of the image. We set the minimum distance for a point
to be considered part of a segment dt to s/100 and the maximum
horizontal gap between consecutive points gt to the larger of the
segment length and s/20.

The total processing time for an 800x600 image is about 1.5
minutes using unoptimized MATLAB code on a 2.13GHz Athalon
machine.

7 Results

Figure 9 shows the qualitative results of our algorithm on several
images. On a test set of 62 novel images, 87% of the pixels were
correctly labeled into ground, vertical, or sky. Even when all pixels
are correctly labeled, however, the model may still look poor if ob-
ject boundaries and object-ground intersection points are difficult
to determine. We found that about 30% of input images of outdoor
scenes result in accurate models.

Figure 8 shows four examples of typical failures. Common causes
of failure are 1) labeling error, 2) polyline fitting error, 3) model-
ing assumptions, 4) occlusion in the image, and 5) poor estimation
of the horizon position. Under our assumptions, crowded scenes
(e.g. lots of trees or people) cannot be easily modeled. Addition-
ally, our models cannot account for slanted surfaces (such as hills)
or scenes that contain multiple ground-parallel planes (e.g. steps).
Since we do not currently attempt to segment overlapping vertical
regions, occluding foreground objects cause fitting errors or are ig-
nored (made part of the ground plane). Additionally, errors in the
horizon position estimation (our current method is quite basic) can
cause angles between connected planes to be overly sharp or too
shallow. By providing a simple interface, we could allow the user
to quickly improve results by adjusting the horizon position, cor-
recting labeling errors, or segmenting vertical regions into objects.

Since the forming of constellations depends partly on a random ini-
tialization, results may vary slightly when processing the same im-
age multiple times. Increasing the number of sets of constellations
would decrease this randomness at the cost of computational time.

8 Conclusion

We set out with the goal of automatically creating visually pleasing
3D models from a single 2D image of an outdoor scene. By making
our small set of assumptions and applying a statistical framework
to the problem, we find that we are able to create beautiful models
for many images.

The problem of automatic single-view reconstruction, however, is
far from solved. Future work could include the following improve-
ments: 1) use segmentation techniques such as [Li et al. 2004] to
improve labeling accuracy near region boundaries (our initial at-
tempts at this have not been successful) or to segment out fore-
ground objects; 2) estimate the orientation of vertical regions from
the image data, allowing a more robust polyline fit; and 3) an ex-
tension of the system to indoor scenes. Our approach to automatic
single-view modeling paves the way for a new class of applications,
allowing the user to add another dimension to the enjoyment of his
photos.
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(a) input image (b) superpixels (c) constellations (d) labeling (e) novel view
Figure 2: 3D Model Estimation Algorithm. To obtain useful statistics for modeling geometric classes, we must first find uniformly-labeled
regions in the image by computing superpixels (b) and grouping them into multiple constellations (c). We can then generate a powerful set
of statistics and label the image based on models learned from training images. From these labels, we can construct a simple 3D model (e) of
the scene. In (b) and (c), colors distinguish between separate regions; in (d) colors indicate the geometric labels: ground, vertical, and sky.

single image. [Liebowitz et al. 1999; Criminisi et al. 2000] offer
the most accurate (but also the most labor-intensive) approach, re-
covering a metric reconstruction of an architectural scene by using
projective geometry constraints [Hartley and Zisserman 2004] to
compute 3D locations of user-specified points given their projected
distances from the ground plane. The user is also required to spec-
ify other constraints such as a square on the ground plane, a set of
parallel “up” lines and orthogonality relationships. Most other ap-
proaches forgo the goal of a metric reconstruction, focusing instead
on producing perceptually pleasing approximations. [Zhang et al.
2001] models free-form scenes by letting the user place constraints,
such as normal directions, anywhere on the image plane and then
optimizing for the best 3D model to fit these constraints. [Ziegler
et al. 2003] finds the maximum-volume 3D model consistent with
multiple manually-labeled images. Tour into the Picture [Horry
et al. 1997], the main inspiration for this work, models a scene
as an axis-aligned box, a sort of theater stage, with floor, ceiling,
backdrop, and two side planes. An intuitive “spidery mesh” inter-
face allows the user to specify the coordinates of this box and its
vanishing point. Foreground objects are manually labeled by the
user and assigned to their own planes. This method produces im-
pressive results but works only on scenes that can be approximated
by a one-point perspective, since the front and back of the box are
assumed to be parallel to the image plane. This is a severe limita-
tion (that would affect most of the images in this paper, including
Figure 1(left)) which has been partially addressed by [Kang et al.
2001] and [Oh et al. 2001], but at the cost of a less intuitive inter-
face.

