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An intersection detection methaod for salid modeling which is invariant under projective transfor-
mations is presented. We redefine the fundamental geometric figures necessary to describe solid
models and their dual figures in a homogencous coordinate representation. Then we derive
conditions, which are projectively invariant, for intersections between these primitives. We will
show that a geometric processor based on the 4 % 4 determinant method is applicable to a wide
range of problems with little modification. This method has applications in intersection detec-
tions of rational parametric curves and surfaces and hidden-line /surface removal algorithms.

Categories and Subject Descriptors: F.2.1 [Analysis of Algorithms and Problem Complexity|:
Numerical Algorithms and Problems-— computations on matrices; F.2.2 [Analysis of Algo-
rithms and Problem Complexity]l: Nonnumerical Algorithms and Problems - geometrical
problems and computations; G.1.3 [Numerical Analysis]: Numerical Linear Algebra  determi-
nants; 1.3.4 [Computer Graphics]: Graphics Utilities: application packages: 1.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling geometric algorithms, languages
and systems:; J.6 [Computer-Aided Engineering]: Computer-Aided Design (CAD)
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1. INTRODUCTION

Homogeneous coordinates have come to be used extensively in solid modeling
and computer graphics. For example, homogeneous coordinates are useful in
perspective transformations. Homogeneous coordinates represent control
points for rational parametric curves and surfaces. Also, determinants con-
sisting of homogeneous coordinates are used in intersection detections
[Yamaguchi 1985; Yamaguchi and Niizeki 1990; Yamaguchi et al. 1993].
There are two main types of geometric computations performed in model-
ing applications. One is geometric transformation, and the other is intersec-
tion detection. Scaling, translations, rotations, reflections, and perspective
transformations are examples of projective transformations. By using homo-
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geneous coordinates, projective transformations may be dealt with simply,
generally, and in a unified way as the multiplication of 4 X 4 matrices.

The 4 X 4 Determinant Method provides a structured method of detecting
and computing geometric intersections using homogeneous coordinates
throughout the modeling process [Yamaguchi 1985; Yamaguchi and Niizeki
1990; Yamaguchi et al. 1993]. Intersections are detected by checking the
signs of 4 X 4 determinants consisting of homogeneous coordinate vectors of
points or planes. A great part of the geometric computation in applications
such as Boolean set operations, hidden-line and surface elimination, and ray
tracing can be conducted using the 4 X 4 determinant as its sole computation
primitive.

If we use 4 X 4 matrices to perform geometric transformations and 4 X 4
determinants to perform geometric intersection computations, it becomes
possible to use homogeneous coordinates throughout the modeling process
without returning to nonhomogeneous coordinates. This approach enables us
to develop a geometric processing package which handles all geometric
calculations for solid modeling. Besides the theoretical significance of this
unified approach, this approach has also contributed in enhancing compu-
tational efficiency and numerical stability [Yamaguchi and Niizeki 1990;
Yamaguchi et al. 1993]. Since the geometric algorithms and computations are
extremely simple, this approach is also suited for hardware implementation.
The POLYGON ENGINE is a general-purpose geometric processor based on
this approach [Yamaguchi et al. 1988].

In spite of the uniformity of the representation and operations enabled by
homogeneous coordinates, they have not been fully exploited. One aspect of
the homogeneous coordinate representation which has not been thoroughly
investigated is the projective invariance of intersection detections. Tradi-
tional methods of intersection detection do not always operate properly
between figures obtained as a result of projective transformation (for exam-
ple, perspective transformation). There are cases where test results show
that two figures do not intersect after a projective transformation although
they originally intersect before the transformation. Take the two line seg-
ments PyP, and P, P, in Figure 1(a) as an example. We will examine a two-
dimensional example for simplicity, but we can easily see that the same
problem also arises in three or more dimensions. The line segments have the
following Euclidean coordinates:

P, = (0,0, P, =(1,1), P,=(0,1), P,=(1,0

Now, consider the case where we must conduct a projective transformation on
these line segments. In these circumstances, it is very convenient for us to
use homogeneous coordinates and multiply a single projective transformation
matrix. First, we represent the end points of the line segments using homoge-
neous coordinates by adding a scale factor as the third coordinate as follows:

V,=10 0 1], V,=[1 1 1], V,=[0 1 1), V,=[1 0 1].
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Fig. 1. Two-dimensional case of a line intersection before and after a projective transformation.

