
Ambient Occlusion Volumes

Morgan McGuire∗

Williams College

Figure 1: For this 1.4M-triangle scene at 1280×720 resolution, the new Ambient Occlusion Volume algorithm produces quality comparable to
ray tracing 1200 visibility samples per pixel but executes in real time: a 4000× speedup. The inset shows the occlusion volume wireframe.

Abstract

This paper introduces a new approximation algorithm for the am-
bient occlusion problem. It begins with an analytic solution for the
cosine-weighted solid angle a polygon, which is proportional to oc-
clusion. It then describes ambient occlusion volumes, which are
like shadow volumes for ambient light. The new algorithm evalu-
ates the analytic solution at visible points within these volumes.

The new algorithm’s output approaches the quality of ray traced
results, but it is thousands of times faster and operates on dynamic
polygon sets. This enables interaction with high quality ambient
occlusion rendering for the first time. Because the algorithm builds
on an analytic solution, results are free of the noise and blurring
observed in numerical sampling methods. An optional step trades
this quality for greater performance by reconstructing sparsely sam-
pled occlusion with a cross-bilateral filter. The sources of error
in the new approximation are over-occlusion in areas containing
very close, parallel objects, and potential aliasing when the optional
sparse sampling is employed.

The new algorithm can execute efficiently on a GPU within
a deferred shading pipeline. It takes as input only the original
mesh and geometry buffers. A geometry shader produces the oc-
clusion volumes and a pixel shader applies the occlusion algo-
rithm. We demonstrate high-quality results at interactive rates for
an OpenGL implementation, including motivating cases such as ar-
chitectural models with fine details and video game assets rendered
at 1280×720 pixels (HD 720p).

Keywords:ambient occlusion,projected solid angle,shadow volume
Technical Report CSTR-200901
December 6, 2009
Williams College Computer Science Department
Williamstown, MA 01267

∗e-mail: morgan@cs.williams.edu

1 Introduction
Ambient illumination is an approximation to the light reflected from
the sky and other objects in a scene. Ambient occlusion (AO) is the
darkening that occurs when this illumination is locally blocked by
another object or a nearby fold in a surface. Both ambient illu-
mination and occlusion are qualitatively important to perception of
shape and depth in the real world and can be quantified by specific
terms in the integral equation for light transport (see section 2).

The problem of computing an explicit AO factor has been stud-
ied for over a decade, with significant recent advances. Many AO
algorithms cluster at the extremes of the performance-vs.-quality
curve. For example, screen-space GPU methods are extremely fast
but coarse approximations, and ray tracing is very accurate but con-
verges too slowly for interaction. Games on today’s console GPUs
are limited by graphics performance, so they require the fastest ap-
proximations. A few live-action film effects and civil engineering
daylight simulations require the highest accuracy available. For all
other applications, extremes are poor tradeoffs. This includes mod-
eling, CAD, and visualization; games on tomorrow’s hardware; and
most film rendering. For those applications, an algorithm that both
is fast and has high quality results is preferred over maximizing
one property at the expense of the other, especially this if enables
interaction with previously offline “preview” rendering.

The primary contribution of this paper is an efficient new algo-
rithm called Ambient Occlusion Volume rendering (AOV) for esti-
mating the ambient occlusion based on analytic solution to the oc-
clusion integral. It provides both qualitative and quantitative analy-
sis against three of the best alternative algorithms.

The new AOV algorithm is viewer independent, produces no
noise or aliasing (beyond that of rasterization itself), correctly in-
cludes the “cosine” ω̂ · n̂ factor, requires no preprocessing, and op-
erates directly on meshes. It offers quality approaching that of
offline ray tracing, yet at interactive rates. An optional subsam-
pling and reconstruction step smoothly trades accuracy for perfor-
mance suitable for immersive real-time applications like games. We
demonstrate render times from 10-200 ms per frame, depending
on scene complexity and sampling rate choice. The drawbacks of

our algorithm are that it requires tessellating curved surfaces into
meshes, it double-counts occlusion where thin objects are stacked,
and that the run time is linear in visible scene complexity. Because
it uses a z-buffer, AOV only shades one visible surface per pixel, al-
though like other deferred-rendering algorithms it can be extended
to support translucency via recent multisample methods [Kircher
and Lawrance 2009; Bavoil et al. 2007].

2 Ambient Occlusion Problem Statement

This section formalizes ambient occlusion and derives its physical
basis. The rendering integral equation for exitant radiance at point
~x in direction ω̂o is:

Lo(~x, ω̂o) = Le(~x, ω̂o)+
∫

S2
Li(~x, ω̂i) f (~x, ω̂i, ω̂o)(ω̂i · n̂) dω̂i (1)

An image is the solution to incident radiance Li at points on the
image plane plane and directions toward the aperture. Incident light
can be separated into terms due to nearby objects (Ln); large, distant
areas “ambient” (La); and relatively small, distant “sources” (Ls):

Li(~x, ω̂i) = Ln(~x, ω̂i)(1−V (~x,~y))+(La(~y, ω̂i)+Ls(~y, ω̂i))V (~x,~y),

where ~y =~x + ω̂iδ is a point on the sphere about ~x at distance δ .
This is the sphere that separates “near” from “distant”. Let visi-
bility function V (~x,~y) = 1 if there is an unobstructed line of sight
between ~x and ~y and 0 otherwise. The rendering equation is then
(with implicit arguments and only considering the hemisphere S2

+
about n̂, for an opaque surface):

Lo = Le “emitted” (2)

+
∫

S2
+

Ls · f ·V · (ω̂i · n̂) dω̂i “direct” (3)