Automatic methods exist to reconstruct certain types of scenes from
multiple images or video sequences (e.g. [Nistér 2001; Pollefeys
et al. 2004]), but, to the best of our knowledge, no one has yet
attempted automatic single-view modeling.

1.2 Intuition

Consider the photograph in Figure 1(left). Humans can easily grasp
the overall structure of the scene – sky, ground, relative positions of
major landmarks. Moreover, we can imagine reasonably well what
this scene would look like from a somewhat different viewpoint,
even if we have never been there. This is truly an amazing ability
considering that, geometrically speaking, a single 2D image gives
rise to an infinite number of possible 3D interpretations! How do
we do it?

The answer is that our natural world, despite its incredible richness
and complexity, is actually a reasonably structured place. Pieces of
solid matter do not usually hang in mid-air but are part of surfaces
that are usually smoothly varying. There is a well-defined notion
of orientation (provided by gravity). Many structures exhibit high
degree of similarity (e.g. texture), and objects of the same class
tend to have many similar characteristics (e.g. grass is usually green
and can most often be found on the ground). So, while an image

offers infinitely many geometrical interpretations, most of them can
be discarded because they are extremely unlikely given what we
know about our world. This knowledge, it is currently believed, is
acquired through life-long learning, so, in a sense, a lot of what we
consider human vision is based on statistics rather than geometry.

One of the main contributions of this paper lies in posing the classic
problem of geometric reconstruction in terms of statistical learning.
Instead of trying to explicitly extract all the required geometric pa-
rameters from a single image (a daunting task!), our approach is to
rely on other images (the training set) to furnish this information in
an implicit way, through recognition. However, unlike most scene
recognition approaches which aim to model semantic classes, such
as cars, vegetation, roads, or buildings [Everingham et al. 1999;
Konishi and Yuille 2000; Singhal et al. 2003], our goal is to model
geometric classes that depend on the orientation of a physical ob-
ject with relation to the scene. For instance, a piece of plywood
lying on the ground and the same piece of plywood propped up by
a board have two different geometric classes but the same semantic
class. We produce a statistical model of geometric classes from a
set of labeled training images and use that model to synthesize a 3D
scene given a new photograph.

2 Overview

We limit our scope to dealing with outdoor scenes (both natural and
man-made) and assume that a scene is composed of a single ground
plane, piece-wise planar objects sticking out of the ground at right
angles, and the sky. Under this assumption, we can construct a
coarse, scaled 3D model from a single image by classifying each
pixel as ground, vertical or sky and estimating the horizon position.
Color, texture, image location, and geometric features are all useful
cues for determining these labels. We generate as many potentially
useful cues as possible and allow our machine learning algorithm
(decision trees) to figure out which to use and how to use them.
Some of these cues (e.g., RGB values) are quite simple and can
be computed directly from pixels, but others, such as geometric
features require more spatial support to be useful. Our approach
is to gradually build our knowledge of scene structure while being
careful not to commit to assumptions that could prevent the true
solution from emerging. Figure 2 illustrates our approach.

Image to Superpixels
Without knowledge of the scene’s structure, we can only compute
simple features such as pixel colors and filter responses. The first
step is to find nearly uniform regions, called “superpixels” (Figure
2(b)), in the image. The use of superpixels improves the efficiency
and accuracy of finding large single-label regions in the image. See
Section 4.1 for details.

Superpixels to Multiple Constellations
An image typically contains hundreds of superpixels over which we

(a) input image (b) superpixels (c) constellations (d) labeling (e) novel view
Figure 2: 3D Model Estimation Algorithm. To obtain useful statistics for modeling geometric classes, we must first find uniformly-labeled
regions in the image by computing superpixels (b) and grouping them into multiple constellations (c). We can then generate a powerful set
of statistics and label the image based on models learned from training images. From these labels, we can construct a simple 3D model (e) of
the scene. In (b) and (c), colors distinguish between separate regions; in (d) colors indicate the geometric labels: ground, vertical, and sky.

