Université Claude Bernard

Réalité augmentée réaliste

Cours M2 recherche

<u>Jean-Philippe.Farrugia@liris.cnrs.fr</u>

Plan

• Rendu généralisé.

Continuum Réel-Virtuel

Université Claude Bernard

Rendu généralisé

- 3 tâches : Colocalisation, co-visibilité, co-éclairement.
- La plupart du temps : réalisme pas essentiel.
 - Guidage, assistance...
- Co-éclairement : pas indispensable.

Rendu généralisé

- Réalisme : important dans certaines applications.
- Apporte des informations via des indices visuels.

LIRIS

Approches possibles

- Approche traditionnelle
- Approches non-classiques
- Pour la réalité augmentée ?

Approches possibles

- <u>Approche traditionnelle</u>
- Approches non-classiques
- Pour la réalité augmentée ?

Rendu

- Pipeline de rendu «classique» :
 - Transformation de modélisation / visualisation / projection.
 - Calcul éclairement.
 - Assemblage des primitives.
 - Rasterization.
 - Calcul de la couleur des pixels («shading»).

Rendu

- Pipeline de rendu «classique» :
 - Transformation de modélisation / visualisation / projection.
 - Calcul éclairement.
 - Assemblage des primitives.
 - Rasterization.

Données acquises ?

• Calcul de la couleur des pixels («shading»).

- <u>Reconstruire géométrie et éclairage sous</u> <u>une forme «connue».</u>
 - Modèle de géométrie (facettes).
 - Modèle de transfert d'énergie.
 - Radiosité, rayons, sources ponctuelles.
- Cas «complexe» mais pas intraitable.
 - Des algorithmes «classiques» existent.
 - Comment les adapter à la problématique ?

Exemple

«A montage method : the overlaying of the computer generated images onto a background photograph», Nakamae *et al.*

• Insertion de bâtiments virtuels.

LIRIS

• Cas simple : source unique, pas d'ombre.

• Technique de la radiosité :

LIRIS

Calcul d'éclairement basé sur la thermique.

Exemple

Common illumination between real and computer generated scenes, Fournier et al.

• Ajout d'une source de lumière virtuelle

LIRİS

Modélisation manuelle de l'environnement

Exemple

Image-based rendering of diffuse, specular and glossy surfaces from a single image, Boivin et.al

 Pour des matières non diffuses : Détermination itérative.

LIRIS

• Autre algorithme classique : tracé de chemin.

• Avec des données acquises : différenciation

Chemins réels purs

Chemins virtuels purs

• Avec des données acquises : différenciation

Chemins mixtes

• Modification de l'environnement

Chemins réels purs interceptés

- Transport de la lumière : rayons.
- Position des sources ?
 - Renseigné manuellement. Pas pratique.
 - Détermination automatique depuis la capture : carte d'environnement.

Image-based lighting

- Stockage de la carte d'environnement sous la forme d'un cube englobant.
- Cubemap = carte de sources de lumières distantes.
- Si sources locales : modélisation manuelle.

Images HDR (plaquage cubique)

c) Rendu avec objets synthétiques

Résultat du ré-éclairage

Rendering Synthetic Objects Into Real Scenes : Bridging Traditional and Image-Based Graphics With Global Illumination and High Dynamic Range Photography, Paul Debevec.

Image-based lighting

- Problème : carte d'environnement = beaucoup de sources.
- Pour réduire :
 - Echantillonnage performant.
 - Pré-convolution par un matériau connu.
 - Instant radiosity.

 Instant Radiosity : ensemble de sources ponctuelles «virtuelles».

LIRIS

Lyon '

Pour les ombres ?

 Technique usuelle : «shadow mapping».

Génération de4े mage de la scène avec les ombres

Lyon 1

Exemple

Differential Instant Radiosity for Mixed Reality, Knecht et al.

- Eclairement local capturé avec une envmap.
- **Uris** Transformation en VPLs.

