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Présentation

• Thématiques de recherche de R3AM :

• Rendu réaliste

• Cours 1

• Rendu expressif / Echantillonage.

• Cours 2

• Aujourd’hui : Réalité augmentée réaliste.
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Plan

• Introduction - Problématique.

• Acquisition.

• Stockage et structuration des données.

• Rendu généralisé.
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Introduction

• Rendu 
«classique» : à 
partir de données 
modélisées.

• Processus 
manuel, 
éventuellement 
assez long.

4



Introduction

• Uniquement des données 
modélisées ?

• Créer une image à partir 

• D’autres images ?

• De données numérisées ?

• De données scientifiques ?
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Introduction

• Pour quoi faire ?

• Pour visualiser des 
données complexes.

• Pour mélanger 
différentes sources de 
données.

• Réalité augmentée ?
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Introduction

• Cadre de ce cours : réalité augmentée 
réaliste.

• Mélanger des données issues de 
l’environnement réel avec des données 
modélisées.

• Acquérir les caractéristiques de 
l’environnement ?

• Rendu de données hétérogènes ?
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Plan

• Introduction - Problématique.

• Acquisition

• Stockage, structuration des données.

• Rendu généralisé.
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Acquisition

• Lors du rendu : données compatibles.

• Que faut il acquérir ?

• Caractéristiques des éléments réels.

• Photométrie.

• Géométrie.
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Acquisition

• Photométrie : caractérisation de l’énergie 
lumineuse renvoyée par l’objet.

• Interactions lumineuses.

• Géométrie : une approximation de la surface 
de l’objet.

• Occultations, ombres...
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Luminance

• Acquisition de luminance :

• Indispensable : High Dynamic Range.

• Cartes d’environnements.

• Matériel dédié.

• Autres ?
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High Dynamic Range

• Image dont la 
dynamique en 
luminance est moins 
limitée qu’une image 
classique...

• Obtenue par plusieurs 
prises de vues 
successives avec des 
expositions différentes.

3.3. ETUDE PRÉLIMINAIRE

Fig. 3.2 – Interface de Qtpfsgui pour la visualisation directe (à gauche) et le tone mapping (à droite).

Fig. 3.3 – Exemple de visualisation en plages colorées d’une image HDR.

image HDR avec un grand nombre d’algorithmes dont ceux développés par Reinhard et Pattanäık.

Ce mode pourra être utilisé pour comparer de la qualité visuelle d’images en leur appliquant un tone

mapping identique.

3.3.3 Visualisation en plages colorées

Le but de la visualisation en plage colorées est de construire une image représentative d’une

image HDR et rendant possible au premier coup d’oeil l’évaluation de la cohérence de la carte

de radiances. Pour cela, on découpe l’histogramme des radiances en plusieurs plages (2 plages par

unité d’échelle logarithmique dans notre cas) et on attribue à chaque plage une couleur. On dessine

également, en haut de l’image, l’échelle et sa correspondance avec les couleurs afin de permettre

une lecture plus aisée du résultat. Grâce à cet outil, nous pouvons vérifier l’étendue de la gamme

dynamique présente dans l’image, la cohérence de la disposition spatiale des radiances ainsi que la

vraisemblance des transitions.
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3.4. ETUDE DE LA MÉTHODE DE DEBEVEC ET MALIK

2” 1” 1/2 1/4

1/8 1/15 1/30 1/60

1/125 1/250 1/500 1/1000

Fig. 3.5 – Set d’images d’entrée et tone mapping (Reinhard 2002) de la reconstruction

18
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High Dynamic Range

• Technique usuelle :

• Inversion de la 
fonction de réponse 
du capteur.

• Prises de vues 
identiques avec des 
expositions variables. 

• Détermination de la 
luminance.

3.4. ETUDE DE LA MÉTHODE DE DEBEVEC ET MALIK

2” 1” 1/2 1/4

1/8 1/15 1/30 1/60

1/125 1/250 1/500 1/1000

Fig. 3.5 – Set d’images d’entrée et tone mapping (Reinhard 2002) de la reconstruction
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3.4. ETUDE DE LA MÉTHODE DE DEBEVEC ET MALIK

2” 1” 1/2 1/4

1/8 1/15 1/30 1/60

1/125 1/250 1/500 1/1000

Fig. 3.5 – Set d’images d’entrée et tone mapping (Reinhard 2002) de la reconstruction

18

13



High Dynamic Range

• Problème :

• La scène doit être 
fixe.

• Rarement le cas...

• Effets de «ghosting».

• Solution ?

3.5. DISCUSSION SUR LA MÉTHODE

Fig. 3.6 – Reconstruction sur des images non recalées (à gauche) et sur des images recalées (à droite)

3.5 Discussion sur la méthode

Cette partie décrit les principaux problèmes ou points clefs à maitriser pour garantir la

réalisation convenable de cette méthode de reconstruction. On y identifiera également les étapes

nécessaires pour le passage à une acquisition fréquente de cartes d’éclairement utilisables pour les

applications de réalité augmentée.

3.5.1 Recalage des images d’entrée

Le premier point critique de la reconstruction est le positionnement relatif des images

d’entrée les unes par rapport aux autres. En effet, l’acquisition des images ne peut être faite que

de manière séquentielle d’un même point de vue ou de manière simultanée avec plusieurs capteurs

mais de points de vue légèrement décalés. Dans les deux cas, il est possible que le positionnement

du point de vue varie d’une image à l’autre dans un même set. Les pixels de mêmes coordonnées

sur ces deux images ne correspondent alors plus toujours au même objet de la scène. De ce fait, la

recherche de la fonction g prend des données fausses en entrée et la reconstruction lorsqu’elle est

faite sur tout le set d’images va présenter des erreurs (flou de déplacement)(Fig 3.6).

Nous avons donc fait le choix d’incorporer un algorithme de recalage des images d’entrée à notre

application. L’algorithme qui a été implémenté est le Mean Threshold Bitmap Alignment Technic

(MTB) proposé par Ward [War03]. Son principe est le suivant :
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mais de points de vue légèrement décalés. Dans les deux cas, il est possible que le positionnement
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High Dynamic Range

• Solution matérielle :

• Camera 
«Spheron.»

• Dispositifs optiques.

ME sensor

0.92 Q

LE sensor

H
E sensor

0.075 Q

0.0044 Q

beam splitter 2 (94/6)

beam splitter 1 (92/8)

Q

Figure 3: Illustration of our optical architecture. We also use
beamsplitters between the lens and sensors, but the key difference
is that we re-use the optical path to improve our light efficiency. In
the end, 99.96% of light entering the aperture arrives at the sensors.
Light efficiency is important in all imaging applications.

imaging sensors simultaneously. In our architecture, however, the
light is directed back through one of the beamsplitters a second
time, and the three sub-images are not split into red, green, and
blue but instead are optically identical except for their light levels.
This design, shown in Fig. 3, allows us to capture HDR images us-
ing most of the light entering the camera. We use the terms “high,”
“medium,” and “low” exposure (HE, ME, LE, respectively) to refer
to the sensors based on the amount of light each one receives.

The optical splitting system in our current implementation uses
two uncoated, 2-micron thick plastic beamsplitters which rely on
Fresnel reflections at air/plastic interfaces so their actual transmit-
tance/reflectance (T/R) values are a function of angle. In our ar-
rangement, the first beamsplitter is at a 45◦ angle and has an ap-
proximate T/R ratio of 92/8, which means that 92% of the light from
the camera lens is transmitted through the first beamsplitter and fo-
cused directly onto the high-exposure (HE) sensor2. This beam-
splitter reflects 8% of the light from the lens upwards, as shown
in Fig. 3, toward the second uncoated beamsplitter, which has the
same optical properties as the first but is positioned at a 90◦ angle
to the light path and has an approximate T/R ratio of 94/6.

Of the 8% of the total light that is reflected upwards, 94% (or 7.52%
of the total light) is transmitted through the second beamsplitter and
focused onto the medium-exposure (ME) sensor. The other 6% of
this upward-reflected light (or 0.48% of the total light) is reflected
back down by the second beamsplitter toward the first one (which
is again at 45◦), through which 92% (or 0.44% of the total light) is
transmitted and focused onto the low-exposure (LE) sensor. With
this arrangement, the HE, ME and LE sensors capture images with
92%, 7.52%, and 0.44% of the total light gathered by the camera
lens, respectively. Therefore, the HE and ME exposures are sepa-
rated by 12.2× (3.61 stops) and the ME and LE are separated by
17.0× (4.09 stops), which means that this configuration is designed
to extend the dynamic range of the sensor by 7.7 stops.

This beamsplitter arrangement makes our design light efficient: a
negligible 0.04% of the total light gathered by the lens is wasted. It
also allows all three sensors to “see” the same scene, so all three im-
ages are optically identical except for their light levels. Of course,
the ME image has undergone an odd number of reflections and so
it is flipped left-right compared to the other images, but this is fixed
easily in software. The three sensors are gen-locked to capture per-
fectly synchronized video frames with identical exposure times.

2Since T/R is also dependent on the wavelength of the light, we calculate
T/R values for the full visible spectrum and integrate over the R, G, and B
filter spectra in the Bayer pattern to arrive at separate T/R values for each
color channel for use in our design and implementation. To simplify the
discussion in this paper, however, we simply state a single average value of
transmittance.

41 mm

5.45 mm

115 mmexit pupil
of lens

HE sensor
θ1

θ2

Figure 4: Scale drawing of optical path of first sensor. Since un-
coated beamsplitters like ours can vary in transmittance as a func-
tion of angle, we examine the exact geometrical configuration of
our system at f/2.8 to determine the range of transmittance values
across our sensor. In this case, θ1 = 46.4◦ and θ2 = 43.7◦, which
result in transmittance values of 91.85% and 92.38%, respectively.

