Université Claude Bernard

Réalité augmentée réaliste

Cours M2 recherche

<u>Jean-Philippe.Farrugia@liris.cnrs.fr</u>

Présentation

- Thématiques de recherche de R3AM :
- Rendu réaliste
 - Cours I
- Rendu expressif / Echantillonage.
 - Cours 2
- Aujourd'hui : Réalité augmentée réaliste.

Plan

- Introduction Problématique.
- Acquisition.
- Stockage et structuration des données.
- Rendu généralisé.

- Rendu «classique» : à partir de données modélisées.
 - Processus manuel, éventuellement assez long.

- Uniquement des données modélisées ?
- Créer une image à partir
 - D'autres images ?
 - De données numérisées ?
 - De données scientifiques ?

- Pour quoi faire ?
 - Pour visualiser des données complexes.
 - Pour mélanger différentes sources de données.
 - Réalité augmentée ?

- Cadre de ce cours : réalité augmentée réaliste.
 - Mélanger des données issues de l'environnement réel avec des données modélisées.
- Acquérir les caractéristiques de l'environnement ?
- Rendu de données hétérogènes ?

Plan

- Acquisition
- Stockage, structuration des données.
- Rendu généralisé.

Acquisition

- Lors du rendu : données compatibles.
- Que faut il acquérir ?
 - Caractéristiques des éléments réels.
 - Photométrie.
 - Géométrie.

Acquisition

- Photométrie : caractérisation de l'énergie lumineuse renvoyée par l'objet.
 - Interactions lumineuses.
- Géométrie : une approximation de la surface de l'objet.
 - Occultations, ombres...

Luminance

- Acquisition de luminance :
 - Indispensable : High Dynamic Range.
 - Cartes d'environnements.
 - Matériel dédié.
 - Autres ?

- Image dont la dynamique en luminance est moins limitée qu'une image classique...
- Obtenue par plusieurs prises de vues successives avec des expositions différentes.

Université Claude Bernard (b) Lyon

- Technique usuelle :
 - Inversion de la fonction de réponse du capteur.
 - Prises de vues identiques avec des expositions variables.
 - Détermination de la luminance.

- Problème :
 - La scène doit être fixe.
 - Rarement le cas...
- Effets de «ghosting».
- Solution ?

- Solution matérielle :
 - Camera «Spheron.»

LIRIS

• Dispositifs optiques.

Géométrie

- <u>Acquisition de la</u> <u>géométrie ?</u>
 - Scanners lasers.
 - Méthodes optiques / ondulatoires.

LIRIS

 Méthodes basées vision.

Méthodes basées vision : stereo pair matching

Géométrie

 Méthodes basées vision : lumière structurée.

Université Claude Bernard

Géométrie

- Données résultantes :
 - Carte de profondeur.
 - kinect, temps de vol...
 - Ensemble de points .
 - Scanners, méthodes basées vision...

Acquisition

- Problème supplémentaire :
 - Fusion des données acquises.
- Luminance + géométrie ?
- Géométrie avec sources différentes ?
- Dans les deux cas : recalage.

Plan

- Stockage, structuration des données.
- Rendu généralisé.

Structuration

- Objectif : mettre les informations acquises sous une forme exploitable pour le rendu.
 - Luminance ?
 - Géométrie ?

Structuration

- Comment représenter la lumière capturée ?
 - Carte d'environnement.
 - Fonction plénoptique.
 - «Virtual point lights».

Carte d'environnement

- Capture d'un champs de luminance.
- Outil usuel : carte d'environnement.
 - Représentative de la lumière arrivant en un point.

Carte d'environnement

- Problème : spécifique à un point.
- Si les sources de lumières sont éloignées : (presque) indépendant de la position.
- Sinon : plusieurs cartes pour plusieurs points.
 - Interpolation

Fonction plénoptique

- «Light field».
- Décrit la quantité de lumière en tout point et toute direction.
- Fonction 5D :
 - Une position : x,y,z.
 - Une direction : Fi, Teta.

Virtual Point Lights

- Remplacer l'éclairage d'une scène par un (vaste) ensemble de sources ponctuelles.
- Nécessite souvent une hiérarchisation.
- Permet de simuler l'éclairement global.

A partir d'images HDR?

- Carte d'environnement :
 - Capture HDR d'une «gaze ball».
 - Problèmes ?
 - Caméra «fish eye» très grand angle.
- Light Field, VPLs : plus complexe.