single image. [Liebowitz et al. 1999; Criminisi et al. 2000] offer
the most accurate (but also the most labor-intensive) approach, re-
covering a metric reconstruction of an architectural scene by using
projective geometry constraints [Hartley and Zisserman 2004] to
compute 3D locations of user-specified points given their projected
distances from the ground plane. The user is also required to spec-
ify other constraints such as a square on the ground plane, a set of
parallel “up” lines and orthogonality relationships. Most other ap-
proaches forgo the goal of a metric reconstruction, focusing instead
on producing perceptually pleasing approximations. [Zhang et al.
2001] models free-form scenes by letting the user place constraints,
such as normal directions, anywhere on the image plane and then
optimizing for the best 3D model to fit these constraints. [Ziegler
et al. 2003] finds the maximum-volume 3D model consistent with
multiple manually-labeled images. Tour into the Picture [Horry
et al. 1997], the main inspiration for this work, models a scene
as an axis-aligned box, a sort of theater stage, with floor, ceiling,
backdrop, and two side planes. An intuitive “spidery mesh” inter-
face allows the user to specify the coordinates of this box and its
vanishing point. Foreground objects are manually labeled by the
user and assigned to their own planes. This method produces im-
pressive results but works only on scenes that can be approximated
by a one-point perspective, since the front and back of the box are
assumed to be parallel to the image plane. This is a severe limita-
tion (that would affect most of the images in this paper, including
Figure 1(left)) which has been partially addressed by [Kang et al.
2001] and [Oh et al. 2001], but at the cost of a less intuitive inter-
face.

Automatic methods exist to reconstruct certain types of scenes from
multiple images or video sequences (e.g. [Nistér 2001; Pollefeys
et al. 2004]), but, to the best of our knowledge, no one has yet
attempted automatic single-view modeling.

1.2 Intuition

Consider the photograph in Figure 1(left). Humans can easily grasp
the overall structure of the scene – sky, ground, relative positions of
major landmarks. Moreover, we can imagine reasonably well what
this scene would look like from a somewhat different viewpoint,
even if we have never been there. This is truly an amazing ability
considering that, geometrically speaking, a single 2D image gives
rise to an infinite number of possible 3D interpretations! How do
we do it?

The answer is that our natural world, despite its incredible richness
and complexity, is actually a reasonably structured place. Pieces of
solid matter do not usually hang in mid-air but are part of surfaces
that are usually smoothly varying. There is a well-defined notion
of orientation (provided by gravity). Many structures exhibit high
degree of similarity (e.g. texture), and objects of the same class
tend to have many similar characteristics (e.g. grass is usually green
and can most often be found on the ground). So, while an image

offers infinitely many geometrical interpretations, most of them can
be discarded because they are extremely unlikely given what we
know about our world. This knowledge, it is currently believed, is
acquired through life-long learning, so, in a sense, a lot of what we
consider human vision is based on statistics rather than geometry.

One of the main contributions of this paper lies in posing the classic
problem of geometric reconstruction in terms of statistical learning.
Instead of trying to explicitly extract all the required geometric pa-
rameters from a single image (a daunting task!), our approach is to
rely on other images (the training set) to furnish this information in
an implicit way, through recognition. However, unlike most scene
recognition approaches which aim to model semantic classes, such
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lying on the ground and the same piece of plywood propped up by
a board have two different geometric classes but the same semantic
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We limit our scope to dealing with outdoor scenes (both natural and
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plane, piece-wise planar objects sticking out of the ground at right
angles, and the sky. Under this assumption, we can construct a
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be computed directly from pixels, but others, such as geometric
features require more spatial support to be useful. Our approach
is to gradually build our knowledge of scene structure while being
careful not to commit to assumptions that could prevent the true
solution from emerging. Figure 2 illustrates our approach.

Image to Superpixels
Without knowledge of the scene’s structure, we can only compute
simple features such as pixel colors and filter responses. The first
step is to find nearly uniform regions, called “superpixels” (Figure
2(b)), in the image. The use of superpixels improves the efficiency
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An image typically contains hundreds of superpixels over which we

(a) input image (b) superpixels (c) constellations (d) labeling (e) novel view
Figure 2: 3D Model Estimation Algorithm. To obtain useful statistics for modeling geometric classes, we must first find uniformly-labeled
regions in the image by computing superpixels (b) and grouping them into multiple constellations (c). We can then generate a powerful set
of statistics and label the image based on models learned from training images. From these labels, we can construct a simple 3D model (e) of
the scene. In (b) and (c), colors distinguish between separate regions; in (d) colors indicate the geometric labels: ground, vertical, and sky.