3.1 Analysis of Optical System
Because the exact transmission/reflection properties of our beam-
splitters vary with angle, we examine how these might vary over
the area of the sensor by simulating the proposed optical architec-
ture in ZEMAX [2011]. To calculate the range of transmittance
values as a function of angle, we examine the largest angular varia-
tion possible on the pellicle beamsplitter. Approaches that place the
beamsplitters outside the lens, such as the optical trees of McGuire
et al. [2007], can have a large range of incident angles which results
in significant variation in transmission over the field of view. Unlike
these approaches, our system’s internal beamsplitters receive light
in a much smaller range of field angles because of the geometrical
configuration of the system, shown to scale in Fig. 4.

In our case, the top-left and bottom-right corner points on the sensor
have chief-ray angles at the pellicle of 46.4◦ and 43.7◦, a difference
of 2.7◦. At f/2.8, each of these two points receives a ±10◦ cone of
rays from the lens, shown in blue and red (these cones are constant
in angle over the entire sensor). We calculate the transmittance of
the beamsplitter by integrating over this cone of rays using a ZE-
MAX simulation with 1 million random rays on a 2-micron thick,
uncoated plastic pellicle beamsplitter, which yields a transmittance
of 91.85% for the top-left and 92.38% for the bottom-right points,
a difference of about 0.5%, and close to the 92% value we used in
our design calculations. Therefore variation in transmittance across
the sensor is not a major issue in our system.

Polarization of the incident light might affect the transmission prop-
erties of the beamsplitter as well. Although our simulations were
all done with unpolarized light, it is possible to encounter linearly
polarized light in outdoor scenes (e.g., from glancing reflections
off water), which may change the exposure difference between sen-
sors. However, in practice we did not see such polarization effects
in the scenes we captured. We note that all of these effects may be
reduced or eliminated by using a thin-film coating on the beamsplit-
ter. This thin-film coating could be designed to have more constant
transmission properties over the range of angles in the system or to
reduce polarization effects. An examination of different beamsplit-
ter coatings to address these factors is a topic for future work.

Advantages of the proposed optical splitting system are that its
cost and complexity are relatively low, and it is compatible with
standard camera lenses. The compact light path allows integration
into a single hand-held unit, something difficult to do with designs
that place the beamsplitters outside the lens [McGuire et al. 2007;
Cole and Safai 2010]. The optical architecture is also flexible in
terms of the kind of sensor used. The use of low-cost sensors,
for example, could allow the design to be integrated into consumer
electronics and bring HDR video to a wide audience.
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Géométrie

• Acquisition de la 
géométrie ?

• Scanners lasers.

• Méthodes 
optiques / 
ondulatoires.

• Méthodes basées 
vision.

16



Géométrie

(a) Kitchen

(b) Building

(c) Church

Figure 1: Three of the six test image pairs with feature points extracted (approximatively 500 per image).
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(a) Kitchen

(b) Building

(c) Church

Figure 1: Three of the six test image pairs with feature points extracted (approximatively 500 per image).
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Méthodes basées vision : stereo pair matching
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Géométrie

• Méthodes basées vision : 
lumière structurée.

• Kinect ?

18



Géométrie

• Données résultantes :

• Carte de profondeur.

• kinect, temps de 
vol...

• Ensemble de points .

• Scanners, méthodes 
basées vision...
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Acquisition

• Problème supplémentaire : 

• Fusion des données acquises.

• Luminance + géométrie ?

• Géométrie avec sources différentes ?

• Dans les deux cas : recalage.

20



Plan

• Introduction - Problématique.

• Acquisition

• Stockage, structuration des données.

• Rendu généralisé.
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Structuration

• Objectif : mettre les informations acquises 
sous une forme exploitable pour le rendu.

• Luminance ?

• Géométrie ?

22



Structuration

• Comment représenter la lumière capturée ?

• Carte d’environnement.

• Fonction plénoptique.

• «Virtual point lights».

23



Carte d’environnement

• Capture d’un champs de 
luminance.

• Outil usuel : carte 
d’environnement.

• Représentative de la 
lumière arrivant en un 
point.

24



Carte d’environnement

• Problème : spécifique à un 
point.

• Si les sources de lumières 
sont éloignées : (presque) 
indépendant de la position.

• Sinon : plusieurs cartes 
pour plusieurs points.

• Interpolation

Unger et al / Capturing and Rendering With Incident Light Fields

r1

ro

n

u

v

ro

Figure 2: Incident Light Field Parametrization. The inci-
dent light field is defined by a reduced plenoptic function
P = P(θ,φ,u,v), where (u,v) define the location of ~ro in a
plane and (θ,φ) define the direction ~rd towards the incident
light with respect to the plane normal~n.

parameterizations presented by Gortler et al. 9 and Levoy et
al. 15. Since we are specifically interested in capturing in-
cident illumination, we base our light field parametrization
on a point (u,v) on a particular capture plane Π the set of
incident illumination directions (θ,φ) incident upon Π. For
the unoccluded volume above the capture plane, the incident
light field P(θ,φ,u,v) can be used to extrapolate the incident
illumination conditions within the volume.

In this work we only consider the incident light coming
from the hemisphere above the normal~n of the plane Π. Our
light field function is therefore over the domain of:

P= P(θ,φ,u,v) , where
Ω

°π∑ θ∑ π
0∑ φ∑ π

2

φ and θ are the direction with respect to~n
u and v are the coordinates in the plane Π

The above parametrization describes the incident light
field as a collection of rays ~R(s) = ~ro+s ·~rd , where ~ro lies in
the plane Π with coordinates (u,v) and where ~rd is defined
by (θ,φ) as in Figure 2.

The continuous incident light field is discretized by sam-
pling the hemisphere of incident light with a fixed angular
resolution at locations (i, j) on an n£m regular grid in the
plane Π. The above parametrization allows us the capture a
discrete light field as a 2D array of light probes, where a sin-
gle (θ,φ) image captures the directional information and the
position of the light probe in the 2D array specifies the (u,v)
coordinates in the plane.

Figure 3: The mirror sphere array. The incident light field
is sampled by assembling a high-dynamic range image of
the light reflected from the plane by an array of mirrored
spheres.

4. Data Acquisition and Processing

For capturing incident illumination arriving at a single point
in space, Debevec et al. 4 used a high dynamic range pho-
tography technique to capture the full range of luminance
values in a real-world scene.

In this work we designed and built two incident light field
capturing devices, each based on combining techniques and
results from light field rendering and image-based lighting
research. Our first apparatus is closely related to the high-
dynamic range light probe acquisition technique introduced
by Debevec et al. 4, whereas the second apparatus is based
more directly on the methods employed in the light field ren-
dering world. In the following sections we describe the ex-
perimental setup and the data processing required for each
of the two ILF capturing devices.

4.1. Mirror Sphere Array

The first device we built extends the high-dynamic range
light probe idea by placing a series of mirrored spheres on a
regular grid and taking a series of differently exposed pho-
tographs to construct a high-dynamic range representation
of the incident light field.

4.1.1. Experimental Setup

The capturing setup consists of an array of 12£12 1" diam-
eter mirror spheres and a standard digital camera. As seen in
Figure 3 the mirror spheres are mounted on a board which
corresponds to the plane Π.

We found that the best incident light field results were ob-
tained by capturing a nearly orthographic view of the array
from a nearly perpendicular direction from the sphere plane.

c∞ The Eurographics Association 2003.
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Fonction plénoptique

• «Light field».

• Décrit la quantité de 
lumière en tout point et 
toute direction.

• Fonction 5D :

• Une position : x,y,z.

• Une direction : Fi, Teta.

26



Virtual Point Lights
• Remplacer l’éclairage d’une scène par un (vaste) 

ensemble de sources ponctuelles. 

• Nécessite souvent une hiérarchisation.

• Permet de simuler l’éclairement global.

27



A partir d’images HDR?

• Carte d’environnement :

• Capture HDR d’une «gaze ball».

• Problèmes ?

• Caméra «fish eye» très grand angle.

• Light Field, VPLs : plus complexe.

28



Light field

• Mesures contrôlées : 

• Captures HDR 
calibrées d’un objet 
sous plusieurs angles.

• Organisation des 
données :

• Layers

• Voxels

• Autres... 29



Virtual Point Lights

• Captures identiques au light-field.

• Segmentation et traitement des images 
sources pour isoler les sources lumineuses 
potentielles.

• Un light-field peut être «résumé» par des 
sources ponctuelles virtuelles.

30



Envmap => VPLs

A Median Cut Algorithm for Light Probe Sampling

Paul Debevec⇤ USC Institute for Creative Technologies

ABSTRACT We present a technique for approximating a
light probe image as a constellation of light sources based on a me-
dian cut algorithm. The algorithm is efficient, simple to implement,
and can realistically represent a complex lighting environment with
as few as 64 point light sources.

Introduction The quality of approximating an image-based
lighting (IBL) environment as a finite number of point lights is
increased if the light positions are chosen to follow the distribu-
tion of the incident illumination; this has been a goal of previous
stratified sampling approaches [Cohen and Debevec 2001; Kollig
and Keller 2003; Agarwal et al. 2003; Ostromoukhov et al. 2004].
In this work, we show that subdividing the image into regions of
equal energy achieves this property and yields a well-conditioned
and easy to implement static sampling algorithm.

Figure 1: The Grace Cathedral light probe subdivided into 64 re-
gions of equal light energy using the median cut algorithm. The
small circles are the 64 light sources chosen as the energy centroids
of each region; the lights are all approximately equal in energy.