We can then postmultiply an arbitrary projective transformation matrix, for
example,

1 0 -2
A=lo 1 -2
0 0 3

We obtain the following homogeneous coordinates:
V,=10 0 3l, V,=1{1 1 -1],
V.=10 1 1], V,=[1 0 1],
which correspond to the Euclidean points in Fig. 1(b):
P, =10,0), P =(1,1), P, =1(0,1), P, =1(1,0).
We find that the line segments Py P| and P, P, obtained from the projective

transformation of the original points do not intersect. This is due to the effect
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of “wrapping around infinity,” which many papers point out. (See for example
Blinn {1993] and Blinn and Newell [1978].) The projective transformation of
an ordinary line segment does not always produce an ordinary “internal” line
segment, but sometimes an “external” line segment (which is the case in
Figure 1(c)), as well as many other peculiar types of line segments. A means
of consistent intersection detection based on homogeneous coordinates is
necessary for these types of line segments. These projectively invariant
intersection detection tests would allow us to test intersection before or after
an arbitrary projective transformation. This would guarantee that we can
conduct intersection tests (such as tests for clipping and hidden-line /surface
removal) at any convenient part of a viewing pipeline for display of three-
dimensional shapes.

Similar problems can be seen in intersection detections concerning rational
parametric curve segments and surface patches when there are control points
with weights having mixed signs. These curves and surfaces are considered
not to have the convex-hull property. There is no consistent method of
detecting their intersection using subdivision techniques. This makes rational
curves and surfaces inconvenient compared to the nonrational representa-
tion.

Another important aspect of the homogeneous coordinate representation
which has not been investigated quite fully is the duality between points and
planes. Duality in geometric intersection problems has always been appealing
to researchers [Arokiasamy 1989; Chazelle et al. 1983]. Even so, there has not
been a thorough treatment of this subject in literature, especially in the
context of three-dimensional geometric modeling. For a method of geometric
computation based on the homogeneous coordinate representation to be
complete, the principle of duality must not be disregarded.

The purpose of this article is to present a projectively invariant method of
intersection detection for solid modeling and computer graphics applications.
We will redefine the basic concepts and primitives used in geometric model-
ing using homogeneous coordinates and investigate the properties of these
primitive figures. We will define the duals of these primitives and investigate
their properties, also. Then we will derive methods, which are projectively
invariant, for detecting intersections between the primitives. These intersec-
tion tests will allow shorter and more orthogonal code in geometric processing
packages.

These new concepts and methods will enable us to detect intersections
correctly before and after an arbitrary projective transformation. They will
enable us to detect intersections between primitives containing homogeneous
coordinates with weights having arbitrary signs. We will also obtain a
complete system of projectively invariant geometric intersection tests be-
tween primitives defined by planes which will be shown to be the dual of the
system for points. Since our main purpose is to discuss the theoretical
foundations for a geometric intersection-testing method, we will deliberately
leave out discussions concerning implementation issues such as algorithmic
efficiency and numerical accuracy. These topics have been discussed in detail
in Yamaguchi [1985; 1987] and Yamaguchi et al. [1988].
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Another important purpose of this article is to show that a single geometric
processing package or hardware processor can be applied to a wider range of
problems with little modification. In the course of designing a geometric
hardware processor based on the 4 X 4 determinant method, we have found
that the package or processor is capable of processing the homogeneous and
dual primitives defined in this article as well as the conventional Euclidean
ones. The new concepts and algorithms presented here will enable us to make
the most of the geometric processor. A few examples of the applications of the
new intersection detection methods will also be presented to show its useful-
ness.

2. DEFINITIONS OF HOMOGENEOQUS FIGURES

2.1 Homogeneous Coordinates

A point in three-dimensional space is represented in homogeneous coordi-
nates by means of a four component nonzero row vector, usually written as
V =[X Y Z w]. Any nonzero multiple of this vector AV = [AX AY AZ Aw]
(A # 0) represents the same point. Note that throughout this article, the two
homogeneous coordinate vectors [ X Y Z w] and [-X -Y —Z - w] repre-
sent the same point, in contrast to the approach taken by Stolfi [1987]. To
obtain the corresponding Cartesian coordinates of this point, we divide each
component by w, unless w = 0. The first three components obtained by this
division, (X /w, Y/w, Z/w) are the conventional three-dimensional coordi-
nates of this point. If w0 = 0, the homogeneous coordinate vector represents a
point at infinity in the direction of the three-dimensional vector { X Y Z],
which is not representable by ordinary Cartesian coordinates. The set of
points with w = 0 is called the plane at infinity. The w’s are called the
weights (or scale factors) of the homogeneous coordinate vectors. Throughout
this article, the weights may have any sign (i.e., either positive, zero, or
negative). Since we consider any nonzero multiple of a homogeneous coordi-
nate vector to represent the same point, we will refer to the point represented
by the homogeneous coordinate vector V as “the point V” when this does not
cause any confusion.

2.2 Homogeneous Line Segments

Now we take the basic primitives in modeling and redefine them as new
concepts, using homogeneous coordinates.

An ordinary line segment in three-dimensional Euclidean space may be
expressed as a linear combination of the position vectors of two distinct
points. Here, we consider a linear combination of two homogeneous coordi-
nate vectors which represent two distinct points.

V=&V, + &V,
where (£, £,) # (0,0) (1)
and (€,, €&, = Oor &y, & < 0).
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Fig. 2. Examples of homogeneous line segments.