single image. [Liebowitz et al. 1999; Criminisi et al. 2000] offer
the most accurate (but also the most labor-intensive) approach, re-
covering a metric reconstruction of an architectural scene by using
projective geometry constraints [Hartley and Zisserman 2004] to
compute 3D locations of user-specified points given their projected
distances from the ground plane. The user is also required to spec-
ify other constraints such as a square on the ground plane, a set of
parallel “up” lines and orthogonality relationships. Most other ap-
proaches forgo the goal of a metric reconstruction, focusing instead
on producing perceptually pleasing approximations. [Zhang et al.
2001] models free-form scenes by letting the user place constraints,
such as normal directions, anywhere on the image plane and then
optimizing for the best 3D model to fit these constraints. [Ziegler
et al. 2003] finds the maximum-volume 3D model consistent with
multiple manually-labeled images. Tour into the Picture [Horry
et al. 1997], the main inspiration for this work, models a scene
as an axis-aligned box, a sort of theater stage, with floor, ceiling,
backdrop, and two side planes. An intuitive “spidery mesh” inter-
face allows the user to specify the coordinates of this box and its
vanishing point. Foreground objects are manually labeled by the
user and assigned to their own planes. This method produces im-
pressive results but works only on scenes that can be approximated
by a one-point perspective, since the front and back of the box are
assumed to be parallel to the image plane. This is a severe limita-
tion (that would affect most of the images in this paper, including
Figure 1(left)) which has been partially addressed by [Kang et al.
2001] and [Oh et al. 2001], but at the cost of a less intuitive inter-
face.

Automatic methods exist to reconstruct certain types of scenes from
multiple images or video sequences (e.g. [Nistér 2001; Pollefeys
et al. 2004]), but, to the best of our knowledge, no one has yet
attempted automatic single-view modeling.

1.2 Intuition

Consider the photograph in Figure 1(left). Humans can easily grasp
the overall structure of the scene – sky, ground, relative positions of
major landmarks. Moreover, we can imagine reasonably well what
this scene would look like from a somewhat different viewpoint,
even if we have never been there. This is truly an amazing ability
considering that, geometrically speaking, a single 2D image gives
rise to an infinite number of possible 3D interpretations! How do
we do it?

The answer is that our natural world, despite its incredible richness
and complexity, is actually a reasonably structured place. Pieces of
solid matter do not usually hang in mid-air but are part of surfaces
that are usually smoothly varying. There is a well-defined notion
of orientation (provided by gravity). Many structures exhibit high
degree of similarity (e.g. texture), and objects of the same class
tend to have many similar characteristics (e.g. grass is usually green
and can most often be found on the ground). So, while an image

offers infinitely many geometrical interpretations, most of them can
be discarded because they are extremely unlikely given what we
know about our world. This knowledge, it is currently believed, is
acquired through life-long learning, so, in a sense, a lot of what we
consider human vision is based on statistics rather than geometry.

One of the main contributions of this paper lies in posing the classic
problem of geometric reconstruction in terms of statistical learning.
Instead of trying to explicitly extract all the required geometric pa-
rameters from a single image (a daunting task!), our approach is to
rely on other images (the training set) to furnish this information in
an implicit way, through recognition. However, unlike most scene
recognition approaches which aim to model semantic classes, such
as cars, vegetation, roads, or buildings [Everingham et al. 1999;
Konishi and Yuille 2000; Singhal et al. 2003], our goal is to model
geometric classes that depend on the orientation of a physical ob-
ject with relation to the scene. For instance, a piece of plywood
lying on the ground and the same piece of plywood propped up by
a board have two different geometric classes but the same semantic
class. We produce a statistical model of geometric classes from a
set of labeled training images and use that model to synthesize a 3D
scene given a new photograph.

2 Overview

We limit our scope to dealing with outdoor scenes (both natural and
man-made) and assume that a scene is composed of a single ground
plane, piece-wise planar objects sticking out of the ground at right
angles, and the sky. Under this assumption, we can construct a
coarse, scaled 3D model from a single image by classifying each
pixel as ground, vertical or sky and estimating the horizon position.
Color, texture, image location, and geometric features are all useful
cues for determining these labels. We generate as many potentially
useful cues as possible and allow our machine learning algorithm
(decision trees) to figure out which to use and how to use them.
Some of these cues (e.g., RGB values) are quite simple and can
be computed directly from pixels, but others, such as geometric
features require more spatial support to be useful. Our approach
is to gradually build our knowledge of scene structure while being
careful not to commit to assumptions that could prevent the true
solution from emerging. Figure 2 illustrates our approach.