Algorithm Taking inspiration from Paul Heckbert’s median-
cut color quantization algorithm [Heckbert 1982], we can partition
a light probe image in the rectangular latitude-longitude format into
2n regions of similar light energy as follows:

1. Add the entire light probe image to the region list as a single
region.

2. For each region in the list, subdivide along the longest dimen-
sion such that its light energy is divided evenly.

3. If the number of iterations is less than n, return to step 2.

4. Place a light source at the center or centroid of each region,
and set the light source color to the sum of pixel values within
the region.

Implementation Calculating the total energy within regions
of the image can be accelerated using a summed area table [Crow
1984]. Computing the total light energy is most naturally per-
formed on a monochrome version of the lighting environment rather
than the RGB pixel colors; such an image can be formed as a
weighted average of the color channels of the light probe image,
e.g. Y = 0.2125R+ 0.7154G+ 0.0721B following ITU-R Recom-
mendation BT.709. While the partitioning decisions are made on
the monochrome image, the light source colors are computed using
the corresponding regions in the original RGB image.

⇤Email: debevec@ict.usc.edu Web: www.debevec.org/MedianCut/

The latitude-longitude mapping over-represents regions near the
poles. To compensate, the pixels of the probe image should first be
scaled by cosf where f is the pixel’s angle of inclination. Deter-
mining the longest dimension of a region should also take the over-
representation into account; this can be accomplished by weighting
a regions width by cosf for an inclination f at center of the region.

Results Fig. 1 shows the Grace Cathedral lighting environ-
ment partitioned into 64 light source regions, and Fig. 2 shows
a small diffuse scene rendered with 16, 64, and 256 light sources
chosen in this manner. Using 64 lights produces a close approxi-
mation to a computationally expensive Monte Carlo solution, and
the 256-light approximation is nearly indistinguishable.

(a) 16 lights (b) 64 lights

(c) 256 lights (d) 4096 ray samples

Figure 2: (a-c) Noise-free renderings in the Grace Cathedral en-
vironment approximated by 16, 64, and 256 light sources. (d) A
not quite noise-free Monte Carlo rendering using 4096 randomly
chosen rays per pixel.

Conclusion The median cut technique is extremely fast com-
pared to most other sampling techniques and produces noise-free
renderings at the expense of bias inversely proportional to the num-
ber of light sources used. In future work we will investigate the
stability of the technique for animated lighting environments and
explore adaptations for scenes with general BRDFs.
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Champs de luminance

• Ensemble de sources ponctuelles :

• Généralement très volumineux.

• Réduire !

• Hiérarchisation / «clusterisation».

• Coupes ?



LightcutsLightcuts: A Scalable Approach to Illumination, Walter et. al., SIGGRAPH 2005 3
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Figure 3: A light tree and three example cuts. The tree is shown on
the top with the representative lights and cluster intensities for each
node. Leaves are individual lights while upper nodes are progres-
sively larger light clusters. Each cut is a different partitioning of the
lights into clusters (the orange cut is the same as Figure 2). Above
each cut, the regions where its error is small are highlighted.

the threshold is usually higher. In our experience, an error ratio of
2% results in no visible artifacts across a wide variety of scenes and
was used for all our results. Changing this value can be used to vary
the tradeoff between performance and accuracy.

Choosing Lightcuts. Using a relative error criterion requires an
estimate of total radiance before we can decide whether a particular
cluster is usable. To solve this difficulty, we start with a very coarse
cut (e.g., the root of the light tree) and then progressively refine it
until our error criterion is met. For each node in the cut we compute
both its cluster estimate (Equation 2) and an upper bound on its
error (Section 4.1). Each refinement step considers the node in the
current cut with the largest error bound. If its error bound is greater
than our error ratio times the current total illumination estimate, we
remove it from the cut, replace it with its two children from the light
tree, compute their cluster estimates and error bounds, and update
our estimate of the total radiance. Otherwise, the cut obeys our
error criterion and we are done. We call such a cut, a lightcut.

To make this process more efficient, we require that the represen-
tative light for a cluster be the same as for one of its two children.
This allows us to reuse the representative light’s material, geomet-
ric and visibility terms when computing that child. We use a heap
data structure to efficiently find the cluster node in the cut with the
highest error bound. If present in the cut, individual lights (i.e. light
tree leaf nodes) are computed exactly and thus have zero error.

Our relative error criterion overestimates the visibility of errors in
very dark regions. For example, a fully occluded point would be
allowed zero error, but even at black pixels sufficiently small errors
are not visible. Therefore, we also set a maximum cut size and, if
the total number of nodes on the cut reaches this limit, stop further
refinement. We chose our maximum cut size of 1000 to be large
enough to rarely be reached in our results and then only in dark
regions where the extra error is not visible.

4 Implementing Lightcuts

Our implementation supports three types of point lights: omni, ori-
ented, and directional. Omni lights shine equally in all directions

from a single point. Oriented lights emit in a cosine-weighted hemi-
spherical pattern defined by their orientation, or direction of max-
imum emission. Directional lights simulate an infinitely far away
source emitting in a single direction. All lights have an intensity Ii.

Building the Light Tree. The light tree groups point lights together
into clusters. Ideally, we want to maximize the quality of the clus-
ters it creates (i.e. combine lights with the greatest similarity in their
material, geometric and visibility terms). We approximate this by
grouping lights based on spatial proximity and similar orientation.

We divide the point lights by type into separate omni, oriented, and
directional lists and build a tree for each. Conceptually though, we
think of them as part of a single larger tree. Each cluster records its
two children, its representative light, its total intensity IC, an axis-
aligned bounding box, and an orientation bounding cone. The cone
is only needed for oriented lights. Although infinitely far away,
directional lights are treated as points on the unit sphere when com-
puting their bounding boxes. This allows directional lights to use
the same techniques as other point lights when building light trees
and, more importantly, later for bounding their material terms Mi.

Similarity Metric. Each tree is built using a greedy, bottom-up ap-
proach by progressively combining pairs of lights and/or clusters.
At each step we choose the pair that will create the smallest clus-
ter according to our cluster size metric IC(a2

C + c2 (1� cosbC)2),
where aC is the diagonal length of the cluster bounding box and bC
is the half-angle of its bounding cone. The constant c controls the
relative scaling between spatial and directional similarity. It is set
to the diagonal of the scene’s bounding box for oriented lights and
zero for omni and directional lights.

The representative light for a cluster is always the same as for one
of its children and is chosen randomly based on the relative intensi-
ties of the children. Each individual light is its own representative.
Thus the probability of a light being the representative for a cluster
is proportional to its intensity. This makes the cluster approxima-
tion in Equation 2 unbiased in a Monte Carlo sense. However once
chosen, the same representative light is used for that cluster over the
entire image. Tree building, by its very nature, cannot be sublinear
in the number of lights, but is generally not a significant cost since
it only has to be done once per image (or less if the lights are static).

4.1 Bounding Cluster Error

To use the lightcuts approach, we need to compute reasonably
cheap and tight upper bounds on the cluster errors (i.e. the differ-
ence between the exact and approximate versions of Equation 2).
By computing upper bounds on the material, geometric, and vis-
ibility terms for a cluster, we can multiply these bounds with the
cluster intensity to get an upper bound for both the exact and ap-
proximated cluster results. Since both are positive, this is also an
upper bound on the cluster error (i.e. their absolute difference).

Visibility Term. The visibility of a point light is typically zero
or one but may be fractional (e.g., if semitransparent surfaces are
allowed). Conservatively bounding visibility in arbitrary scenes is
a hard problem, so we will use the trivial upper bound of one for
the visibility term (i.e. all lights are potentially visible).

Geometric Term. The geometric terms for our three point light
types are listed below, where yi is the light’s position and fi is the
angle between an oriented light’s direction of maximum emission
and direction to the point x to be shaded.

Light Type Omni Oriented Directional

Gi(x) =
1

kyi�xk2
max(cosfi, 0)
kyi�xk2 1

(3)
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A volumetric approach for building complex models from range images, 
B. Curless ans M. Levoy
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Figure 2. Unweighted signed distance functions in 3D. (a) A range sensor
looking down the x-axis observes a range image, shown here as a recon-
structed range surface. Following one line of sight down the x-axis, we
can generate a signed distance function as shown. The zero crossing of
this function is a point on the range surface. (b) The range sensor re-
peats the measurement, but noise in the range sensing process results in
a slightly different range surface. In general, the second surface would
interpenetrate the first, but we have shown it as an offset from the first
surface for purposes of illustration. Following the same line of sight as
before, we obtain another signed distance function. By summing these
functions, we arrive at a cumulative function with a new zero crossing
positioned midway between the original range measurements.

signed distance of each point to the nearest range surface along
the line of sight to the sensor. We construct this function by com-
bining signed distance functions , , ... and weight
functions , , ... obtained from range images ...

. Our combining rules give us for each voxel a cumulative signed
distance function, , and a cumulative weight . We repre-
sent these functions on a discrete voxel grid and extract an isosurface
corresponding to . Under a certain set of assumptions, this
isosurface is optimal in the least squares sense. A full proof of this
optimality is beyond the scope of this paper, but a sketch appears in
appendix A.

Figure 2 illustrates the principle of combining unweighted signed
distances for the simple case of two range surfaces sampled from the
same direction. Note that the resulting isosurface would be the sur-
face created by averaging the two range surfaces along the sensor’s
lines of sight. In general, however, weights are necessary to repre-
sent variations in certainty across the range surfaces. The choice of
weights should be specific to the range scanning technology. For op-
tical triangulation scanners, for example, Soucy [25] and Turk [30]
make the weight depend on the dot product between each vertex nor-
mal and the viewing direction, reflecting greater uncertainty when the
illumination is at grazing angles to the surface. Turk also argues that
the range data at the boundaries of the mesh typically have greater
uncertainty, requiring more down-weighting. We adopt these same
weighting schemes for our optical triangulation range data.