Light field

- Mesures contrôlées :
 - Captures HDR calibrées d'un objet sous plusieurs angles.
 - Organisation des données :
 - Layers
 - Voxels

LIRIS

• Autres...

Virtual Point Lights

- Captures identiques au light-field.
- Segmentation et traitement des images sources pour isoler les sources lumineuses potentielles.
- Un light-field peut être «résumé» par des sources ponctuelles virtuelles.

Envmap => VPLs

«A median cut algorithm for light probe sampling»

Champs de luminance

• Ensemble de sources ponctuelles :

- Généralement très volumineux.
- Réduire !
 - Hiérarchisation / «clusterisation».
 - Coupes ?

Structuration

- Comment représenter la géométrie capturée ?
 - Nuage de points.
 - Maillage.
 - Autre ?

Nuage de points

- A partir d'une carte de profondeur :
 - Re-projeter chaque point dans le repère de la scène.
 - Nécessite des images calibrées.
 - Problème : fusion d'information
 - Eviter les doublons.

Maillage

- Nécessite un nuage de points au préalable.
- Mailler un nuage de points : pas facile.
- Approche «voxels».
- Itératif ?

Maillage

- Exemple : kinect fusion.
 - Capture et stockage du nuage de points.
 - Construction d'une carte de distance volumique.
 - Extraction de la surface de distance 0.
- «Marching cubes» pour le maillage.

A volumetric approach for building complex models from range images, B. Curless ans M. Levoy

Exemple

- Modèle statistique :
 - Représentation statistique de la visibilité d'un ensemble de points.

Plan

• Rendu généralisé.

Approches possibles

- Approche traditionnelle.
- Construire une image à partir d'autres images (image based rendering).
- Pour la réalité augmentée ?

Approche traditionnelle

- Une fois les données converties, rendu classique.
- Géométrie complexe.
- Source lumineuses nombreuses
 - => Peut être très long...

Image-based rendering

- <u>Construire une image à</u> <u>partir d'autres images.</u>
 - Idée : pour mélanger deux images, autant utiliser directement des images.
 - «Image based rendering».
 - Outil de base : géométrie épipolaire.
 - Nécessite des images 2.5D calibrées.

Image-based rendering

- Que faire avec des images 2.5D calibrées ?
 - Simplifier la géométrie.
 - Synthétiser un nouveau point de vue.
 - Synthétiser un nouvel éclairage.

Simplifier la géométrie

- Remplacer le rendu d'un objet par un ensemble d'images.
 - Imposteurs («billboard»).
 - Ajouts de détails géométriques sur la surface.
 - Autres ?

Exemple

- Géométrie support très simple.
 - Plan, cube...
- Géométrie stockée dans plusieurs images de plusieurs types

Exemple

- Fonctionnement : implémentable sur GPU.
 - Ray-casting local sur textures de hauteurs.

Synthétiser un nouveau PV

- Rendu <u>uniquement</u> à base de re-projections d'images.
- Idée principale : une image calibrée 2.5D est un échantillonnage de la fonction plénoptique.
 - Image panoramique cylindrique.
- A partir de ces données : synthèse d'un point de vue quelconque de la scène.

Quicktime VR

Plenoptic modeling

Photo-popup

- Approche purement basée image.
- Idée : extraction d'une topologie basique de la scène.
 - Sols / surfaces verticales / ciel.
 - 2.5D calibrée non nécessaire.
 - Une seule photographie.

Photo-popup

- Principe :
 - Segmentations de régions uniformes.
 - Classement / Labellisation des régions.
 - Extraction d'un modèle
 3D basique.

Synthétiser un nouvel éclairage

- Image : échantillonage de la fonction plénoptique.
 - résultat de l'interaction lumière-matière.
- Idée : exploiter cette information ?
 - Pour déterminer les caractéristiques des objets et des sources.
 - Pour changer l'éclairage / les matières.

Synthétiser un nouvel éclairage

- Idée de base :
 - Les même objets mais...
 - Plusieurs configurations (connues) d'éclairage.
 - Obtenir un nouvel éclairage ?

Obtenir un nouvel éclairage ?

- Plusieurs méthodes :
 - Brutal : trouver les images les plus proches de l'éclairage recherché et interpoler.
 - Plus fin : exploiter la redondance des informations en encodant le résultat sur une base d'harmoniques sphériques.

Plus simple

- Déduire l'éclairage d'un objet complexe de l'éclairage d'un objet simple.
 - Contrainte : les deux objets doivent avoir la même BRDF.