Image to Superpixels
Without knowledge of the scene’s structure, we can only compute
simple features such as pixel colors and filter responses. The first
step is to find nearly uniform regions, called “superpixels” (Figure
2(b)), in the image. The use of superpixels improves the efficiency
and accuracy of finding large single-label regions in the image. See
Section 4.1 for details.

Superpixels to Multiple Constellations
An image typically contains hundreds of superpixels over which we
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Synthétiser un nouvel 
éclairage

• Image : échantillonage de la fonction 
plénoptique.

• résultat de l’interaction lumière-matière.

• Idée : exploiter cette information ?

• Pour déterminer les caractéristiques des 
objets et des sources.

• Pour changer l’éclairage / les matières.
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Synthétiser un nouvel 
éclairage

• Idée de base : 

• Les même objets 
mais...

• Plusieurs 
configurations 
(connues) 
d’éclairage.

• Obtenir un nouvel 
éclairage ?
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Data-intensive Image based Relighting

Figure 1: LampPost and PipeSet relit using a light source with novel direction, color and the intensity.

Abstract

Image based Relighting(IBRL) has attracted a lot of interest in the

computer graphics research, gaming, and virtual cinematography

communities for its ability to relight objects or scenes, from novel

illuminations captured in natural or synthetic environments. How-

ever, the advantages of an image-based framework conflicts with a

drastic increase in the storage caused by the huge number of ref-

erence images pre-captured under various illumination conditions.

To perform fast relighting, while maintaining the visual fidelity, one

needs to preprocess this huge data into an appropriate model.

In this paper, we propose a novel and efficient two-stage relighting

algorithm which creates a compact representation of the huge IBRL

dataset and facilitates fast relighting. In the first stage, using Singu-

lar Value Decomposition, a set of eigen image bases and relighting

coefficients are computed. In the second stage, and in contrast to

prior methods, the correlation among the relighting coefficients is

harnessed using Spherical Harmonics. The proposed method thus

has lower memory and computational requirements. We demon-

strate our results qualitatively and quantitatively with new image

data as well as with publicly available data.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism—Virtual reality; I.4.1 [Image Processing and

Computer Vision]: Digitization and Image Capture—Reflectance

Keywords: relighting, image-based, virtual/augmented reality

1 Introduction

The traditional way of synthesizing interesting imagery involves

specifying all the objects in the world and their interactions, which

can be termed the source description. An alternative way to de-

scribe the world is through the appearance description, also termed

Image-based modeling and rendering(IBR). Unlike traditional ren-

dering, IBR synthesizes realistic images from pre-recorded imagery

without a complex and long rendering process.

A key area of interest in computer graphics has been illumination

changes or relighting. Lighting design is one the most important de-

cisions artists and designer have to take, both for our real and virtual

world. Unfortunately, the ability to control illumination changes

is inherently difficult with pre-acquired images. If this process of

relighting can be made independent of the scene complexity, as

in image-based relighting(IBRL), the artist is saved an enormous

amount of time fine-tuning the illumination conditions to create the

desired effect.

The approach chosen by many IBRL techniques involves pre-

rendering (synthetic scenes) or pre-acquisition (real scenes) of a

collection of images in which the lighting direction is systemati-

cally varied. If the density of illumination is dense enough, then due

to linearity of scene radiance, images of the scene under complex il-

lumination can be computed simply by superposition of single light

source images. Although now relighting is tractable, the collec-

tion of images is typically too large both to store in memory and

to synthesize novel images in real-time (Debevec et al. [Debevec

et al. 2000] use 2000 images and Koudelka et al. [Koudelka et al.

2001] use more than 4000 images). If too few images are used, the

quality of reconstruction is compromised (blurring of specularities

and inaccurate shadows). The fundamental fact of IBRL data being

closely related to the surface reflectance makes it necessary to cor-

rectly model the data into a compact and efficient representation.

Researchers have coped with this issue in several ways.