Figure 3 illustrates the construction and usage of the signed dis-
tance and weight functions in 1D. In Figure 3a, the sensor is posi-
tioned at the origin looking down the +x axis and has taken two mea-
surements, and . The signed distance profiles, and
may extend indefinitely in either direction, but the weight functions,

and , taper off behind the range points for reasons dis-
cussed below.

Figure 3b is the weighted combination of the two profiles. The
combination rules are straightforward:
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Figure 3. Signed distance and weight functions in one dimension. (a) The
sensor looks down the x-axis and takes two measurements, and .

and are the signed distance profiles, and and
are the weight functions. In 1D, we might expect two sensor measure-
ments to have the same weight magnitudes, but we have shown them to be
of different magnitude here to illustrate how the profiles combine in the
general case. (b) is a weighted combination of and ,
and is the sum of the weight functions. Given this formulation, the
zero-crossing, , becomes the weighted combination of and and
represents our best guess of the location of the surface. In practice, we
truncate the distance ramps and weights to the vicinity of the range points.

where, and are the signed distance and weight functions
from the th range image.

Expressed as an incremental calculation, the rules are:

(3)

(4)

where and are the cumulative signed distance and
weight functions after integrating the th range image.

In the special case of one dimension, the zero-crossing of the cu-
mulative function is at a range, given by:

(5)

i.e., a weighted combination of the acquired range values, which is
what one would expect for a least squares minimization.

In principle, the distance and weighting functions should extend
indefinitely in either direction. However, to prevent surfaces on op-
posite sides of the object from interfering with each other, we force
the weighting function to taper off behind the surface. There is a
trade-off involved in choosing where the weight function tapers off. It
should persist far enough behind the surface to ensure that all distance
ramps will contribute in the vicinity of the final zero crossing, but, it
should also be as narrow as possible to avoid influencing surfaces on
the other side. To meet these requirements, we force the weights to
fall off at a distance equal to half the maximum uncertainty interval
of the range measurements. Similarly, the signed distance and weight
functions need not extend far in front of the surface. Restricting the
functions to the vicinity of the surface yields a more compact rep-
resentation and reduces the computational expense of updating the
volume.

In two and three dimensions, the range measurements correspond
to curves or surfaces with weight functions, and the signed distance
ramps have directions that are consistent with the primary directions
of sensor uncertainty. The uncertainties that apply to range image
integration include errors in alignment between meshes as well as er-
rors inherent in the scanning technology. A number of algorithms for
aligning sets of range images have been explored and shown to yield
excellent results [11][30]. The remaining error lies in the scanner it-
self. For optical triangulation scanners, for example, this error has
been shown to be ellipsoidal about the range points, with the major
axis of the ellipse aligned with the lines of sight of the laser [13][24].

Figure 4 illustrates the two-dimensional case for a range curve
derived from a single scan containing a row of range samples. In

3
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Isosurface
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Figure 4. Combination of signed distance and weight functions in two
dimensions. (a) and (d) are the signed distance and weight functions, re-
spectively, generated for a range image viewed from the sensor line of
sight shown in (d). The signed distance functions are chosen to vary be-
tween and , as shown in (a). The weighting falls off with
increasing obliquity to the sensor and at the edges of the meshes as in-
dicated by the darker regions in (e). The normals, and shown in
(e), are oriented at a grazing angle and facing the sensor, respectively.
Note how the weighting is lower (darker) for the grazing normal. (b) and
(e) are the signed distance and weight functions for a range image of the
same object taken at a 60 degree rotation. (c) is the signed distance func-
tion corresponding to the per voxel weighted combination of (a)
and (b) constructed using equations 3 and 4. (f) is the sum of the weights
at each voxel, . The dotted green curve in (c) is the isosurface that
represents our current estimate of the shape of the object.

practice, we use a fixed point representation for the signed distance
function, which bounds the values to lie between and
as shown in the figure. The values of and must be neg-
ative and positive, respectively, as they are on opposite sides of a
signed distance zero-crossing.

For three dimensions, we can summarize the whole algorithm as
follows. First, we set all voxel weights to zero, so that new data will
overwrite the initial grid values. Next, we tessellate each range im-
age by constructing triangles from nearest neighbors on the sampled
lattice. We avoid tessellating over step discontinuities (cliffs in the
range map) by discarding triangles with edge lengths that exceed a
threshold. We must also compute a weight at each vertex as described
above.

Once a range image has been converted to a triangle mesh with
a weight at each vertex, we can update the voxel grid. The signed
distance contribution is computed by casting a ray from the sensor
through each voxel near the range surface and then intersecting it with
the triangle mesh, as shown in figure 5. The weight is computed by
linearly interpolating the weights stored at the intersection triangle’s
vertices. Having determined the signed distance and weight we can
apply the update formulae described in equations 3 and 4.

At any point during the merging of the range images, we can ex-
tract the zero-crossing isosurface from the volumetric grid. We re-
strict this extraction procedure to skip samples with zero weight, gen-
erating triangles only in the regions of observed data. We will relax
this restriction in the next section.

4 Hole filling
The algorithm described in the previous section is designed to re-
construct the observed portions of the surface. Unseen portions of
the surface will appear as holes in the reconstruction. While this re-
sult is an accurate representation of the known surface, the holes are
esthetically unsatisfying and can present a stumbling block to follow-
on algorithms that expect continuous meshes. In [17], for example,

Volume

Sensor

Range surface

wawb

wc

w

d

VoxelViewing
ray

Figure 5. Sampling the range surface to update the volume. We com-
pute the weight, , and signed distance, , needed to update the voxel by
casting a ray from the sensor, through the voxel onto the range surface.
We obtain the weight, , by linearly interpolating the weights ( , ,
and ) stored at neighboring range vertices. Note that for a translating
sensor (like our Cyberware scanner), the sensor point is different for each
column of range points.

the authors describe a method for parameterizing patches that entails
generating evenly spaced grid lines by walking across the edges of a
mesh. Gaps in the mesh prevent the algorithm from creating a fair
parameterization. As another example, rapid prototyping technolo-
gies such as stereolithography typically require a “watertight” model
in order to construct a solid replica [7].

One option for filling holes is to operate on the reconstructed mesh.
If the regions of the mesh near each hole are very nearly planar, then
this approach works well. However, holes in the meshes can be (and
frequently are) highly non-planar and may even require connections
between unconnected components. Instead, we offer a hole filling
approach that operates on our volume, which contains more informa-
tion than the reconstructed mesh.

The key to our algorithm lies in classifying all points in the vol-
ume as being in one of three states: unseen, empty, or near the sur-
face. Holes in the surface are indicated by frontiers between unseen
regions and empty regions (see Figure 6). Surfaces placed at these
frontiers offer a plausible way to plug these holes (dotted in Figure 6).
Obtaining this classification and generating these hole fillers leads to
a straightforward extension of the algorithm described in the previous
section:

1. Initialize the voxel space to the “unseen” state.

2. Update the voxels near the surface as described in the previ-
ous section. As before, these voxels take on continuous signed
distance and weight values.

3. Follow the lines of sight back from the observed surface and
mark the corresponding voxels as “empty”. We refer to this
step as space carving.

4. Perform an isosurface extraction at the zero-crossing of the
signed distance function. Additionally, extract a surface be-
tween regions seen to be empty and regions that remain unseen.

In practice, we represent the unseen and empty states using the
function and weight fields stored on the voxel lattice. We represent
the unseen state with the function values ,

and the empty state with the function values ,
, as shown in Figure 6b. The key advantage of this repre-

sentation is that we can use the same isosurface extraction algorithm
we used in the previous section without the restriction on interpo-
lating voxels of zero weight. This extraction finds both the signed
distance and hole fill isosurfaces and connects them naturally where
they meet, i.e., at the corners in Figure 6a where the dotted red line
meets the dashed green line. Note that the triangles that arise from

4
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Approches possibles

• Approche traditionnelle.

• Construire une image à partir d’autres 
images (image based rendering).
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Approche traditionnelle

• Une fois les données 
converties, rendu 
classique.
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Image-based rendering
• Construire une image à 

partir d’autres images.
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directement des images.

• «Image based 
rendering».
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Image-based rendering
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Dynamic Parallax Occlusion Mapping with Approximate Soft Shadows  
 

Natalya Tatarchuk
 

ATI Research, Inc. 

 

 

 
Figure 1. Realistic city scene rendered using parallax occlusion mapping applied to the cobblestone sidewalk in (a) and using the 

normal mapping technique in (b). 

 
Abstract 

 
This paper presents a per-pixel ray tracing algorithm with dy-
namic lighting of surfaces in real-time on the GPU. First, we 
propose a method for increased precision of the critical ray-
height field intersection and adaptive height field sampling. We 
achieve higher quality results than the existing inverse displace-
ment mapping algorithms. Second, soft shadows are computed by 
estimating light visibility for the displaced surfaces. Third, we 
describe an adaptive level-of-detail system which uses the infor-
mation supplied by the graphics hardware during rendering to 
automatically manage shader complexity. This LOD scheme 
maintains smooth transitions between the full displacement 
computation and a simplified representation at a lower level of 
detail without visual artifacts. The algorithm performs well for 
animated objects and supports dynamic rendering of height fields 
for a variety of interesting displacement effects. The presented 
method is scalable for a range of consumer grade GPU products. 
It exhibits a low memory footprint and can be easily integrated 
into existing art pipelines for games and effects rendering. 
 
CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional 

Graphics and Realism: Color, shading, shadowing, and texture; 
Visible line/surface algorithms  

 
Keywords: image-based rendering, motion-parallax, real-time 

rendering, displacement mapping, soft shadows, surface details, 

adaptive level-of-detail system. 