It is easily shown that when the weights of the homogeneous coordinate
vectors of the two end points have the same sign (positive or negative), the
set of points expressed by this equation represents an ordinary (internal) line
segment. But when one of the weights is zero, this equation represents a
half-line. When the weights of the two vectors have different signs, this set
represents an “external” line segment. The set of points represented by this
equation will be called the Homogeneous Line Segment defined by the
homogeneous coordinate vectors V; and V,, or more briefly, the homogeneous
line segment V;V,. Note that a homogeneous line segment is not defined by
two points, but two homogeneous coordinate vectors. The projective transfor-
mation of a homogeneous line segment produces another homogeneous line
segment. Figure 2 shows various types of homogeneous line segments with
differently signed weights. The case where both weights are zero is not shown
because it lies on the plane at infinity and cannot be drawn. It is possible to
represent a homogeneous line segment using only one parameter, but here
we use the two parameter representation for two reasons. The first reason is
that this homogeneous parameter representation is much more useful in the
derivation of the projectively invariant intersection conditions presented in
the following sections. The second reason is that, in a geometric computing
environment where all coordinates are represented in homogeneous coordi-
nates, it is far more natural for parametric representations to take a homoge-
neous form. The advantages of such a representation relates closely to the
advantages of the homogeneous parameterization of a rational Bézier curve
in Patterson [1985]. We obtain the ordinary one-parameter representation of
a line segment by dividing both sides of (1) by &, + £,(# 0) and by eliminat-
ing one of the parameters. We may obtain a homogeneous line segment from
an ordinary line segment by performing a projective transformation on it.
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Fig. 3. Examples of homogeneous triangles.

Homogeneous line segments have been defined and studied by Blinn and
Newell [1978]. The formulation here is different from that in Blinn and
Newell, but the concept explained here is the same.

2.3 Homogeneous Triangles

Next, we consider a linear combination of homogeneous coordinate vectors
which represent three noncollinear points.

V = 'fovo + 'flv1 + fzvz’
where (£,, &,,&,) # (0,0,0) (2)
and(§0,§l,£2 > 0Oor £y, €,, &, < 0).

This set of points will be called the Homogeneous Triangle V,V\V,. It is easily
shown that when the weights of the homogeneous coordinate vectors of the
three points have the same sign (positive or negative), the set of points
expressed by this equation represents an ordinary triangle. Figure 3 shows
homogeneous triangles with weights having different signs. Homogeneous
triangles with all three weights equal to zero are not shown, because they lie
entirely on the plane at infinity. The projective transformation of a homoge-
neous triangle produces another homogeneous triangle. We may obtain a
homogeneous triangle from an ordinary triangle by performing a projective
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Fig. 4. A homogeneous polygon.

transformation on it. The three sides of a homogeneous triangle are homoge-
neous line segments,

2.4 Homogeneous Polygons

A Homogeneous Polygon is defined as a cyclic sequence of homogeneous
coordinate vectors representing coplanar points. We assume that successive
homogeneous coordinate vectors in this cyclic sequence define a closed loop of
homogeneous line segments which do not intersect each other, except for the
end points of successive line segments. Then this loop divides the plane into
two parts. Since a plane in homogeneous coordinate space is topologically
equivalent to a projective plane, one part is homeomorphic to a disc, while the
other is homeomorphic to a Mobius strip. We will call the part of the plane
which is homeomorphic to a disc and its boundary a Homogeneous Polygon.
Figure 4 shows an example of a homogeneous polygon. Since a homogeneous
polygon is homeomorphic to a disc, it is orientable and can be triangulated.
When the weights of the homogeneous coordinate vectors all have the same
sign (positive or negative), a homogeneous polygon is an ordinary polygon.
The projective transformation of a homogeneous polygon produces another
homogeneous polygon. We may obtain a homogeneous polygon by projectively
transforming an ordinary polygon.

2.5 Homogeneous Tetrahedra

Next, we consider a linear combination of homogeneous coordinate vectors
which represent four points. The four points must be noncoplanar, and each
triple of points must be noncollinear.

V = £V + £V + £V, + €3V,
where (fo, 51, 52, §3) * (0,0,0, 0) (3)
and(fo, £1,65,63200r &), ¢,,6,,¢ < 0).
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Fig.5. Examples of homogeneous tetrahedra.

When the weights of the four homogeneous coordinate vectors have the same
sign (positive or negative), the set of points expressed by this equation
represents an ordinary tetrahedron. This set of points will be called the
Homogeneous Tetrahedron V V\V,V,. Figure 5 shows homogeneous tetrahe-
dra with differently signed weights. There are no homogeneous tetrahedra
with four zero weights because vectors with zero weights represent coplanar
points (i.e., they lie on the plane at infinity and form a degenerate homoge-
neous tetrahedron). The projective transformation of a homogeneous tetrahe-
dron produces another homogeneous tetrahedron. We may obtain a homoge-
neous tetrahedron from an ordinary tetrahedron by performing a projective
transformation on it. The four faces of a homogeneous tetrahedron are
homogeneous triangles, and the six sides are homogeneous line segments.