+
∫

S2
+

Ln · f · (1−V) · (ω̂i · n̂) dω̂i “indirect” (4)

+
∫

S2
+

La · f ·V · (ω̂i · n̂) dω̂i. “ambient” (5)

A common approximation is to then factor the ambient term into∫
S2

+

La · f ·V · (ω̂i · n̂) dω̂i ≈ (6)[
π

∫
S2

+

La · f dω̂i

]
·
[

1
π

∫
S2

+

V · (ω̂i · n̂) dω̂i

]
. (7)

This is only an approximation because multiplication and integra-
tion do not commute, except for constants. That is, unless distant
light La is independent of direction and f is Lambertian (which
explains Phong’s ambient term). However, this approximation is
reasonable if both functions are relatively smooth over most of the
sphere, which is the case for a typical sky-and-ground model and
Lambertian-plus-glossy BRDF. In this case, the left bracketed fac-
tor on line 7 can be precomputed; for real-time rendering the result
is typically encoded in a MIP-mapped cube map [Scheuermann and
Isidoro 2005] for negligible run-time cost. This is how we lit the
scene in figure 1. The right factor in eq. 7 is a scalar between 0 and
1 indicating the fractional accessibility of a point.

Because objects typically have explicit representations and
empty space is implicit in most scene models, accessibility is of-
ten expressed in terms of ambient occlusion:

AO =
1
π

∫
S2

+

(1−V) · (ω̂i · n̂) dω̂i = 1− 1
π

∫
S2

+

V · (ω̂i · n̂) dω̂i (8)

A hard cutoff at distance δ would reveal the distinction between
different methods used for computing visibility at different scales

(e.g., ambient occlusion vs. shadow map and no area occlusion), so
it is common to replace binary occlusion 1−V (~x,~y) with fractional
obscurance [Zhukov et al. 1998] (1−V (~x,~y))g(~x,~y), where falloff
function g is smooth, monotonic, and is 0 for ||~x−~y|| ≥ δ and 1 at
~x =~y.

3 Related Work

3.1 Shadow Volumes
The basic idea of the AOV algorithm is that an ambient occlusion
volume is to area or indirect light as Crow’s shadow volumes [1977]
are to point sources. Like shadow volumes, AOV rendering benefits
from high fill-rate, hierarchical and early-out depth tests, geome-
try shaders, and depth clamping features in GPUs.AOVs are much
smaller than shadow volumes (figure 5), so they avoid some shadow
volume drawbacks: our near-plane clipping issues are easy to re-
solve, we spend comparatively little fill-rate rasterizing over empty
space, and no stencil buffer is required because the point-in-volume
test is explicit in a pixel shader.

3.2 Common Ideas
This subsection relates our work to key ideas common in previous
work. See chapter 9 of Akenine-Möller et al.’s text [2008] for a
thorough survey of AO work.

A common approximation to the the cosine-weighted solid angle
of a sphere (or disk) enables estimating AO for scenes modeled by
bounding spheres [Bunnell 2005; Hegeman et al. 2006; Ren et al.
2006; Shanmugam and Arikan 2007]. We contribute an exact an-
alytic solution for polygons so that analytic methods can directly
operate on meshes.

AO is low frequency across a plane, so any AO method can be
accelerated by reconstruction from sparse samples. The cross bi-
lateral filter [Eisemann and Durand 2004; Petschnigg et al. 2004]
with the gaussian kernel that falls off with surface normals and the
depth buffer discrepancy is the common reconstruction filter. AO
is an integral over d~x and dω̂ . If the sparsely sampled dimension
is angular (dω̂) [Mittring 2007; Bavoil and Sainz 2009; Filion and
McNaughton 2008], the reconstruction filter masks noise. If that
dimension is spatial (d~x) [Bavoil and Sainz 2009; Reinbothe et al.
2009], the filter masks aliasing. In both cases, undersampling is
a source of error, particularly where geometry changes rapidly in
screen space.

We apply sparse spatial sampling in our results where explic-
itly noted in our results. We denote sparse sampling as the product
of amortized samples taken per pixel and reconstruction filter size.
Thus 1/9 ∗ 5×5 denotes one sample/pixel at a 1/3 scale buffer fol-
lowed by a 5×5 reconstruction kernel and 16/4 ∗ 5×5 denotes 16
samples/pixel for a 1/2 scale buffer followed by a 5×5 filter.

Almost any AO algorithm can simultaneously compute diffuse
interreflection at minimal incremental cost [Zhukov et al. 1998;
Bunnell 2005; Evans 2006; Ritschel et al. 2009]. We focus ex-
clusively on pure AO (eq. 8) in this paper.

3.3 Physically-Based Methods
Physically-based methods generally target off-line rendering appli-
cations such as “beauty render” stills, architectural visualizations,
and cinema-quality animation. They produce accurate results but
most require minutes to render a frame.

Monte-carlo ray tracing is the gold standard for ambient occlu-
sion. Any global illumination algorithm also captures the effect,
although ray tracing is preferred because, e.g., photon mapping and
radiosity tend to overly smooth AO and Metropolis light transport
and path tracing produce significant noise.

Zhukov et al. [1998] introduced ambient occlusion and obscu-
rance in the context of the radiosity algorithm. They derived an

Figure 2: This “Suburb” stress-test scene contains close proximity between surfaces, varying depth discontinuities, large off-screen occluders,
and steep screen-space slopes. Various algorithms exhibit aliasing, noise, and over-occlusion compared to the far right ray traced reference.

analytic approximation to the form factor between points on differ-
ential patches and apply this to occlusion. We apply this approach
to whole polygons.