 

 

1  Introduction 
 

Texture mapping is essential for creating a compelling impression 

of a realistic scene without paying the full cost of rendering 

complex geometry. Bump mapping was introduced in the early 

days of computer graphics in [Blinn 1978]  to avoid rendering 

high polygonal count models. Despite its low computational cost 

and ease of use, bump mapping fails to account for important 

visual cues such as shading due to interpenetrations and self-

occlusion, nor does it display perspective-correct depth at all 

angles.  

Displacement mapping, introduced by [Cook 1984], addressed the  

issues above by actually modifying the underlying surface geome-

try. Ray-tracing based approaches dominated in the offline 

domain [Pharr and Hanrahan 1996;  Heidrich and Seidel 1998]. 

These methods adapt poorly to current programmable GPUs and 

are not applicable to the interactive application domain due to 

high computational costs. Other approaches included software-

based image-warping techniques for rendering perspective-correct 

geometry [Oliveira et al. 2000] and precomputed visibility infor-

mation [Wang et al. 2003; Wang et al. 2004; Donnelly 2005]. 

Despite being interactive, these methods suffer from a large 

memory footprint. The majority of these techniques require high 

amounts of specialized precomputed data, thus making their 

integration into existing art pipelines for game development 

unnecessarily complex. Our proposed method requires a low 

memory footprint comparable to bump mapping and can be used 

for dynamically rendered height fields.  

Recent inverse displacement mapping approaches take advantage 

of the parallel nature of novel GPUs’ pixel pipelines to render 

displacement directly on the GPU ([Doggett and Hirche 2000; 

Kautz and Seidel 2001; Hirche et al. 2004; Brawley and 

Tatarchuk 2004; Policarpo et al. 2005]. One of the significant 

disadvantages of these approaches is the lack of correct object 

silhouettes since these techniques do not modify the actual ge-

ometry. Accurate silhouettes can be generated by using view-

To appear in proceedings of ACM Siggraph Symposium on Interactive 
3D Graphics and Games 2006 
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introduces an error along the silouhettes but we can bound the er-
ror. It is given by the local gradient of the heightfield as shown on
Figure 7. We will give more details on this error in next section.

3.5 Computation of the safety radius
For a given texel, we need to consider all rays that pass above it.
For each ray, we compute the distance to the second intersection
with the heightfield and take the minimum of these distances. Note
that we ignore rays that are blocked by the heightfield before they
pass above the texel (Fig. 8). We heavily sample the directions of

Texel considered

Those unblocked rays intersect 
only once the heightfield.

This ray has more  
intersections but is 
 blocked before the texel Safety region

Texel considered

Extremal ray defining the 
safety radius for texel and  
direction 

Safety region

Figure 8: (left) blocked rays are ignored when computing the safety
radius (right) the safety radius is defined by the extremal ray.

rays. For each direction, we compute the safety radius and keep the
maximum over all directions. For a given direction, the problem is
restricted to a 2D slice in which the safety radius is obtained by con-
sidering an extremal ray. It is the “most horizontal” ray that does
not intersect the heightfield before the considered texel and which is
tangent to the heightfield after the texel with the point of tangency
at a minimal distance (Fig. 8). Clearly it is defined by the two points
of tangency. We determine this ray by starting with the tangent at
the considered texel and iteratively moving the two tangent points
while maintaining the tangency. The algorithm is simple, fast and
can be implemented on the GPU. Our implementation takes about
10s to compute the safety radii for a 128×128 heightfield.
Our approach is very close to that of [19]. We first describe the

elements involved and analyse the problem of ray/heightfield inter-
section. We then describe our approach for fast accurate intersec-
tion.

4 REVERSE PERSPECTIVE HEIGHTFIELDS

In the previous section, we did not specify the projection used to
flatten the geometry into a depth texture. The most natural pro-
jection is an orthogonal one, resulting in a heightfield that’s easier
to understand. However, the algorithm does not actually place any
constraint on the kind of projection used, as long as a ray in world
space is transformed into a line. This can be used to increase the
expressiveness of relief mapping.
If we try to replace a building with an orthogonally projected re-

lief texture, we will not get any information about the facades. This
is a well known problem with image based rendering: some infor-
mation is not captured. Several methods have been proposed to
address this problem[15]. Reverse perspective consists in shooting
an image with an inverted frustum so that shortfortening of objects
works the other way. In cubist textures, [8] proposed to use it to get
textures that capture details on the sides of buildings. We incorpo-
rated their approach in relief mapping.
Instead of placing a bounding box around the geometry, the user

manually defines a reverse frustum around the object and this frus-
tum is used for projection (Fig. 9). The rendering algorithm is
barely changed: instead of rendering the bounding cube, we render
the frustum, and we pass the corresponding perspective projection

Orthogonal Projection

Distorted Projection

DepthDiffuse Normal

Figure 9: Reverse perspective heightfield (right) better captures the
shape of the van than orthogonal one (left).

matrix to the frustum to the shaders. This matrix is used to compute
the normalized coordinates of fragments on the frustum, and of the
eye. The remainder of the algorithm being expressed in the unit
cube does not change.

4.1 Clipped frustum
Reverse perspective heightfields can replace more complex geome-
try. However, using it naively incurs a performance penalty. Indeed,
the frustum is typically much larger than the bounding box, so more
fragments are rasterized. But for many of these fragments, the cor-
responding ray does not actually intersect the geometry. This is
very simply addressed by cutting the bounding box out of the frus-
tum and rendering it with the appropriate normalized coordinates.
This is done as a preprocess, does not change the shader at all, and
brings the performance rates back to those of the orthogonal pro-
jection.

4.2 Multiple heightfields
Most objects are not globally representable as heightfields, but very
often they can be quite faithfully represented by the combination of
several heightfields. Oliveira et al. uses 6 relief textures mapped on
a bounding box to replace objects like statues[19]. We use a similar
approach with our reverse perspective heightfield except that we
split a bounding cube in 6 perspective frustums.

Figure 10: (left) Using 6 reverse persepective heightfields to repre-
sent an object (right) clipping the reverse persepective heightfields
to reduce fillrate.

4.3 Independent resolutions
The intersection search depends only on heights. Once it is found,
color is obtained with a color-texture lookup. Depth and color tex-
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T.y
T.x
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Figure 2: (a) Walking a ray by taking fixed steps yields redundant lookups and missed feature, no matter the sampling rate, as can be seen by
considering a ray arbitrarily close to a texel’s center (b) In Amanatides and Woo[1], the ray is walked from one centerline to the next; no texel
is missed and the correct intersection is found.
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Figure 4: The safety radius r(x,y,θ) indicates a region in which rays pass-
ing above pixel (x,y) with direction θ can have at most one intersection
with the heightfield.

of the safety radius, there can be at most one intersection between
positions t and t+ dt. If the new position is above the heightfield,
there is no intersection and we keep advancing. If it is below, there
is exactly one intersection between t and t+dt and we run a binary
search to find it. Figure 5 shows an example.

safety radius

zt

ht

t

θ

Figure 5: Example of robust binary search: from left, we walk along the
ray of amounts corresponding to safety radii (green steps) as soon as we
pass below the heightfield, we start a binary search (purple steps).

We encode a conservative discrete 2D version of the safety ra-
dius in a 2D texture. For a texel (i, j), the safety radius is now a
number of pixels n such that any ray, whose projection crosses the
centerlines within the texel, has at most one intersection with the

heightfield within the 2n×2n square centered on (i, j). As seen in
Figure 6, this square is supported by centerlines.
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Figure 6: Conservative safety radius. For texel (i, j), the safety radius
is 2 meaning any ray crossing the texel has at most one intersection
with the heightfield in green square.

The intersection algorithm is as follows. We first determine if
the ray is more horizontal than vertical by comparing d.x and d.y
where d is the direction of the ray. Suppose the ray is horizontal
(d.x > d.y). We walk backwards on the ray to the first intersection
with a vertical centerline. Then we fetch the safety radius r for
the corresponding texel. If it is non zero, we advance by r vertical
centerlines. We keep doing this until we pass below the heightfield
at which point we run a binary search.
The case of zero radius is special. It occurs when the height-

field is locally non concave because we can always find a ray that
has two intersections with the local peak (Fig. 7). The problem with

texel A texel B

ε
B

ε
A

Figure 7: For texel A and B, the safety radius is 0 as we can clearly find
rays intersecting the heightfield twice arbitrarily close to the texel’s
centers. Setting a non zero radius will create incorrect silhouettes of
size ε.

zero radius is that we can no longer advance our position on the ray.
There are two ways of dealing with this. The first one is to move
“manually” to the next texel by performing up to two iterations of
the exact algorithm. This solution yields exact computations but
the code for the loop becomes more complex and there is a perfor-
mance penalty. The other solution is to clamp the radius to 1. This
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annealing and method of differences stereo-correspondence rou-
tines. As these tiepoints were added, we also refined the epipolar
geometry and cylinder position estimates. The change in cylinder
position, however, was very slight. In Figure 5d, we show a cylin-
drical image with several epipolar curves superimposed. Notice how
the curves all intersect at the alternate camera’s virtual image and
vanishing point.

After the disparity images are computed, they can be interac-
tively warped to new viewing positions. The following four images
show various reconstructions. When used interactively, the warped
images provide a convincing kinetic depth effect.

6. CONCLUSIONS
The plenoptic function provides a consistent framework for image-
based rendering systems. The various image-based methods, such as
morphing and view interpolation, are characterized by the different
ways they implement the three key steps of sampling, reconstructing,
and resampling the plenoptic function.