3. DEFINITIONS OF DUAL FIGURES

3.1 The Principle of Duality

A plane is represented as a four-component nonzero column vector y =
[a b ¢ d]". This vector is called the homogeneous coordinate vector of the
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7

7o
Fig. 6. A dual homogeneous line segment.

plane. Any nonzero multiple of this vector, Ay =[Aa Ab Ac Ad]" (A # 0)
represents the same plane. When a point lies on a plane, the following
equation holds:

(X Y Z w]

Qo oK

The principle of duality between points and planes can be stated as follows.
Every definition remains significant, and every theorem remains true, when
we interchange the words “point” and “plane” [Arokiasamy 1989; Chazelle et
al, 1983; Coxeter 1969]. By applying the principle of duality to the concepts
defined in the previous section, we obtain their duals.

3.2 Duals of Homogeneous Line Segments

We defined a homogeneous line segment as a linear combination of homoge-
neous coordinate vectors representing two distinct points. The dual of a
homogeneous line segment is the set of planes represented by a linear
combination of vectors representing two distinct planes.

y=4%&%Y * &7
where (¢, ¢,) # (0,0) (5)
and (&, &, = 0or &, &, < 0).

We will call this set of planes the Dual Homogeneous Line Segment vy,y,.
A dual homogeneous line segment is a linear pencil of planes defined by the
two vectors vy, and vy,. The two planes represented by vy, and vy, divide the
pencil of planes formed by these two planes into two parts. A dual homoge-
neous line segment represents one of these parts. This is illustrated in Figure
6. The projective transformation of a dual homogeneous line segment pro-
duces another dual homogeneous line segment.
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AN ' Fig. 7. A dual homogeneous triangle.

"

3.3 Duals of Homogeneous Triangles
The dual of a homogeneous triangle is defined as a linear combination of
vectors representing three distinct planes which have no line in common.
Y= &Yoot &+ &7
where (¢, £,,£,) # (0,0,0) (6)
and(f(); £,6, 2001 &,,¢&,,¢, < 0).

This set of planes will be called a Dual Homogeneous Triangle. A dual
homogeneous triangle is a set of planes which all share one common line, as
may be seen in Figure 7. The projective transformation of a dual homoge-
neous triangle produces ancther dual homogeneous triangle.

3.4 Duals of Homogeneous Polygons

The dual of a homogeneous polygon is a concurrent set of planes. It is defined
as a cyclic sequence of the homogeneous coordinate vectors of planes. Since
this set of planes is not so intuitive, and is practically impossible to draw, we
will not discuss it in detail here. However, the discussions and algorithms
concerning homogeneous polygons apply equally to the dual and must not be
overlooked.

3.5 Duals of Homogeneous Tetrahedra

Finally, the dual of a homogeneous tetrahedron is a set of planes defined as a
linear combination of vectors representing four distinct planes. The four
planes must not be concurrent, and each set of three planes must not have a
line in common.

v = Egve + E1vr + Eave + E5Yas
where (£, £, §,, &) # (0,0,0,0) @

and (£, &), £&,, 6,2 00r &, &, &, & <0).
This set of planes will be called the Dual Homogeneous Tetrahedron y,y,v,7;.

4. INTERSECTION DETECTION TESTS

4.1 Notation

All intersection detections in this article will be expressed by means of 4 x 4
determinants. The 4 x 4 determinant consisting of the homogeneous coordi-
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nate vectors of 4 arbitrary points V,, V|, V,, V, is denoted by S;,,;. The 4 X 4
determinant consisting of the homogeneous coordinate vectors of 4 arbitrary
planes v,, ¥, Y2, 73 is denoted by T,5. Thus,

Xy Yy Zy w,
X, Z, w

Spi23 = X, Y, Z, w,| (8)
X, Yy, Z; ws

and

ay, a; a; ay
by b, b, by

Torp3 = . (9
Cho € €2 €

d, d, d, d

The two types of determinants are duals.

4.2 Projective Invariance of Intersection Tests

We take four arbitrary homogeneous coordinate vectors V,,, V,, V,, V; repre-
senting points, and an arbitrary 4 X 4 projective transformation matrix A.
Here, we denote the determinant consisting of the homogeneous coordinate
vectors V,, V,, V,, V,, of four points by det(V,, V|, V,, V;). The determinant of
the matrix A will also be denoted by det(A). V,-A denotes the vector V,
transformed by the matrix A. The following relationship holds between
determinants consisting of point vectors before and after a projective trans-
formation:

det(V,-A,V,-A,V, AV, A) = det{V,,V,,V,,V,) - det( A).