Bunnell [2005] introduced a purely geometric method. It re-
quires preprocessing the scene into a set of disks with bent normals.
His algorithm computes approximate analytic occlusion between
the disks. It is designed to operate as a general purpose computation
on a GPU, and variations on it have been used in film production.
To resolve double-counting, it iterates over the disks multiple times
and decreases the AO contribution of a disk by its own occlusion
on the previous pass.

Reinbothe et al.’s Hybrid AO [2009] traces rays against a vox-
elized scene and then corrects high-frequency features with a less
accurate SSAO pass. Performance and accuracy can be traded by
altering the emphasis and constants of these two passes, similar to
our AOV algorithm.Sloan et al.’s image-based global illumination
method [2007] generates accurate ambient occlusion and indirect
illumination in real-time for small scenes using virtual light probes.

Baum et al. [1989] are the first we are aware of to combine cor-
rect analytic form factors with numerical integration for global illu-
mination. We show that their analytic form factor expression is also
equivalent to the ambient occlusion between two surfaces and apply
it to the AO problem. Their numerical sampling was over polygon
patches, which gives blocky results. By incorporating a deferred-
shading frame work and computing the bounding geometry for a
falloff function, we can directly sample occlusion at each pixel.

3.4 Phenomenological Methods

An artist might describe ambient occlusion as: nearby objects
darken each other (“contact shadows”), these shadows darkening
and grow distinct with proximity (“contact hardening”), and con-
cave regions of an object are dark. Most real-time AO methods
trade accuracy for significant performance gains by directly simu-
lating these phenomena instead of light transport.

Hegeman et al. [2006] recognized that AO is essential to the ren-
dering of foliage, which is now a standard test (see figure 11 row 4).
They coarsely approximated trees with bounding spheres and grass
with occlusion gradients. Luft et al.’s seminal unsharp masking pa-
per [2006] introduced the screen space ambient occlusion (SSAO)
approach: they treat the depth buffer as a heightfield and identify
concave regions by filtering. They are careful to point out that this
has only passing resemblance to actual ambient occlusion, however
it remarkably improves the perception of depth and they demon-
strate applications in visualization.

SSAO methods are an excellent approach for immersive appli-
cations like games requiring very fast and scene-invariant run time
per frame. The Crytek SSAO [Mittring 2007] algorithm adapted
unsharp masking for games by sparsely sampling visibility rays
against the depth buffer and filtering the result.The Crytek algo-
rithm produces artifacts like over-brightening of concave regions,

noise, aliasing, and halos around objects (figure 2), yet is so effi-
cient that it quickly became the standard method for real-time AO in
games. Subsequent techniques improved SSAO quality at varying
performance by: adding distant occluders [Shanmugam and Arikan
2007], directional occlusion and indirect illumination [Ritschel
et al. 2009], better filtering and sampling [Shanmugam and Arikan
2007; Filion and McNaughton 2008; Bavoil and Sainz 2009], and
better obscurance [Szirmay-Kalos et al. 2009]. Viewer dependence
and limited sampling range remains inherent problems with all
SSAO methods. We show running comparisons between AOV and
Volumetric AO [Szirmay-Kalos et al. 2009], which is the fastest,
most recent, and most physically-correct screen space method.

Evans [2006] precomputed voxel signed-distance fields around
static meshes by rasterization and then estimated occlusion by con-
vexity. He also applied this technique to indirect illumination. Kon-
tkanen and Laine [2005] extended this to a phyiscally-based method
for AO only by precomputing the actual occlusion on a voxel grid.
Both methods are restricted to rigid objects, trade space for time,
and produce double-counting artifacts. However, they give results
comparable to ray tracing and are very fast. The benefits of these
methods inspired us extend their voxel ambient occlusion volume
idea to geometric ambient occlusion volumes, which are fully dy-
namic and require no storage beyond the original mesh.

4 Analytic Solution to Polygon Occlusion

Ambient occlusion arises in the rendering equation from the inte-
gral of a cosine factor over a solid angle. We transform this integral
into a series sum on polygon vertices and then derive an efficient,
analytic solution for the series terms. The key observation is that
the cosine-weighted solid angle (a.k.a. the “projected solid angle”)
of a polygon is equal to the area of its double projection: onto the
unit sphere and then onto the tangent plane. This is also equiva-
lent to the radiative transfer between a point and a polygon, i.e.,
the form factor from the radiosity framework. An analytic solution
to that has long been known from heat transfer literature and was
introduced to graphics by Baum et al. [1989] as:

AOP =
1

2π

k−1

∑
i=0

cos−1
(

~pi ·~p j

||~pi|| ||~p j||

)
n̂ ·

~pi×~p j

||~pi×~p j||
(9)

where j = (i+1) mod k.
Our derivation differs slightly from the classical one in that it

reduces the problem from one on 3D vectors to an expression on
2D vectors within the tangent plane of the occluded surface. Those
2D vectors are readily available after the necessary clipping to the
tangent plane, which can reduce the overall operation count in the
implementation.

4.1 Notation
Without loss of generality, assume that the point being occluded is
at the origin~0. It is on some surface with normal n̂, which defines a
local tangent plane to the surface (figure 3). For any point~x 6=~0 in
the positive half space of the tangent plane, let S(~x) =~x/||~x|| denote
its projection onto the unit sphere S2, and let T(~x) = ~x− n̂(n̂ ·~x)
denote its projection onto the tangent plane. Let the definition of
these operators be overloaded to operate on sets of points as well.