We have described our approach to each of these steps. Our
method for sampling the plenoptic function can be done with equip-
ment that is commonly available, and it results in cylindrical samples
about a point. All the necessary parameters are automatically esti-
mated from a sequence of images resulting from panning a video
camera through a full circle.

Reconstructing the function from these samples requires esti-
mating the optic flow of points when the view point is translated.
Though this problem can be very difficult, as evidenced by thirty
years of computer vision and photogrammetry research, it is greatly
simplified when the samples are relatively close together. This is
because there is little change in the image between samples (which
makes the estimation easier), and because the viewer is never far from

a sample (which makes accurate estimation less important).
Resampling the plenoptic function and reconstructing a planar

projection are the key steps for display of images from arbitrary view-
points. Our methods allow efficient determination of visibility and
real-time display of visually rich environments on conventional
workstations without special purpose graphics acceleration.

The plenoptic approach to modeling and display will provide
robust and high-fidelity models of environments based entirely on a
set of reference projections. The degree of realism will be determined
by the resolution of the reference images rather than the number of
primitives used in describing the scene. Finally, the difficulty of pro-
ducing realistic models of real environments will be greatly reduced
by replacing geometry with images.
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annealing and method of differences stereo-correspondence rou-
tines. As these tiepoints were added, we also refined the epipolar
geometry and cylinder position estimates. The change in cylinder
position, however, was very slight. In Figure 5d, we show a cylin-
drical image with several epipolar curves superimposed. Notice how
the curves all intersect at the alternate camera’s virtual image and
vanishing point.

After the disparity images are computed, they can be interac-
tively warped to new viewing positions. The following four images
show various reconstructions. When used interactively, the warped
images provide a convincing kinetic depth effect.

6. CONCLUSIONS
The plenoptic function provides a consistent framework for image-
based rendering systems. The various image-based methods, such as
morphing and view interpolation, are characterized by the different
ways they implement the three key steps of sampling, reconstructing,
and resampling the plenoptic function.

We have described our approach to each of these steps. Our
method for sampling the plenoptic function can be done with equip-
ment that is commonly available, and it results in cylindrical samples
about a point. All the necessary parameters are automatically esti-
mated from a sequence of images resulting from panning a video
camera through a full circle.

Reconstructing the function from these samples requires esti-
mating the optic flow of points when the view point is translated.
Though this problem can be very difficult, as evidenced by thirty
years of computer vision and photogrammetry research, it is greatly
simplified when the samples are relatively close together. This is
because there is little change in the image between samples (which
makes the estimation easier), and because the viewer is never far from

a sample (which makes accurate estimation less important).
Resampling the plenoptic function and reconstructing a planar

projection are the key steps for display of images from arbitrary view-
points. Our methods allow efficient determination of visibility and
real-time display of visually rich environments on conventional
workstations without special purpose graphics acceleration.

The plenoptic approach to modeling and display will provide
robust and high-fidelity models of environments based entirely on a
set of reference projections. The degree of realism will be determined
by the resolution of the reference images rather than the number of
primitives used in describing the scene. Finally, the difficulty of pro-
ducing realistic models of real environments will be greatly reduced
by replacing geometry with images.
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(14)

where is the unknown position of the cylinder’s
center of projection, φa is the rotational offset which aligns the angu-
lar orientation of the cylinders to a common frame, ka is a scale factor
which determines the vertical field-of-view, and  is the scanline
where the center of projection would project onto the scene (i.e. the
line of zero elevation, like the equator of a spherical map).

A pair of tiepoints, one from each image, establishes a pair of
rays which ideally intersect at the point in space identified by the tie-
point. In general, however, these rays are skewed. Therefore, we use
the point that is simultaneously closest to both rays as an estimate of
the point’s position, , as determined by the following derivation.

(15)

where  and  are the tiepoint coordinates on cylin-
ders A and B respectively. The two points,  and , are given by

(16)

where

(17)

This allows us to pose the problem of finding a cylinder’s position
as a minimization problem. For each pair of cylinders we have two
sets of six unknowns, [(Ax,Ay,Az,φa,ka,Cva), (Bx,By,Bz,φb,kb, Cvb)]. In
general, we have good estimates for the k and Cv terms, since these
values are found by the registration phase. The position of the cyl-
inders is determined by minimizing the distance between these
skewed rays. We also choose to assign a penalty for shrinking the ver-
tical height of the cylinder in order to bring points closer together.
This penalty could be eliminated by accepting either the k or Cv val-
ues given by the registration.

We have tested this approach using from 12 to 500 tiepoints, and
have found that it converges to a solution in as few as ten iterations
of Powell’s method. Since no correlation step is required, this process
is considerably faster than the minimization step required to deter-
mine the structural matrix, S.

The use of a cylindrical projection introduces significant geo-
metric constraints on where a point viewed in one projection might
appear in a second. We can capitalize on these restrictions when we
wish to automatically identify corresponding points across cylinders.
While an initial set of 100 to 500 tiepoints might be established by
hand, this process is far too tedious to establish a mapping for the
entire cylinder. Next, we present a geometric constraint for cylindri-
cal projections that determines the possible positions of a point given
its position in some other cylinder. This constraint plays the same role
that the epipolar geometries [18], [9], used in the computer vision
community for depth-from-stereo computations, play for planar pro-
jections.

First, we will present an intuitive argument for the existence of
such an invariant. Consider yourself at the center of a cylindrical pro-
jection. Every point on the cylinder around you corresponds to a ray
in space as given by the cylindrical epipolar geometry equation.
When one of the rays is observed from a second cylinder, its path
projects to a curve which appears to begin at the point corresponding
to the origin of the first cylinder, and it is constrained to pass through
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the point’s image on the second cylinder.
This same argument could obviously have been made for a pla-

nar projection. And, since two points are identified (the virtual image
of the camera in the second projection along with the corresponding
point) and, because a planar projection preserve lines, a unique, so
called epipolar line is defined. This is the basis for an epipolar geom-
etry, which identifies pairs of lines in two planar projections such that
if a point falls upon one line in the first image, it is constrained to fall
on the corresponding line in the second image. The existence of this
invariant reduces the search for corresponding points from an O(N2)
problem to O(N).

Cylindrical projections, however, do not preserve lines. In gen-
eral, lines map to quadratic parametric curves on the surface of a cyl-
inder. Surprisingly, we can completely specify the form of the curve
with no more information than was needed in the planar case.

The paths of these curves are uniquely determined sinusoids.
This cylindrical epipolar geometry is established by the following
equation.

(18)

where

(19)
This formula gives a concise expression for the curve formed by

the projection of a ray across the surface of a cylinder, where the ray
is specified by its position on some other cylinder.

This cylindrical epipolar relationship can be used to establish
image flow fields using standard computer vision methods. We have
used correlation methods [9], a simulated annealing-like relaxation
method [3], and the method of differences [20] to compute stereo dis-
parities between cylinder pairs. Each method has its strengths and
weaknesses. We refer the reader to the references for further details.

4.4 Plenoptic Function Reconstruction
Our image-based rendering system takes as input cylindrically pro-
jected panoramic reference images along with scalar disparity
images relating each cylinder pair. This information is used to auto-
matically generate image warps that map reference images to
arbitrary cylindrical or planar views that are capable of describing
both occlusion and perspective effects.

FIGURE 2. Diagram showing the transfer of the known
disparity values between cylinders A and B to a new
viewing position V.

We begin with a description of cylindrical-to-cylindrical map-
pings. Each angular disparity value, α, of the disparity images, can
be readily converted into an image flow vector field,

 using the epipolar relation given by Equation 18
for each position on the cylinder, (θ, v). We can transfer disparity val-
ues from the known cylindrical pair to a new cylindrical projection
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Figure 6: Original image taken from results of [Liebowitz et al. 1999] and two novel views from the 3D model generated by our system.
Since the roof in our model is not slanted, the model generated by Liebowitz et al. is slightly more accurate, but their model is manually
specified, while ours is created fully automatically!

1. Image! superpixels via over-segmentation (Sec 4.1)
2. Superpixels! multiple constellations (Sec 4.2)

(a) For each superpixel: compute features (Sec 1)
(b) For each pair of superpixels: compute pairwise likelihood of same

label
(c) Varying the number of constellations:

maximize average pairwise log-likelihoods within constellations
(Eq 1)

3. Multiple constellations! superpixel labels (Sec 4.3)
(a) For each constellation:

i. Compute features (Sec 1)
ii. For each label 2 {ground, vertical, sky}: compute label

likelihood
iii. Compute likelihood of label homogeneity

(b) For each superpixel: compute label confidences (Eq 2) and assign
most likely label

4. Superpixel labels! 3D model (Sec 5)
(a) Partition vertical regions into a set of objects
(b) For each object: fit ground-object intersection with line
(c) Create VRML models by cutting out sky and “popping up” ob-

jects from the ground

Figure 7: Creating a VRML model from a single image.

the estimated position of the horizon, we abandon that estimate and
assume that the horizon lies slightly above the highest ground pixel.

6 Implementation

Figure 7 outlines the algorithm for creating a 3D model from an im-
age. We used Felzenszwalb’s [2004] publicly available code to gen-
erate the superpixels and implemented the remaining parts of the
algorithm using MATLAB. The decision tree learning and kernel
density estimation was performed using weighted versions of the
functions from the MATLAB Statistics Toolbox. We used twenty
Adaboost iterations for the learning of the pairwise likelihood and
geometric labeling functions. In our experiments, we set Nc to each
of {3,4,5,6,7,9,12,15}. We have found our labeling algorithm to be
fairly insensitive to parameter changes or small changes in the way
that the image statistics are computed.

In creating the 3D model from the labels, we set the minimum num-
ber of boundary points per segment mp to s/20, where s is the diag-
onal length of the image. We set the minimum distance for a point
to be considered part of a segment dt to s/100 and the maximum
horizontal gap between consecutive points gt to the larger of the
segment length and s/20.