Compression: Several compression techniques have been pro-

posed to remove the data redundancy in image-based data. In [De-

bevec et al. 2000], images of each pixel’s reflectance function are

stored in the JPEG format and further processed in the compressed

domain. Lin et al. [Lin et al. 2002], on the other hand uses a 2D

DCT to compress the images of a pixel’s radiance values. Vector

quantization, entropy coding, and wavelet transform are some of the

widely used image compression techniques. However, these tech-

niques either compress the relighting data by small factor or (their

overuse) introduces artifacts.

Sampling: As a novel image is synthesized from a model built

from reference images, the quality of reconstruction depends on

the sampling density of reference images. Lin et al. [Lin et al.

2002] derived a theoretical geometry-independent sampling bound
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(a) Original (b) Our Algo-

rithm

(c) 2S-SVD (d) IAI (e) Original (f) Our Algo-

rithm

(g) 2S-SVD (h) IAI

Figure 6: Relit LampPost under two different illuminations. Figure 6(a),6(b),6(c),6(d) are images under one lighting direction and, Fig-
ure 6(e),6(f),6(g),6(h) is the other set of images under a different lighting. Shadows, the desired sharpness and various illumination effects
are faithfully reproduced. For quantitative details, see respective entries for Lampost 1 and Lampost 2 in Table 1.

cess all blocks simultaneously and thereby perform relighting in

realtime.

5 Conclusion

In this paper, we propose a novel two-stage IBRL technique, which

tackles the traditional problem of huge storage and computational

resource requirements. We apply SVD to capture the inter-pixel

correlations, producing a set of eigen bases images and correspond-

ing relighting coefficients in Stage 1, and in Stage 2, we further

model the intra-pixel correlations among the relighting coefficients

using Spherical Harmonics and reduce them to a compact set of SH

relighting coefficients. Fast relighting can then be performed with

single/multiple light sources. Three new IBRL datasets, LampPost,
Pipset and Lighter for the purpose of experimentation have been

generated and experimental results validate our technique.

Figure 8: Sample points on the surface of a sphere denotes point
light sources used for illuminating the object/scene.
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Obtenir un nouvel 
éclairage ?

• Plusieurs méthodes :

• Brutal : trouver les  images les plus 
proches de l’éclairage recherché et 
interpoler.

• Plus fin : exploiter la redondance des 
informations en encodant le résultat sur 
une base d’harmoniques sphériques.
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Plus simple

• Déduire l’éclairage 
d’un objet complexe 
de l’éclairage d’un 
objet simple.

• Contrainte : les 
deux objets 
doivent avoir la 
même BRDF.
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Approches possibles

• Approche traditionnelle.

• Construire une image à partir d’autres 
images.

• Pour la réalité augmentée ?
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Pour la RA réaliste ?

• Approche traditionnelle : naturel.

• Mais aussi long qu’un rendu traditionnel...

• Approche basée image ?

• Quelle méthode ?

• Comment constituer la base d’images ?
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Pour la RA réaliste ?

• Pour les éléments virtuels à insérer :

• Relief textures ? Imposteurs ?

• Pour l’environnement :

• Photo Popup ? Plénoptic modeling ?

• Ré-éclairer les éléments virtuels ?

• Image-based lighting ? Lit-sphere shading ?
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Pour la RA réaliste ?

• Récents travaux de Derek Hoiem :

• Extraction d’un modèle simple de scène.

• Extraction assistée des sources de 
lumières.

• Composition.
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Pour la RA réaliste ?

• Récents travaux de Derek Hoiem :

Annotate geometry 

Auto-refine 3D scene Compose scene & render Final composite 

Annotate lights 

Bounding geometry 

Extruded surface 
with height 

Area light 

Figure 2: Our method for inserting synthetic objects into legacy photographs. From an input image (top left), initial geometry is estimated
and a user annotates other necessary geometry (top middle) as well as light positions (top right). From this input, our system automatically
computes a 3D scene, including a physical light model, surface materials, and camera parameters (bottom left). After a user places synthetic
objects in the scene (bottom middle), objects are rendered and composited into the original image (bottom right). Objects appear naturally
lit and adhere to the perspective and geometry of the physical scene. From our experience, the markup procedure takes only a minute or two,
and the user can begin inserting objects and authoring scenes in a matter of minutes.