A spherical polygon has vertices in S2 and its edges are great
circle arcs. The spherical polyhedron defined by ordered vertex list
(p̂0, ..., p̂k−1) subtends the same solid angle about~0 as any polygon
(~v0, ...,~vk−1) in R3 for which S(~vi) = p̂i, ∀ 0 ≤ i < k. Our final
result holds for arbitrary (e.g., disconnected) point sets on a plane
with polygonal boundaries, although to simplify equation 11 we
give the derivation only for simple polygons.

4.2 Ambient Occlusion: AO

In the context of the rendering equation, the ambient occlusion
of the unit hemisphere S2

+ by a planar polygon P whose vertices
(~p0, ...,~pk−1) are above the tangent plane is

AOP =
1
π

∫
S2

+

(1−VP(ω̂))(ω̂ · n̂) dω̂, (10)

where visibility function VP(ω̂) = 0 if a ray in direction ω̂ from
the origin intersects the polygon and VP(ω̂) = 1 otherwise. Note
that AOP is the cosine-weighted solid angle of P divided by∫

S2
+
(ω̂ · n̂) dω̂ = π .

We change the integration domain to eliminate the visibility
function and cosine weighting:

AOP =
1
π

∫
S(P)

(ω̂ · n̂) dω̂ =
1
π

∫
T(S(P))

1 d~x. (11)

The integrand is now trivial, but the integration domain has become
more complex. Domain T(S(P)) is a planar shape bounded by set
of elliptic arcs about the origin, as shown in figure 4. It is not a
polygon. The area of a planar polygon is the sum of the signed
areas of the triangles formed by an arbitrary common point in the
plane and the polygon edges. We can generalize this to a sum of
signed areas for the individual arcs in T(S(P)), thus

AOP =
1
π

k−1

∑
i=0

A
(

S(~pi) ,S(~p(i+1)modk)
)

, (12)

where A (â, b̂) is the signed area of the projection of the disk
segment (~0, â, b̂) into an elliptic segment on the tangent plane.

Figure 3: Spherical polygon S(P) is the projection of Cartesian
polygon P onto the unit sphere. Both subtend the same solid an-
gle and thus produce the same occlusion.

Figure 4: T(S(P)) is the projection of S(P) onto the plane through
the origin with normal n̂. Its area is equal to the cosine-weighted
solid angle of P, which is equal to π times the ambient occlusion
from P.

4.3 Area of an Elliptic Segment: A

The intersection of a plane L :~x | ~x · m̂ = 0 and S2 is a great circle
C : x̂(θ) = ŝcosθ + t̂ sinθ where ŝ and t̂ are arbitrary orthogonal
unit vectors for which ŝ× t̂ = m̂. Circle C projects to ellipse

T(C) = E :~x(θ) = T(ŝ)cosθ +T(t̂)sinθ (13)

in the tangent plane. Note that in general, T(ŝ) and T(t̂) do not have
unit length and are not the semi-axes of the ellipse.

Ellipse E has radius 1 along its major semi-axis and radius |n̂ · m̂|
along its minor axis. It is related to the unit circle by a non-uniform
scale compression along the minor axis. That transformation pre-
serves relative areas. Therefore, the relative area of an elliptic seg-
ment is the same as the relative area of a unit-circle segment when
the ellipse is that circle compressed along the minor axis to |n̂ · m̂|.
The signed area of the elliptic segment from

T(â) = T(ŝ)cosθa +T(t̂)sinθa to (14)

T
(
b̂
)

= T(ŝ)cosθb +T(t̂)sinθb (15)

is therefore

A (â, b̂) =
1
2

[θb−θa] [n̂ · m̂]. (16)

Choosing
ŝ = â, (17)
t̂ = S

(
b̂− â(â · b̂)

)
(18)

gives θa = 0, m̂ = S
(
â× b̂

)
, and θb = measure of the angle between

â and b̂. Both â and b̂ have unit length, so by the law of cosines,

A (â, b̂) =−1
2

[
cos−1 (1− 1

2
||â− b̂||2

)][
n̂ ·S

(
â× b̂

)]
(19)

We note two important properties of this relation. First, the area
is signed. When A is positive, the elliptic arc winds counter-
clockwise about n̂.Second, projected area correctly falls to zero
when~0, T(â), and T

(
b̂
)

are collinear.

5 Ambient Occlusion Volume Algorithm

We now extend the analytic solution in equation 12 for occlusion
of one point by one polygon to an approximation algorithm for the
ambient occlusion of all visible points by a set of polygons. To
guide implementers, we describe it in the context of OpenGL.

The algorithm takes typical deferred rendering inputs: a set of
polygons, a camera, a depth buffer, and a normal buffer.

1. Initialize a screen-space accessibility buffer to 1 at each pixel

2. Disable depth write, enable depth test, and enable depth clamp
(GL ARB depth clamp) to prevent near-plane clipping

3. (Vertex Shader:) Transform all scene vertices as if rendering
visible geometry, e.g., skinning and modelview transform

4. (Geometry Shader:) For each polygon P in the scene:

i. Let the ambient occlusion volume V be the region over
which obscurance falloff function gP > 0

ii. Construct a series of polygons {B} that bound V

iii. If the camera is inside V , replace {B} with a full-screen
rectangle at the near clipping plane.

iv. (Pixel Shader:) For each visible point ~x ∈ V conserva-
tively identified by rasterizing {B}:

a. Let P′ be P clipped to the positive half space of the
tangent plane at~x

b. Decrement the accessibility buffer at ~x by
gP ′(~x) · AOP ′(~x) via subtractive, saturating al-
pha blending

Modulate the ambient illumination term (equation 5) by the ac-
cessibility buffer during a subsequent forward or deferred shading
pass, as if it were a shadow map or stencil buffer for ambient illu-
mination. A list of quadrilaterals is a good representation for {B},
however, GLSL v1.50.09 can only output triangle strips from a ge-
ometry shader. Under current APIs one must therefore either con-
vert the quadrilateral list to a triangle strip with some degenerate
elements; or construct all B in a separate pass over the scene ge-
ometry. Three implementation choices for that pass are OpenGL
transform feedback, an OpenCL or CUDA program, and CPU ver-
tex and geometry shaders. For simplicity we used the latter.