The total processing time for an 800x600 image is about 1.5
minutes using unoptimized MATLAB code on a 2.13GHz Athalon
machine.

7 Results

Figure 9 shows the qualitative results of our algorithm on several
images. On a test set of 62 novel images, 87% of the pixels were
correctly labeled into ground, vertical, or sky. Even when all pixels
are correctly labeled, however, the model may still look poor if ob-
ject boundaries and object-ground intersection points are difficult
to determine. We found that about 30% of input images of outdoor
scenes result in accurate models.

Figure 8 shows four examples of typical failures. Common causes
of failure are 1) labeling error, 2) polyline fitting error, 3) model-
ing assumptions, 4) occlusion in the image, and 5) poor estimation
of the horizon position. Under our assumptions, crowded scenes
(e.g. lots of trees or people) cannot be easily modeled. Addition-
ally, our models cannot account for slanted surfaces (such as hills)
or scenes that contain multiple ground-parallel planes (e.g. steps).
Since we do not currently attempt to segment overlapping vertical
regions, occluding foreground objects cause fitting errors or are ig-
nored (made part of the ground plane). Additionally, errors in the
horizon position estimation (our current method is quite basic) can
cause angles between connected planes to be overly sharp or too
shallow. By providing a simple interface, we could allow the user
to quickly improve results by adjusting the horizon position, cor-
recting labeling errors, or segmenting vertical regions into objects.

Since the forming of constellations depends partly on a random ini-
tialization, results may vary slightly when processing the same im-
age multiple times. Increasing the number of sets of constellations
would decrease this randomness at the cost of computational time.

8 Conclusion

We set out with the goal of automatically creating visually pleasing
3D models from a single 2D image of an outdoor scene. By making
our small set of assumptions and applying a statistical framework
to the problem, we find that we are able to create beautiful models
for many images.

The problem of automatic single-view reconstruction, however, is
far from solved. Future work could include the following improve-
ments: 1) use segmentation techniques such as [Li et al. 2004] to
improve labeling accuracy near region boundaries (our initial at-
tempts at this have not been successful) or to segment out fore-
ground objects; 2) estimate the orientation of vertical regions from
the image data, allowing a more robust polyline fit; and 3) an ex-
tension of the system to indoor scenes. Our approach to automatic
single-view modeling paves the way for a new class of applications,
allowing the user to add another dimension to the enjoyment of his
photos.



• Principe :

• Segmentations de régions 
uniformes.

• Classement / Labellisation 
des régions.

• Extraction d’un modèle 
3D basique.

Photo-popup
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Figure 2: 3D Model Estimation Algorithm. To obtain useful statistics for modeling geometric classes, we must first find uniformly-labeled
regions in the image by computing superpixels (b) and grouping them into multiple constellations (c). We can then generate a powerful set
of statistics and label the image based on models learned from training images. From these labels, we can construct a simple 3D model (e) of
the scene. In (b) and (c), colors distinguish between separate regions; in (d) colors indicate the geometric labels: ground, vertical, and sky.

single image. [Liebowitz et al. 1999; Criminisi et al. 2000] offer
the most accurate (but also the most labor-intensive) approach, re-
covering a metric reconstruction of an architectural scene by using
projective geometry constraints [Hartley and Zisserman 2004] to
compute 3D locations of user-specified points given their projected
distances from the ground plane. The user is also required to spec-
ify other constraints such as a square on the ground plane, a set of
parallel “up” lines and orthogonality relationships. Most other ap-
proaches forgo the goal of a metric reconstruction, focusing instead
on producing perceptually pleasing approximations. [Zhang et al.
2001] models free-form scenes by letting the user place constraints,
such as normal directions, anywhere on the image plane and then
optimizing for the best 3D model to fit these constraints. [Ziegler
et al. 2003] finds the maximum-volume 3D model consistent with
multiple manually-labeled images. Tour into the Picture [Horry
et al. 1997], the main inspiration for this work, models a scene
as an axis-aligned box, a sort of theater stage, with floor, ceiling,
backdrop, and two side planes. An intuitive “spidery mesh” inter-
face allows the user to specify the coordinates of this box and its
vanishing point. Foreground objects are manually labeled by the
user and assigned to their own planes. This method produces im-
pressive results but works only on scenes that can be approximated
by a one-point perspective, since the front and back of the box are
assumed to be parallel to the image plane. This is a severe limita-
tion (that would affect most of the images in this paper, including
Figure 1(left)) which has been partially addressed by [Kang et al.
2001] and [Oh et al. 2001], but at the cost of a less intuitive inter-
face.

Automatic methods exist to reconstruct certain types of scenes from
multiple images or video sequences (e.g. [Nistér 2001; Pollefeys
et al. 2004]), but, to the best of our knowledge, no one has yet
attempted automatic single-view modeling.

1.2 Intuition

Consider the photograph in Figure 1(left). Humans can easily grasp
the overall structure of the scene – sky, ground, relative positions of
major landmarks. Moreover, we can imagine reasonably well what
this scene would look like from a somewhat different viewpoint,
even if we have never been there. This is truly an amazing ability
considering that, geometrically speaking, a single 2D image gives
rise to an infinite number of possible 3D interpretations! How do
we do it?

The answer is that our natural world, despite its incredible richness
and complexity, is actually a reasonably structured place. Pieces of
solid matter do not usually hang in mid-air but are part of surfaces
that are usually smoothly varying. There is a well-defined notion
of orientation (provided by gravity). Many structures exhibit high
degree of similarity (e.g. texture), and objects of the same class
tend to have many similar characteristics (e.g. grass is usually green
and can most often be found on the ground). So, while an image

offers infinitely many geometrical interpretations, most of them can
be discarded because they are extremely unlikely given what we
know about our world. This knowledge, it is currently believed, is
acquired through life-long learning, so, in a sense, a lot of what we
consider human vision is based on statistics rather than geometry.

One of the main contributions of this paper lies in posing the classic
problem of geometric reconstruction in terms of statistical learning.
Instead of trying to explicitly extract all the required geometric pa-
rameters from a single image (a daunting task!), our approach is to
rely on other images (the training set) to furnish this information in
an implicit way, through recognition. However, unlike most scene
recognition approaches which aim to model semantic classes, such
as cars, vegetation, roads, or buildings [Everingham et al. 1999;
Konishi and Yuille 2000; Singhal et al. 2003], our goal is to model
geometric classes that depend on the orientation of a physical ob-
ject with relation to the scene. For instance, a piece of plywood
lying on the ground and the same piece of plywood propped up by
a board have two different geometric classes but the same semantic
class. We produce a statistical model of geometric classes from a
set of labeled training images and use that model to synthesize a 3D
scene given a new photograph.

2 Overview

We limit our scope to dealing with outdoor scenes (both natural and
man-made) and assume that a scene is composed of a single ground
plane, piece-wise planar objects sticking out of the ground at right
angles, and the sky. Under this assumption, we can construct a
coarse, scaled 3D model from a single image by classifying each
pixel as ground, vertical or sky and estimating the horizon position.
Color, texture, image location, and geometric features are all useful
cues for determining these labels. We generate as many potentially
useful cues as possible and allow our machine learning algorithm
(decision trees) to figure out which to use and how to use them.
Some of these cues (e.g., RGB values) are quite simple and can
be computed directly from pixels, but others, such as geometric
features require more spatial support to be useful. Our approach
is to gradually build our knowledge of scene structure while being
careful not to commit to assumptions that could prevent the true
solution from emerging. Figure 2 illustrates our approach.

Image to Superpixels
Without knowledge of the scene’s structure, we can only compute
simple features such as pixel colors and filter responses. The first
step is to find nearly uniform regions, called “superpixels” (Figure
2(b)), in the image. The use of superpixels improves the efficiency
and accuracy of finding large single-label regions in the image. See
Section 4.1 for details.

Superpixels to Multiple Constellations
An image typically contains hundreds of superpixels over which we

(a) input image (b) superpixels (c) constellations (d) labeling (e) novel view
Figure 2: 3D Model Estimation Algorithm. To obtain useful statistics for modeling geometric classes, we must first find uniformly-labeled
regions in the image by computing superpixels (b) and grouping them into multiple constellations (c). We can then generate a powerful set
of statistics and label the image based on models learned from training images. From these labels, we can construct a simple 3D model (e) of
the scene. In (b) and (c), colors distinguish between separate regions; in (d) colors indicate the geometric labels: ground, vertical, and sky.

single image. [Liebowitz et al. 1999; Criminisi et al. 2000] offer
the most accurate (but also the most labor-intensive) approach, re-
covering a metric reconstruction of an architectural scene by using
projective geometry constraints [Hartley and Zisserman 2004] to
compute 3D locations of user-specified points given their projected
distances from the ground plane. The user is also required to spec-
ify other constraints such as a square on the ground plane, a set of
parallel “up” lines and orthogonality relationships. Most other ap-
proaches forgo the goal of a metric reconstruction, focusing instead
on producing perceptually pleasing approximations. [Zhang et al.
2001] models free-form scenes by letting the user place constraints,
such as normal directions, anywhere on the image plane and then
optimizing for the best 3D model to fit these constraints. [Ziegler
et al. 2003] finds the maximum-volume 3D model consistent with
multiple manually-labeled images. Tour into the Picture [Horry
et al. 1997], the main inspiration for this work, models a scene
as an axis-aligned box, a sort of theater stage, with floor, ceiling,
backdrop, and two side planes. An intuitive “spidery mesh” inter-
face allows the user to specify the coordinates of this box and its
vanishing point. Foreground objects are manually labeled by the
user and assigned to their own planes. This method produces im-
pressive results but works only on scenes that can be approximated
by a one-point perspective, since the front and back of the box are
assumed to be parallel to the image plane. This is a severe limita-
tion (that would affect most of the images in this paper, including
Figure 1(left)) which has been partially addressed by [Kang et al.
2001] and [Oh et al. 2001], but at the cost of a less intuitive inter-
face.