2 Related work

Debevec’s work [1998] is most closely related to ours. Debevec
shows that a light probe, such as a spherical mirror, can be used to
capture a physically accurate radiance map for the position where a
synthetic object is to be inserted. This method requires a consider-
able amount of user input: HDR photographs of the probe, convert-
ing these photos into an environment map, and manual modeling
of scene geometry and materials. More robust methods exist at the
cost of more setup time (e.g. the plenopter [Mury et al. 2009]).
Unlike these methods and others (e.g. [Fournier et al. 1993; Al-
nasser and Foroosh 2006; Cossairt et al. 2008; Lalonde et al. 2009]),
we require no special equipment, measurements, or multiple pho-
tographs. Our method can be used with only a single LDR image,
e.g. from Flickr, or even historical photos that cannot be recaptured.

Image-based Content Creation. Like us, Lalonde et al. [2007]
aim to allow a non-expert user populate an image with objects. Ob-
jects are segmented from a large database of images, which they
automatically sort to present the user with source images that have
similar lighting and geometry. Insertion is simplified by automatic
blending and shadow transfer, and the object region is resized as the
user moves the cursor across the ground. This method is only suit-
able if an appropriate exemplar image exists, and even in that case,
the object cannot participate in the scene’s illumination. Similar
methods exist for translucent and refractive objects [Yeung et al.
2011], but in either case, inserted objects cannot reflect light onto
other objects or cast caustics. Furthermore, these methods do not
allow for mesh insertion, because scene illumination is not calcu-
lated. We avoid these problems by using synthetic objects (3D tex-
tured meshes, now plentiful and mostly free on sites like Google
3D Warehouse and turbosquid.com) and physical lighting models.

Single-view 3D Modeling. Several user-guided [Liebowitz et al.
1999; Criminisi et al. 2000; Zhang et al. 2001; Horry et al. 1997;
Kang et al. 2001; Oh et al. 2001; Sinha et al. 2008] or auto-
matic [Hoiem et al. 2005; Saxena et al. 2008] methods are able to

perform 3D modeling from a single image. These works are gener-
ally interested in constructing 3D geometric models for novel view
synthesis. Instead, we use the geometry to help infer illumination
and to handle perspective and occlusion effects. Thus, we can use
simple box-like models of the scene [Hedau et al. 2009] with pla-
nar billboard models [Kang et al. 2001] of occluding objects. The
geometry of background objects can be safely ignored. Our abil-
ity to appropriately resize 3D objects and place them on supporting
surfaces, such as table-tops, is based on the single-view metrology
work of Criminisi [2000]; also described by Hartley and Zisser-
man [2003]. We recover focal length and automatically estimate
three orthogonal vanishing points, using the method from Hedau et
al. [2009], which is based on Rother’s technique [2002].

Materials and Illumination. We use an automatic decomposi-
tion of the image into albedo, direct illumination and indirect illu-
mination terms (intrinsic images [Barrow and Tenenbaum 1978]).
Our geometric estimates are used to improve these terms and ma-
terial estimates, similar to Boivin and Gagalowicz [2001] and De-
bevec [1998], but our method improves efficiency of our illumina-
tion inference algorithm and is sufficient for realistic insertion (as
demonstrated in Sections 5 and 6). We must work with a single
legacy image, and wish to capture a physical light source estimate
so that our method can be used in conjunction with any physical
rendering software. Such representations as an irradiance volume
do not apply [Greger et al. 1998]. Yu et al. show that when a com-
prehensive model of geometry and luminaires is available, scenes
can be relit convincingly [Yu et al. 1999]. We differ from them in
that our estimate of geometry is coarse, and do not require multiple
images. Illumination in a room is not strongly directed, and cannot
be encoded with a small set of point light sources, so the methods of
Wang and Samaras [Wang and Samaras 2003] and Lopez-Moreno
et al. [Lopez-Moreno et al. 2010] do not apply. As we show in
our user study, point light models fail to achieve the realism that
physical models do. We also cannot rely on having a known object
present [Sato et al. 2003]. In the past, we have seen that people are
unable to detect perceptual errors in lighting [Lopez-Moreno et al.
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Pour la RA réaliste ?

• Approche purement image :

• 2 images : un fond, un sujet.

• But : insérer le sujet dans le fond 
sans provoquer de «choc» 
visuel.

• Méthode statistique : 
modifications colorimétriques et 
ajustement de contraste.
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Figure 11: Composites adjusted by: cut-and-paste, manual, Match Color, ColorComp, and ours. Insets show their relative scores from the
human subjects study.
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