5.1 Falloff Function g

Consider a convex polygon P with vertices (~p0, ...,~pk−1), no three
of which are collinear. The falloff function should be monotonic in
distance from P and map distances 0→ 1 and δ → 0. We choose:

g(~x) = ᾱ

k

∏
i=0

max(0,min(1,(~x−~pimodk) · m̂i/δ +1)) , (20)

where ᾱ = 1 for solid surfaces, m̂i<k are the (inward facing) nor-
mals to the edges of P shown in figure 6, and m̂k is the negative
normal to P:

m̂k = S((~p2−~p0)× (~p1−~p0)) (21)

m̂0≤i<k = S
(
(~p(i+1)modk−~pi)×~mk

)
(22)

Figure 5: Ambient occlusion volume visualization and accessibility
(=1-AO) buffers computed by three algorithms for a simple scene.

Figure 6: A polygon P that faces ~0, its k = 4 vertices ~p0, ...,~p3,
inward edge normals m̂0, ..., m̂3, and negative face normal m̂4.

5.2 Bounding Volume {B}
The ambient occlusion volume of P is bounded by k+2 planes. Let
planes B0...Bk−1 correspond to the polygon edges, plane Bk be the
one above P, plane Bk+1 contain P, and m̂i be the normal to Bi. For
a maximum obscurance distance δ ,

Bi : ~x
∣∣ (~x−~pi) · m̂i = δ (23)

where ~pk = ~p0 and ~pk+1 = ~p0 +δ m̂k+1.
Note that we ignore the plane Bk+2 containing the polygon be-

cause we want no falloff near the polygon itself. Because the AOV
algorithm is defined on a point at the origin, g will always be eval-
uated at~x = 0 but the ~pi will change. Falloff equation 20 thus sim-
plifies to:

g(~0) = ᾱ

k

∏
i=0

max(0,min(1,1−~pimodk ·~mi/δ)) . (24)

We use rasterization to efficiently find all visible points within
an ambient occlusion volume. Let the volume bounded by these
planes be defined by a polyhedron V with vertices (~v0, ...~v2k−1),
where the first k vertices are in the plane of P and the second three
are displaced along the plane normal from them.

Let extension vectors ~ei =~vi−~pimodk be the displacements of
polygon vertices to volume vertices. Because the bounding planes
of the volume are offset along the inward facing edge normals m̂i
by the maximum obscurance distance and are in the plane of P,~ei<k
is constrained by:

~ei ·−m̂i = δ (25)
~ei ·−m̂(i+1)modk = δ (26)

~ei · m̂k = 0 (27)

Extension vector~ei is therefore given by the solution:

~e0≤i<k =

 m̂i
m̂(i+1)modk

m̂k

−1 −δ

−δ

0

 (28)

~ek≤i<2k = ~ei−k−δ m̂k (29)

Sliver polygons create long volumes yet little occlusion, so as a
practical measure we clamp all ||~ei|| to at most 2δ .

5.3 Masked Polygons and ᾱ

Artists often model planar surfaces with complex contours, such as
foliage or a fence, as α-masked polygons. Because the underlying
geometry does not match the actual occlusion properties of such a
surface, its ambient occlusion volume will result in an over-estimate
of occlusion. We therefore weigh the occlusion due to a surface
by its average α value, ᾱ , which can be determined efficiently in
the geometry shader by a texture fetch from a low MIP level. As
with regular α blending and testing, this computation need only be
performed for surfaces that are tagged as having a mask.

Figure 7: Visualization of the ambient occlusion volume V cast by a
polygon P. The volume’s base is formed by extending each original
polygon vertex ~pi along a vector ~ei derived from the normals m̂ of
the adjacent edges and maximum obscurance distance δ .

6 Results

For all algorithm comparisons we processed indexed triangle
meshes; quad meshes render about 35% faster under AOV but are
less common in GPU rendering. All algorithms were given identi-
cal G-buffers as input and computed the AO factor only. The ray
tracer used a bounding volume hierarchy and ran on 8 cores of an
Intel Dual-Quad Core2 processor. GPU algorithms executed on an
NVIDIA GeForce 280 GT GPU. All images are at 1280×720 un-
less noted.For figure 1, both sides of the image were lit on the GPU
with one shadow-mapped spot light and a cube environment map
the AO computation.

As a rough metric for implementation difficulty, our full-
resolution ambient occlusion volume implementation added 229
C++ and GLSL statements and one draw call to a deferred renderer.

6.1 Qualitative Results

Figure 11 shows selected results from multiple algorithms and
scenes. The PDF version of this paper contains full resolution im-
ages that can be zoomed to see pixel-level detail. The left-most col-
umn shows the reference ray traced result against which we mea-
sure the others. The 2nd column is our AOV algorithm rendered
without sparse sampling; it overdarkens multiply occluded areas
but is generally faithful to the reference result.