Automatic methods exist to reconstruct certain types of scenes from
multiple images or video sequences (e.g. [Nistér 2001; Pollefeys
et al. 2004]), but, to the best of our knowledge, no one has yet
attempted automatic single-view modeling.

1.2 Intuition

Consider the photograph in Figure 1(left). Humans can easily grasp
the overall structure of the scene – sky, ground, relative positions of
major landmarks. Moreover, we can imagine reasonably well what
this scene would look like from a somewhat different viewpoint,
even if we have never been there. This is truly an amazing ability
considering that, geometrically speaking, a single 2D image gives
rise to an infinite number of possible 3D interpretations! How do
we do it?

The answer is that our natural world, despite its incredible richness
and complexity, is actually a reasonably structured place. Pieces of
solid matter do not usually hang in mid-air but are part of surfaces
that are usually smoothly varying. There is a well-defined notion
of orientation (provided by gravity). Many structures exhibit high
degree of similarity (e.g. texture), and objects of the same class
tend to have many similar characteristics (e.g. grass is usually green
and can most often be found on the ground). So, while an image

offers infinitely many geometrical interpretations, most of them can
be discarded because they are extremely unlikely given what we
know about our world. This knowledge, it is currently believed, is
acquired through life-long learning, so, in a sense, a lot of what we
consider human vision is based on statistics rather than geometry.

One of the main contributions of this paper lies in posing the classic
problem of geometric reconstruction in terms of statistical learning.
Instead of trying to explicitly extract all the required geometric pa-
rameters from a single image (a daunting task!), our approach is to
rely on other images (the training set) to furnish this information in
an implicit way, through recognition. However, unlike most scene
recognition approaches which aim to model semantic classes, such
as cars, vegetation, roads, or buildings [Everingham et al. 1999;
Konishi and Yuille 2000; Singhal et al. 2003], our goal is to model
geometric classes that depend on the orientation of a physical ob-
ject with relation to the scene. For instance, a piece of plywood
lying on the ground and the same piece of plywood propped up by
a board have two different geometric classes but the same semantic
class. We produce a statistical model of geometric classes from a
set of labeled training images and use that model to synthesize a 3D
scene given a new photograph.

2 Overview

We limit our scope to dealing with outdoor scenes (both natural and
man-made) and assume that a scene is composed of a single ground
plane, piece-wise planar objects sticking out of the ground at right
angles, and the sky. Under this assumption, we can construct a
coarse, scaled 3D model from a single image by classifying each
pixel as ground, vertical or sky and estimating the horizon position.
Color, texture, image location, and geometric features are all useful
cues for determining these labels. We generate as many potentially
useful cues as possible and allow our machine learning algorithm
(decision trees) to figure out which to use and how to use them.
Some of these cues (e.g., RGB values) are quite simple and can
be computed directly from pixels, but others, such as geometric
features require more spatial support to be useful. Our approach
is to gradually build our knowledge of scene structure while being
careful not to commit to assumptions that could prevent the true
solution from emerging. Figure 2 illustrates our approach.

Image to Superpixels
Without knowledge of the scene’s structure, we can only compute
simple features such as pixel colors and filter responses. The first
step is to find nearly uniform regions, called “superpixels” (Figure
2(b)), in the image. The use of superpixels improves the efficiency
and accuracy of finding large single-label regions in the image. See
Section 4.1 for details.

Superpixels to Multiple Constellations
An image typically contains hundreds of superpixels over which we

(a) input image (b) superpixels (c) constellations (d) labeling (e) novel view
Figure 2: 3D Model Estimation Algorithm. To obtain useful statistics for modeling geometric classes, we must first find uniformly-labeled
regions in the image by computing superpixels (b) and grouping them into multiple constellations (c). We can then generate a powerful set
of statistics and label the image based on models learned from training images. From these labels, we can construct a simple 3D model (e) of
the scene. In (b) and (c), colors distinguish between separate regions; in (d) colors indicate the geometric labels: ground, vertical, and sky.
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Data-intensive Image based Relighting

Figure 1: LampPost and PipeSet relit using a light source with novel direction, color and the intensity.

Abstract

Image based Relighting(IBRL) has attracted a lot of interest in the

computer graphics research, gaming, and virtual cinematography

communities for its ability to relight objects or scenes, from novel

illuminations captured in natural or synthetic environments. How-

ever, the advantages of an image-based framework conflicts with a

drastic increase in the storage caused by the huge number of ref-

erence images pre-captured under various illumination conditions.

To perform fast relighting, while maintaining the visual fidelity, one

needs to preprocess this huge data into an appropriate model.

In this paper, we propose a novel and efficient two-stage relighting

algorithm which creates a compact representation of the huge IBRL

dataset and facilitates fast relighting. In the first stage, using Singu-

lar Value Decomposition, a set of eigen image bases and relighting

coefficients are computed. In the second stage, and in contrast to

prior methods, the correlation among the relighting coefficients is

harnessed using Spherical Harmonics. The proposed method thus

has lower memory and computational requirements. We demon-

strate our results qualitatively and quantitatively with new image

data as well as with publicly available data.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism—Virtual reality; I.4.1 [Image Processing and

Computer Vision]: Digitization and Image Capture—Reflectance

Keywords: relighting, image-based, virtual/augmented reality

1 Introduction

The traditional way of synthesizing interesting imagery involves

specifying all the objects in the world and their interactions, which

can be termed the source description. An alternative way to de-

scribe the world is through the appearance description, also termed

Image-based modeling and rendering(IBR). Unlike traditional ren-

dering, IBR synthesizes realistic images from pre-recorded imagery

without a complex and long rendering process.

A key area of interest in computer graphics has been illumination

changes or relighting. Lighting design is one the most important de-

cisions artists and designer have to take, both for our real and virtual

world. Unfortunately, the ability to control illumination changes

is inherently difficult with pre-acquired images. If this process of

relighting can be made independent of the scene complexity, as

in image-based relighting(IBRL), the artist is saved an enormous

amount of time fine-tuning the illumination conditions to create the

desired effect.

The approach chosen by many IBRL techniques involves pre-

rendering (synthetic scenes) or pre-acquisition (real scenes) of a

collection of images in which the lighting direction is systemati-

cally varied. If the density of illumination is dense enough, then due

to linearity of scene radiance, images of the scene under complex il-

lumination can be computed simply by superposition of single light

source images. Although now relighting is tractable, the collec-

tion of images is typically too large both to store in memory and

to synthesize novel images in real-time (Debevec et al. [Debevec

et al. 2000] use 2000 images and Koudelka et al. [Koudelka et al.

2001] use more than 4000 images). If too few images are used, the

quality of reconstruction is compromised (blurring of specularities

and inaccurate shadows). The fundamental fact of IBRL data being

closely related to the surface reflectance makes it necessary to cor-

rectly model the data into a compact and efficient representation.

Researchers have coped with this issue in several ways.

Compression: Several compression techniques have been pro-

posed to remove the data redundancy in image-based data. In [De-

bevec et al. 2000], images of each pixel’s reflectance function are

stored in the JPEG format and further processed in the compressed

domain. Lin et al. [Lin et al. 2002], on the other hand uses a 2D

DCT to compress the images of a pixel’s radiance values. Vector

quantization, entropy coding, and wavelet transform are some of the

widely used image compression techniques. However, these tech-

niques either compress the relighting data by small factor or (their

overuse) introduces artifacts.

Sampling: As a novel image is synthesized from a model built

from reference images, the quality of reconstruction depends on

the sampling density of reference images. Lin et al. [Lin et al.

2002] derived a theoretical geometry-independent sampling bound
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(a) Original (b) Our Algo-

rithm

(c) 2S-SVD (d) IAI (e) Original (f) Our Algo-

rithm

(g) 2S-SVD (h) IAI

Figure 6: Relit LampPost under two different illuminations. Figure 6(a),6(b),6(c),6(d) are images under one lighting direction and, Fig-
ure 6(e),6(f),6(g),6(h) is the other set of images under a different lighting. Shadows, the desired sharpness and various illumination effects
are faithfully reproduced. For quantitative details, see respective entries for Lampost 1 and Lampost 2 in Table 1.

cess all blocks simultaneously and thereby perform relighting in

realtime.

5 Conclusion

In this paper, we propose a novel two-stage IBRL technique, which

tackles the traditional problem of huge storage and computational

resource requirements. We apply SVD to capture the inter-pixel

correlations, producing a set of eigen bases images and correspond-

ing relighting coefficients in Stage 1, and in Stage 2, we further

model the intra-pixel correlations among the relighting coefficients

using Spherical Harmonics and reduce them to a compact set of SH

relighting coefficients. Fast relighting can then be performed with

single/multiple light sources. Three new IBRL datasets, LampPost,
Pipset and Lighter for the purpose of experimentation have been

generated and experimental results validate our technique.

Figure 8: Sample points on the surface of a sphere denotes point
light sources used for illuminating the object/scene.
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Obtenir un nouvel 
éclairage ?

• Plusieurs méthodes :

• Brutal : trouver les  images les plus 
proches de l’éclairage recherché et 
interpoler.

• Plus fin : exploiter la redondance des 
informations en encodant le résultat sur 
une base d’harmoniques sphériques.



Plus simple

• Déduire l’éclairage 
d’un objet complexe 
de l’éclairage d’un 
objet simple.

• Contrainte : les 
deux objets 
doivent avoir la 
même BRDF.