The projective transformation results in the multiplication of the determi-
nant consisting of the four points by det( A). Since A is a projective transfor-
mation matrix, det( A) is either positive or negative. If det( A) is positive, the
determinant det(V,,V,,V,,V,) does not change its sign after the projective
transformation. If det( A) is negative, the determinant det(V,-A,V,-A,V, -
A,V, - A) changes its sign. The same can be stated for determinants consist-
ing of homogeneous coordinates of planes.

An example of a projective transformation with a matrix having negative
determinants is a transformation which changes the orientation of the coordi-
nate system (right handed or left handed). This projective transformation
causes the reversal of the signs of all determinants.

The above observation yields the following result. If an intersection test is
expressed entirely by means of the sign tests of 4 X 4 determinants as shown
in (8) and (9), the intersection test is invariant under projective transforma-
tion if and only if the test gives the same result even when the sign of every
determinant is reversed.
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4.3 Intersection Tests

We shall now derive the intersection detection tests between the homoge-
neous primitives and the dual primitives we have defined. These are neces-
sary and sufficient conditions of intersection derived directly from the defini-
tions of the figures. The intersection tests are expressed entirely by means of
sign tests of 4 X 4 determinants. From the result shown in the previous
section, the intersection tests are invariant under projective transformation.

Test 4.3.1 The Containment Test of a Point V, in a Homogeneous Tetrahe-
dron V,VV,V,. The condition for the point represented by the vector V, to
be contained in the homogeneous tetrahedron is

(S(IIZ,'U SOUZ.‘{* SU[(].’!’S(HZG =0V (Sal‘lii’ S(m‘.’,.’{* S(lluf{‘ S(Jl‘én < 0).

Test 4.3.1' The Containment Test of a Plane vy, in a dual Homogeneous
Tetrahedron v,y,v,y;. The condition for the plane represented by the vector
¥, to be contained in a dual homogeneous tetrahedron is

(Toias Toaoss Torazs Torza = 00V (Torus, Touozs Torans Torea < 0.

Test 4.3.2 The Containment Test of a Point V, in a Homogeneous Triangle
V,V\V,. Let V, be a vector which forms a homogeneous tetrahedron with
the point vectors V,,, V,, and V,. The condition for the point represented by V,

to be contained in the homogeneous triangle is

(Si120 = O AUS,1u8 Soaen s Soran = 00V (Siun s Spauns Sorax < 0.

Test 4.3.2' The Containment Test of a Plane vy, in a Dual Homogeneous
Triangle y,y;y,. Let yy be a vector which forms a dual homogeneous
tetrahedron with the plane vectors y,, ¥, and y,. The condition for the plane
represented by vy, to be contained in the dual homogeneous triangle is

(T(HZ” - O) A ((T(II‘ZN’T(]a‘lz\"’TO]nN = 0) v (7’1112A\'771()1121\"T‘)luf\' p 0))

Test 4.3.3 The Containment Test of a Point V, in a Homogeneous Line
Segment V,V,. Let V, and V, be vectors which form a homogeneous
tetrahedron with the vectors V,, and V,. The condition for the point repre-

sented by V, to be contained in the homogeneous line segment is

(So1masSoran = 0 A USyyn s Soamn = 0) V(S 1 yn, Soauy < 0)).

Test 4.3.3" The Containment Test of a Plane y, in a Dual Homogeneous
Line Segment vy,v,. Let vy, and vy, be vectors which form a dual homoge-
neous tetrahedron with the vectors y, and vy,. The condition for the plane
represented by ¥, to be contained in the dual homogeneous line segment is

(TIHAIn’T()]aN =0) A ((TnlMN’T()aMN >0) v (TnlA‘\II\"lelm’WN < 0.
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Test 4.3.4 The Intersection Test of a Homogeneous Line Segment V.V,
with a Homogeneous Triangle V,V|\V,. The condition for the homogeneous
line segment to intersect the homogeneous triangle at a single point is

((S1248>S20a6> Soras = 0) V (Sia44, S20as> Soras < 0))
A(Sp125 2 0 A Spa, < 0) V (Sppp, < 0 A Sppp, = 0))
A(S12a55 820085 So1as) #* (0,0,0) A (Sq154,S012,) # (0,0)).
When an intersection point exists, it may be computed as
if So125 = So124 > 0, V = 8012Ve — S0124Y%>
if Sgiap = So1za <0, V= =85;5,Vo + So1aaVs,
or,
if 8106 + Savas + Soras > 0, V= 8155.¥0 + S2040V1 + So1asVe>
i S1206 + S20a6 + Sotas <0, V= =81545V0 = S2006¥1 — So145VYe-
Test 4.3.4'" The Intersection Test of a Dual Homogeneous Line Segment
Y, Y, With a Dual Homogeneous Triangle y,v,v,. The condition for the dual

homogeneous line segment to have a single plane in common with the dual
homogeneous triangle is