The right-most column of results are by the Crytek SSAO al-
gorithm [Mittring 2007], which is a common baseline in AO lit-
erature and a defacto standard among game developers because of
its performance. The incorrect gray flat surfaces and white halos
are consistent with Mittring’s published results. The third column
is Volumetric AO [Szirmay-Kalos et al. 2009], which is both the
most recent and most efficient published AO algorithm.The stip-
pling and black halos in the Volumetric results are consistent with
images from their original paper.

Note that Crytek SSAO uses no falloff, Volumetric AO uses cu-
bic falloff, and our falloff is the product of many factors. Yet we
measure error results against linear falloff in a ray tracer, which
a nonlinear algorithm could not possibly match. We still believe
this is a good metric. The algorithms with non-linear falloff func-
tions use them because any other falloff would be less efficient in
those algorithms. Artists seem satisfied with linear falloff in Men-
talRay and other popular renderers, so varying from that for effi-
ciency (as we do) compromises quality. We compensate by choos-
ing δAOV = 0.6δray trace and δvolumetric = 1.1δray trace, which mini-
mized their error on test scenes.

The first row of figure 11 is the standard “Sponza” benchmark
model. The AOV result is comparable to the ray traced reference.
Note the black halos on columns in the Volumetric result.

“City” demonstrates occlusion created and received by an α-
masked surface. The chain link fence contains only two textured
triangles (excepting the posts). The Volumetric AO’s black halos

around the fence are a drawback of that method. The AOV algo-
rithm creates a single occlusion volume for the entire fence, but
with the correct ᾱ value it is close to the reference. The white line
under the fence in the ray traced result is an artifact where occlusion
rays miss the fence because they are nearly parallel to it.

“House” is a simple architectural model. It shows that the pri-
mary artifact of AOV is overdarkening. Note that Volumetric AO
misses the windows and stairs because the depth discrepancy is
small. “Trees” contains many α-masked polygons with high depth
complexity. All algorithms perform well, although Volumetric AO
self-occludes the ground plane and has excessive stippling.

“Belgium” is a highly-tessellated architectural detail. This is a
challenging case for our algorithms because it generates occlusion
polygons of only a few pixels in area, which are inefficient on a
GPU. AOV is able to reproduce the details at different scales, in-
cluding the braids on the central figure, window mullions, and ma-
sonry gaps. The Volumetric algorithm’s result is also very good and
is substantially faster because it is independent of scene complexity.

The scene in row 5 (shown lit in figure 1) was extracted from the
“Secret War” level of Xbox 360 game Marvel Ultimate Alliance 2,
where it appeared without AO. Secret War produces 1.5M occlusion
volumes, but only a quarter pass the frustum and depth test and
AOV renders it in 31 ms. With sparse sampling we can drive the
time as low as 4 ms while maintaining low error.

6.2 Quantitative Results

We quantify error with perceptually-motivated variance metric,

“E[AO] = σ
2 = logMSE[1−AO]+ logMSE[~∇(1−AO)].” (30)

Figure 8: Ambient occlusion for Sibenik cathedral computed by
AOV at 1600×1200 with varying δ and sparse sampling. Upper
right: Horizon AO result at a sampling rate of 16/4 * 15×15.

Scene

9,624 tris 28,866 tris 2,688 tris
Time (ms) Error (σ²) Time (ms) Error (σ²) Time (ms) Error (σ²) Time (ms) Error (σ²) Time (ms) Error (σ²) Time (ms) Error (σ²) Time (ms) Error (σ²)

Ray Trace 5000 490803.0 0.00 603202.0 0.00 283226.0 0.00 691334.0 0.00 556228.0 0.00 642571.0 0.00 401222.0 0.00
1941 190687.0 0.35 234515.0 0.65 109923.0 0.23 270322.0 0.28 216142.0 0.89 249890.0 0.45 155504.0 1.05
292 28779.9 1.02 35372.4 1.47 16574.2 0.60 40803.0 0.80 32564.8 2.07 37627.1 1.12 23439.2 2.19
1 156.4 6.83 167.9 6.06 87.7 2.88 195.0 6.06 161.1 9.38 180.9 3.50 130.7 8.98

AOV (new) 1 77.7 0.72 137.3 0.46 25.9 0.51 100.3 1.59 31.18 0.43221 110.1 0.34 31.7 1.53
40.3 1.13 19.4 0.52 6.2 0.69 37.0 1.74 20.19 0.72643 31.1 0.61 4.2 1.48
27.1 1.55 7.9 0.72 4.5 0.78 27.6 2.10 17.9 0.87595 20.8 0.72 1.8 1.40
10.9 2.28 1.9 1.10 2.0 0.90 11.7 4.01 3.45 1.16066 9.1 0.88 0.4 1.08

Volumetric 895.4 2.19 1035.3 3.96 473.7 1.20 742.8 4.32 954.8 1.62 967.9 1.49 1050.1 1.34
256 224.3 2.50 259.3 4.75 119.0 1.47 186.8 4.98 252.1 2.55 242.9 2.03 265.2 2.28
32 29.3 4.11 33.6 7.03 15.6 2.42 24.4 6.35 30.9765 4.7377 238.6 2.39 34.4 4.29
1 3.1 6.65 3.2 12.89 1.7 4.58 2.4 12.26 3.1 9.94 3.1 8.93 3.2 11.36

Crytek 15.6 4.34 15.6 3.82 12.8 1.68 14.3 2.98 15.6 2.85 15.7 2.81 15.5 2.76

1/225 * 5x5

Worst CaseArchitectureVideo GameAlpha

1/9 * 5x5

1/25 * 5x5

1,445,620 tris 199,362 tris148,101 tris687054 tris

SuburbHouse TreesCity Belgium

Method, samples

Secret War Sponza
Architecture Architecture Foliage

Fast 10ms 33ms 100ms > 200ms ... Slow Exact Inaccurate

16 * 4x4

Color Key:

1024

Figure 9: Representative results for selected AO approximation algorithms at 1280×720 on varying scenes and sampling rates. For each trial
we report the AO render time in milliseconds and a measure of perceptual error (as 8-bit variance; see eqn. 31). Darker color coding is better
(i.e., lower numbers). The new AOV algorithm balances quality and performance, so its rows are heavily shaded.