- Eclairage sans carte d'environnement ?
- Ce qui est capté par la caméra : échantillonnage de la lumière.
 - => Reconstitution de l'environnement photométrique à partir de ce qui est vu.
 - Difficile sans faire d'hypothèses assez restrictives.

Approches possibles

- Approche traditionnelle.
- <u>Construire une image à partir d'autres</u> <u>images.</u>
- Pour la réalité augmentée ?

Image-based rendering

- Que faire avec des images 2.5D calibrées ?
 - Simplifier la géométrie.
 - Synthétiser un nouveau point de vue.
 - Synthétiser un nouvel éclairage.

Simplifier la géométrie

- Remplacer le rendu d'un objet par un ensemble d'images.
 - Imposteurs («billboard»).
 - Ajouts de détails géométriques sur la surface.
 - Autres ?

Exemple

- Géométrie support très simple.
 - Plan, cube...
- Géométrie stockée dans plusieurs images de plusieurs types

LIRIS

n 1

Exemple

- Fonctionnement : implémentable sur GPU.
 - Ray-casting local sur textures de hauteurs.

Synthétiser un nouveau PV

- Rendu <u>uniquement</u> à base de re-projections d'images.
- Idée principale : une image calibrée 2.5D est un échantillonnage de la fonction plénoptique.
 - Image panoramique cylindrique.
- A partir de ces données : synthèse d'un point de vue quelconque de la scène.

Quicktime VR

LIRIS

Plenoptic modeling

LIRIS

Université Claude Bernard Geluyon 1

Photo-popup

- Approche purement basée image.
- Idée : extraction d'une topologie basique de la scène.
 - Sols / surfaces verticales / ciel.
 - 2.5D calibrée non nécessaire.
 - Une seule photographie.

LIRIS

Photo-popup

- Principe :
 - Segmentations de régions uniformes.
 - Classement / Labellisation des régions.
 - Extraction d'un modèle
 3D basique.

Synthétiser un nouvel éclairage

- Image : échantillonage de la fonction plénoptique.
 - résultat de l'interaction lumière-matière.
- Idée : exploiter cette information ?
 - Pour déterminer les caractéristiques des objets et des sources.
 - Pour changer l'éclairage / les matières.

Synthétiser un nouvel éclairage

- Idée de base :
 - Les même objets mais...
 - Plusieurs configurations (connues) d'éclairage.
- Obtenir un nouvel
 éclairage ?

Obtenir un nouvel éclairage ?

- Plusieurs méthodes :
 - Brutal : trouver les images les plus proches de l'éclairage recherché et interpoler.
 - Plus fin : exploiter la redondance des informations en encodant le résultat sur une base d'harmoniques sphériques.

Plus simple

- Déduire l'éclairage d'un objet complexe de l'éclairage d'un objet simple.
 - Contrainte : les deux objets doivent avoir la même BRDF.

Approches possibles

- Approche traditionnelle.
- Construire une image à partir d'autres images.
- Pour la réalité augmentée ?

- Approche traditionnelle : naturel.
 - Mais aussi long qu'un rendu traditionnel...
- Approche basée image ?
 - Quelle méthode ?
 - Comment constituer la base d'images ?

- Pour les éléments virtuels à insérer :
 - Relief textures ? Imposteurs ?
- Pour l'environnement :
 - Photo Popup ? Plénoptic modeling ?
- Ré-éclairer les éléments virtuels ?
 - Image-based lighting ? Lit-sphere shading ?

- Récents travaux de Derek Hoiem :
 - Extraction d'un modèle simple de scène.
 - Extraction assistée des sources de lumières.
 - Composition.

• Récents travaux de Derek Hoiem :

Input image

Annotate geometry

Annotate lights

Auto-refine 3D scene

LIRIS

Compose scene & render

Understanding and Improving the Realism of Image Composites, Xue et al.

- Approche purement image :
- 2 images : un fond, un sujet.
- But : insérer le sujet dans le fond sans provoquer de «choc» visuel.
- Méthode statistique : modifications colorimétriques et ajustement de contraste.