(Ty206> T20ab> To1as 2 0 V (Tha0p5 Tagan» Toras < 0)
A(Ty19p =20 A Thyo, <0V (The, <0 A Ty, =2 0))
AT 208 To0as > To1a6) * (0,0,0 A (Ty10,, Tor2s) # (0,0)).
When an intersection plane exists, it may be computed as
if To155 = To124 > 0, Y= Torzo¥a = Tor24%s>
if To126 = Tor20 <0, Y= —Tor26% + Tor247s>
or
if Ty206 + To0as + Tora6 > 0, Y = T12a6Y0 + Ta0a6¥1 + To10672>
if Tizap + Ta0as + Toras > 0, Y= ~Ti2a6Y0 — To0as¥1 = To1as72-

Test 4.4.5 The Intersection Test of Two Homogeneous Line Segments V.V,
and V,V,. LetV, be a vector representing a point not coplanar with the two
homogeneous line segments. The condition for the homogeneous line seg-
ments to intersect at a single point is

(So1ap = 0 A ((Syngp = 0 A Sonap <0V (Singp <0 A Soyg, = 0))
A(Sgins 2 0 A Sgyy, <0 A (Sgyny <0 A Spyy, > 0))
A8 naps Sonas) # (0,0) A (Sy1n,, Soins) # (0,0)).
When an intersection point exists, it may be computed as,
if Sinay = Sowar > 0,V =818.6¥ — SonvarV
f Sinae = Sonvas <0, V= =Sine¥o + SonasVis
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or
if Syine = Soinve > 0, V = 80nVe — So1nva¥s
if Spive = Soinve <0, V= =8unV. + Soina¥s-

Test 4.3.5' The Intersection Test of Two Dual Homogeneous Line Segments
Y.¥, and y,y,. Let v, be a vector representing a plane that is not concur-
rent with the two dual homogeneous line segments. The condition for the
dual homogeneous line segments to have a single plane in common is

(To1an = O A UT ngp 2 0N Typgy, <0V (Tng, <0 A Ty, 2 0))
ATyiny 20 A TN, <OV (T, <0 A Typn, =0

AT nvap s Tonan) # (0,00 ATy g, Torws) # (0,00).
When an intersection plane exists, it may be computed as,

T noy = Tonas > 0, Y= TinasYo = TonarYrs
if Tanh - T()Nah <0, Y = ‘TlNabYo + T()Nab‘yl’

or

if Toyny, = Torna > 0, Y=ToineYe = Totna¥s:
£ Tine = Toineg <0, Y= ~TonsYe + Toina¥s-

Test 4.3.6 The Containment Test of a Point V, in a Homogeneous Polygon
V,V, -V, . Let V, be a vector representing a point not coplanar with the
homogeneous polygon. The containment test for the point in the homogeneous
polygon is conducted as follows. The algorithm is shown using a C-like
programming language. This algorithm is a variation of the method described

in Yamaguchi and Niizeki [1990] and Guibas et al. [1983].

4.4 Duality of Intersection Tests

Note that the intersection tests in the preceding section are presented in
pairs. The intersection tests of primitives which are duals are identical in
form and can be proved in exactly the same manner. Thus, the tests are duals
and may be conducted using the same program or hardware.

4.5 The Selection of Auxiliary Points and Planes

Some of the intersection tests described above used auxiliary points and
planes represented by homogeneous coordinate vectors denoted by Vy, V,,,
vn- and v,,. These vectors may always be selected from one of the following
fundamental vectors.

Points:[1 0 0 0],[0 1 0 0},][0 0 1 0],[0 O O 1]

Planes: {1 0 0 0]",[o0 1 0 o0]",fo o 1 0]",(0 0o o 1]".
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#define TRIE -1
fdefine FALSE 0

index0 = index! = TRUE;

for (i =0; i <m; i+H {
j=+1) %m;
k=(+1) %m;
if (Sijen <0 |

if ((S-iiN <= 0)&&(3-;'“ > 0)
index0 = !index0;
if ((S.iin<OW(S,;un>=10))
index1 = lindex!;
} else if (Si,ku > 0) (
if ((Seiin> 0)8&(S.jun <= 0))
index0 = lindex0;
if ((S.ijn>=0)8&(S.jun < 0))
index! = lindex!;
}
}
if ({index0 1= index1) || (index0 1= FALSE)} |
V. is inside of homogeneous polygon;
) else {
. Va is outside of homogeneous polygon;
}

Fig. 8. Containment test in a homogeneous polygon.

5. ADDITIONAL TESTS

The intersection detection tests which were not mentioned above are obtained
by combining the above tests. For example, the intersection test of a homoge-
neous line segment and a homogeneous tetrahedron is the combination of the
containment tests of the end points of the homogeneous line segment with
respect to the homogeneous tetrahedron and the intersection test between
the homogeneous line segment and the four faces of the homogeneous tetra-
hedron. Degenerate cases are also treated by combining the above tests.

We now examine some additional concepts which are useful in the model-
ing process.