Formally, let the error in T = 1−AO; 0 < Tx,y < 255, an 8-bit
“test” accessibility approximation, be the the mean squared error
(i.e., variance) across the log-mean and log-gradient, compared to
a ray traced “reference” R computed from 5000 samples per pixel:

E[T] = MSE[log† T]+
1
2

(
MSE

[
log† ∂T

∂x

]
+MSE

[
log† ∂T

∂y

])
(31)

where log† preserves signs and avoids the singularity at log0:

log† T = sign(T) · log(|T |+1) (32)

Reflected ambient radiance is linear in accessibility, so like the hu-
man visual system, this metric tracks both to radiance and changes
in radiance with decreasing marginal sensitivity.

Figure 9 reports render time and error for multiple trials varying
the sampling parameter for each algorithm. Crytek and sparse-AOV
both use post-filtering, so the table lists both the amortized of sam-
ples per pixel and the filter kernel size for them.Low, i.e., good, time
and error values are colored dark in the table to make trends visi-
ble. The data is arranged so that rows near the top are for the highest
quality results and ones near the bottom are the fastest. AOV pro-
vides a mixture of quality and performance that is close to ray trac-
ing while maintaining interactive rates. With sparse sampling its
performance is competitive with screen space methods. For these
times we assumed that the geometry was static and pre-computed
the occlusion volumes, which is a common shadow volume opti-
mization. Computing fully dynamic volumes in a geometry shader
adds about 25% overhead to the performance numbers, largely be-
cause it reduces the number of computation units available for pixel
shading. Note that static and dynamic volumes can be mixed (again,
as with shadow volumes), and that static geometry will correctly
occlude dynamic objects and vice versa.

In practice, we observe that performance of the AOV algorithm
is primarily gated by overdraw (“fill rate”). Thus the results are
only weakly dependent on polygon count. For example, the high-
polygon Secret War scene renders three times faster than the Trees
scene, even though the trees scene contains one tenth as much ge-
ometry. There is a lot of empty space in the outdoor Trees scene and
massive overdraw from the overlapping occlusion volumes of indi-
vidual branches. For the indoor, industrial Secret War scene there is
little overlap between volumes and many simply fail the early-out
depth test because they are behind walls.

Figure 10 demonstrates the tradeoff between time and error and
the convergence rate of different algorithms for a single scene. At
15×15 subsampling, AOV renders Sponza at 100 fps with quality
comparable to a 1 minute per frame ray traced rendering; both have
the same mean, but the ray tracer is very noisy and AOV misses
the high frequencies. Moving towards full-resolution decreases the
AOV frame rate but recovers the high frequencies. Volumetric AO
at comparable performance to AOV has high error. It improves
rapidly, but asymptotically converges to an incorrect result an never
matches AOV quality. The Crytek algorithm is not intended for
variable sample counts, but we extend its quality level line to show
where it intersects the other algorithms.

8
9

10

r
(σ
²)

Video Rate
Interactive Offline

4
5
6
7
8
9

10

m
at
io
n
Er
ro
r
(σ
²)

Ray Trace

C t k SSAO

Video Rate
Interactive Offline

0
1
2
3
4
5
6
7
8
9

10

A
pp

ro
xi
m
at
io
n
Er
ro
r
(σ
²)

Ray Trace

AOV (new)

Crytek SSAO

Video Rate
Interactive Offline

0
1
2
3
4
5
6
7
8
9

10

3 30 300 3000 30000 300000

A
pp

ro
xi
m
at
io
n
Er
ro
r
(σ
²)

AO Render Time (log axis)

Ideal

Ray Trace

AOV (new)

Crytek SSAO

Video Rate
Interactive Offline

1 min
3 sec

(30 fps) (10 fps)(100 fps)
5 min300 ms30 ms

0
1
2
3
4
5
6
7
8
9

10

3 30 300 3000 30000 300000

A
pp

ro
xi
m
at
io
n
Er
ro
r
(σ
²)

AO Render Time (log axis)

Ideal

Ray Trace

AOV (new)

Crytek SSAO

Video Rate
Interactive Offline

1 min
3 sec

(30 fps) (10 fps)(100 fps)
5 min300 ms30 ms

Figure 10: Time vs. Error tradeoff for several algorithms on the
Sponza scene at 1280×720. Closer to the lower-left is better. After
60 ms, AOV quality is comparable to a 5 min ray traced result.

7 Discussion

Previous screen space methods remain a good choice for current
generation games because their render times are both short and
scene-independent. Our AOV algorithm is a new alternative for ap-
plications where quality and performance are both important, and it
can trade between them by sparse sampling.

Our analytic cosine-weighted solid angle solution is applicable

Figure 11: Selected qualitative results for several scenes and algorithms. We treat the left-most column as the reference solution.

beyond ambient occlusion. This integral arises in any problem
where flux is incident on a surface. It appears in most illumina-
tion computations in computer graphics, and also outside computer
science in biology, physics, astronomy, and engineering problems.