5.1 Computation of Points and Planes

The intersection tests above were between two sets of points or between two
sets of planes. Since three point vectors determine a plane vector, and three
plane vectors determine a point vector, we can define a set of planes using
point vectors, and a set of points using plane vectors. The following equation
computes the plane vector determined by three point vectors and the point
vector determined by three plane vectors.
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The Vector Representing the Plane y Determined by 3 Point Vectors V,,, V|,
V,.

Y= [Nmzx Nouy N(nzz sz]Ta
Y, 2, w, Z, X, w,
Nmz}\v =Y, Z, w|, Nmz,. Z, X, wyy,
Y, Z, w, Z, X, w.
(10)
X, Y, w, X, Y, Z,
Nmz, =X, Y w, Dy, -\ X, Y, Z,|.
X, Y, w X, Y, Z,

The Vector Representing the Point V Determined by 3 Point Vectors vy, v,
Yo

V=1[Xp: Yo Zgp wopl,

b, b, b, cg € €y
Xoia =1C ¢ ey, Yo a, a; a,j,
d, d, d, d, d, d,
(11)
a, a; a, a, a, a,
Zy, =|by by by, Wy = —1b, b, byl
d, d, d, cy € Cy

By converting points into planes, and planes into points, we can apply the
above intersection tests to sets of planes defined by point vectors and sets
of points defined by plane vectors, respectively. For example, the point-in-
polygon test for a polygon defined by plane vectors uses the same algorithm
as a polygon defined by point vectors. In these cases, there are more efficient
methods of computation for conducting these tests without computing the
coordinate vectors of the points or planes directly.

5.2 Convexity of Vertices of Homogeneous Polygons

The convexity of vertices of homogeneous polygons is defined similarly as
with ordinary polygons (Figure 9). A vertex is said to be convex when two
arbitrary points in the neighborhood of the vertex can be connected by a
homogeneous line segment contained completely in the neighborhood. A
vertex which 1s not convex is concave. The definition of the convexity for
vertices of ordinary polygons is contained in this definition.

We will derive a convexity test for the vertices of a homogeneous polygon.
The homogeneous triangles obtained in an oriented triangulation as seen in
Figure 10(b) have the same orientation, when the weights are taken into
account. We take an arbitrary point vector V,, which represents a point not
on the plane of the homogeneous polygon. Three vectors of the vertices of a
homogeneous triangle obtained by the triangulation, V,, V,, V_, and the point

a?
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cave cave
Ve VEX
VeX
vex vex
vex vex
cave vex

/fmcave

Fig. 9. Convexity of vertices of homogeneous polygons.

vector V, form the determinant S, ,.. This determinant S, ,. takes the
same sign over all the homogeneous triangles of the homogeneous polygon.

When V), is taken so that every Sy,,. is positive, and V,, V;, and V, are
consecutive vectors representing the homogeneous polygon, the convexity test
of a vertex represented by the vector V; of the homogeneous polygon is as
follows:

if Sy > 0, V, is convex,

if Sy <0, V, is concave.
This test is identical to the convexity test for ordinary polygons.

6. APPLICATIONS

6.1 Triangulation of Homogeneous Polygons

As stated in the previous section, homogeneous polygons can be triangulated
into homogeneous triangles in a consistent orientation as shown in Figure
10(b). Here we will present a simple algorithm for the triangulation of an
arbitrary homogeneous polygon.

We choose an arbitrary point vector V,, representing a point not on the
plane of the homogeneous polygon. Next, we find three consecutive vertice
vectors V,, V;, V, from the homogeneous polygon whose determinant Sy, is
positive. (If triangulation does not succeed using this sign, we retry the whole
process using the other sign.) If no other vertices of the homogeneous polygon
are contained in the homogeneous triangle V,V,V, , this homogeneous triangle
can be cut off from the homogeneous polygon. If this homogeneous triangle
cannot be cut off, we try again using another set of vertices. By cutting off a
homogeneous triangle, we obtain a homogeneous polygon with one less vertex
vector. We continue this process on this new homogeneous polygon until the
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Fig. 10. Triangulation of homogeneous polygons.

homogeneous polygon has only three vertices left. Then we have succeeded in
the triangulation.

This algorithm may also be used to triangulate ordinary polygons. Since
the algorithm described here focuses on simplicity, this algorithm is not very
efficient. There are much more efficient methods of triangulating a homoge-
neous polygon, but those methods are beyond the scope of this article.

6.2 Rational Parametric Curves and Surfaces

Rational parametric curve segments and surface patches in the Bézier or
B-spline form are now important methods of the representation of geometric
forms. Two useful properties of these representations are the convex-hull
property and subdivision algorithms. The control points of these curve seg-
ments and surface patches are represented as homogeneous coordinate
vectors. These curves and surfaces lie entirely in the convex hull of their con-
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Fig. 11. A rational parametric Bézier curve Qz
segment.

Qi

’—1 Qo

trol point vectors in the four-dimensional homogeneous coordinate space.
When the weight of every control point vector has the same sign (positive
or negative), the convex-hull property also holds in three-dimensional
space. However, when the control point vectors have an arbitrary sign (pos-
itive, zero, or negative), the convex-hull property does not hold in three-
dimensional space in general.

This makes these representations inconvenient compared to their nonra-
tional counterpart. In the case of the nonrational curves and surfaces, in
which the convex-hull property holds always, the convex-hull property is
frequently combined with the subdivision algorithm to be used as intersection
detection algorithms. Usually, rational curves and surfaces limit the control
points to having positive weights when these algorithms are employed.
However, the new concepts introduced in this article provide a method of
implementing intersection tests for these curves and surfaces using the
convex-hull and subdivision properties. We will take rational Bézier curve
segments as an example here. As can be seen in Figure 11, the rational
Bézier curve segment does not always lie within the triangle formed by the
control points. However, if we consider the homogeneous triangle formed by
the control point vectors, the rational Bézier curve segment can be seen to lie
entirely within it.

Higher-degree curve segments and surface patches also lie completely
within the bounding homogeneous figures formed by their control point
vectors (Figure 12). Thus we may generalize this concept. An intersection
detection algorithm may be conducted as follows. We check if any of the
homogeneous tetrahedra, homogeneous triangles, or homogeneous line seg-
ments formed by the control point vectors of the curve segment or surface
patch intersect the figure in consideration. If there is no intersection, the
curve segment or surface patch does not intersect the figure. If there is an
intersection, we subdivide the curve segment or surface patch and repeat the
check. If there is an intersection, and we have reached a specified tolerance,
then we may assume that the curve segment or surface patch intersects the
object figure.

We must note that there are cases where the control points are in a
position where the bounding figure of the curve segment or surface patch
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Fig. 12. A rational parametric Bézier surface patch.

covers the whole space, an entire plane, or line. In such cases, we subdivide
the curve or surface until the bounding figure reduces to the processable
homogeneous primitives we have already described. A more complete descrip-
tion of the processing of parametric curves and surfaces can be found in
Yamaguchi and Niizeki [1993; 1994] and Yamaguchi et al. [1991].

We should also note that it is convenient to display control polygons and
polyhedral control nets on a screen using homogeneous line segments, since
they represent the shape of curve segments and surface patches better than
when ordinary line segments are used, especially when the control point
vectors have mixed signs. For example, the homogeneous line segments in
Figure 11 lie much intuitively closer to the curve segment at the end points
when compared to the ordinary triangle formed by the control points. Homo-
geneous line segments can be displayed using the homogeneous coordinate-
clipping technique described in Blinn and Newell [1978].

6.3 Display Algorithms

Hidden-line and surface removal algorithms which conduct intersection tests
after a perspective transformation must have some method of handling the
homogeneous primitives described in this article. Points positioned behind
the view point will have negative weights when the perspective matrix is
multiplied. The methods described here provide the theoretic basis for the
hidden-line removal algorithms such as those of Watkins [1970] and Warnock
[1967], which otherwise would not always operate properly [Yamaguchi and
Niizeki 1993].
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7. CONCLUSION

We have redefined the basic primitives required in geometric modeling using
homogeneous coordinate vectors. We have described the methods of intersec-
tion detections between these primitives. These methods are invariant under
projective transformation. We have also defined dual primitives which are
sets of planes, and described their intersection detection methods. We now
have a complete system of geometric intersection tests for primitives defined
in homogeneous coordinates. These methods enable us to perform intersec-
tion detection tests after an arbitrary projective transformation. We can now
detect intersections between primitives with homogeneous coordinate vectors
which have weights with arbitrary signs. We have also obtained a dual
method of intersection detections for sets of planes.

We have seen that a single geometric processing package or hardware
processor can be applied to intersection detection with respect to Euclidean
as well as homogeneous and dual primitives. This geometric hardware pro-
cessor is based solely on the computation of a 4 X 4 determinant. The
intersection tests presented here are also very simple and may be imple-
mented on hardware without much difficulty. We have presented several
applications which require these new concepts to process in a uniform
manner.,

Since our main purpose was to discuss the theoretical foundations of this
geometric intersection-testing method, and to find a simple computation basis
for geometric hardware we have deliberately left discussions concerning
implementation issues such as algorithmic efficiency and numerical accuracy
for another article. But the concepts which were described are supersets of
the usual concepts we are accustomed to. Hence, the virtues of the 4 x 4
determinant method are inherent in this method [Yamaguchi 1987]. For
example, we may economize computation by repeated use of intermediate
computation results of determinants. In this article, we assumed infinite-
precision arithmetic because an error-free computation method using
variable-length integer arithmetic has been implemented and is being used
based on the 4 X 4 determinant method [Yamaguchi et al. 1993). There are
also efficient intersection tests of curve segments using a recursive determi-
nant computation method [Yamaguchi et al. 1991]. We believe that the
identification of these simple and sound geometric primitive concepts and
operations will lead to a further understanding of the problems we face in
modeling applications today.
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