Acknowledgements
Thanks to NVIDIA for donating the GPUs used in these experiments, Chris Wassum
and Vicarious Visions for modeling and granting permission to use Secret War and the
Android character, Max McGuire (Unknown Worlds) for helping with the other mod-
els, Marko Dabrovic for modeling Sponza and Sibenik, and Tom Garrity for discussing
the projected solid angle geometry.

References

AKENINE-MÖLLER, T., HAINES, E., AND HOFFMAN, N. 2008. Real-
Time Rendering 3rd Edition. A. K. Peters, Ltd., Natick, MA, USA.

BAUM, D. R., RUSHMEIER, H. E., AND WINGET, J. M. 1989. Improv-
ing radiosity solutions through the use of analytically determined form-
factors. In SIGGRAPH ’89: Proceedings of the 16th annual conference

on Computer graphics and interactive techniques, ACM, New York, NY,
USA, 325–334.

BAVOIL, L., AND SAINZ, M. 2009. Multi-layer dual-resolution screen-
space ambient occlusion. In SIGGRAPH 2009: Talks, ACM, New York,
NY, USA, 1–1.

BAVOIL, L., CALLAHAN, S. P., LEFOHN, A., COMBA, JO A. L. D., AND
SILVA, C. T. 2007. Multi-fragment effects on the gpu using the k-buffer.
In Proceedings of SI3D 2007, ACM, New York, NY, USA, 97–104.

BUNNELL, M. 2005. Dynamic ambient occlusion and indirect lighting.
Addison-Wesley Professional, 223–233.

CROW, F. C. 1977. Shadow algorithms for computer graphics. In SIG-
GRAPH ’77: Proceedings of the 4th annual conference on Computer
graphics and interactive techniques, ACM, New York, NY, USA, 242–
248.

EISEMANN, E., AND DURAND, F. 2004. Flash photography enhancement
via intrinsic relighting. ACM Trans. Graph. 23, 3, 673–678.

EVANS, A. 2006. Fast approximations for global illumination on dynamic
scenes. In ACM SIGGRAPH 2006 Courses, ACM, New York, NY, USA,
153–171.

FILION, D., AND MCNAUGHTON, R. 2008. Starcraft II effects & tech-
niques. In Advances in real-time rendering in 3D graphics and games
course notes, N. Tatarchuk, Ed. August.

HEGEMAN, K., PREMOŽE, S., ASHIKHMIN, M., AND DRETTAKIS, G.
2006. Approximate ambient occlusion for trees. In Proceedings of SI3D
2006, ACM, New York, NY, USA, 87–92.

KIRCHER, S., AND LAWRANCE, A. 2009. Inferred lighting: fast dynamic
lighting and shadows for opaque and translucent objects. In Proc. of the
2009 Symposium on Video Games, ACM, New York, NY, USA, 39–45.

KONTKANEN, J., AND LAINE, S. 2005. Ambient occlusion fields. In
Proceedings of SI3D 2005, ACM Press, 41–48.

LUFT, T., COLDITZ, C., AND DEUSSEN, O. 2006. Image enhancement by
unsharp masking the depth buffer. ACM Transactions on Graphics 25, 3
(jul), 1206–1213.

MITTRING, M. 2007. Finding next gen: Cryengine 2. In SIGGRAPH ’07:
ACM SIGGRAPH 2007 courses, ACM, New York, NY, USA, 97–121.

PETSCHNIGG, G., SZELISKI, R., AGRAWALA, M., COHEN, M., HOPPE,
H., AND TOYAMA, K. 2004. Digital photography with flash and no-
flash image pairs. In ACM SIGGRAPH 2004 Papers, ACM, New York,
NY, USA, 664–672.

REINBOTHE, C., BOUBEKEUR, T., AND ALEXA, M. 2009. Hybrid ambi-
ent occlusion. EUROGRAPHICS 2009 Areas Papers, 1–8.

REN, Z., WANG, R., SNYDER, J., ZHOU, K., LIU, X., SUN, B., SLOAN,
P.-P., BAO, H., PENG, Q., AND GUO, B. 2006. Real-time soft shadows
in dynamic scenes using spherical harmonic exponentiation. In ACM
SIGGRAPH 2006 Papers, ACM, New York, NY, USA, 977–986.

RITSCHEL, T., GROSCH, T., AND SEIDEL, H.-P. 2009. Approximating
dynamic global illumination in image space. In Proceedings of SI3D
2009, ACM, New York, NY, USA, 75–82.

SCHEUERMANN, T., AND ISIDORO, J., 2005. Cubemap filtering with cube-
mapgen. GDC Talk.

SHANMUGAM, P., AND ARIKAN, O. 2007. Hardware accelerated ambient
occlusion techniques on GPUs. In Proceedings of SI3D 2007, ACM,
New York, NY, USA, 73–80.

SLOAN, P.-P., GOVINDARAJU, N. K., NOWROUZEZAHRAI, D., AND
SNYDER, J. 2007. Image-based proxy accumulation for real-time soft
global illumination. In Proceedings of Pacific Graphics 2007, IEEE
Computer Society, Washington, DC, USA, 97–105.

SZIRMAY-KALOS, L., UMENHOFFER, T., TTH, B., SZCSI, L., AND
CASASAYAS, M. 2009. Volumetric ambient occlusion. IEEE Computer
Graphics and Applications. Preprint—to appear.

ZHUKOV, S., INOES, A., AND KRONIN, G. 1998. An ambient light illumi-
nation model. In Rendering Techniques ’98, Springer-Verlag Wien New
York, G. Drettakis and N. Max, Eds., Eurographics, 45–56.

