
Published in Graphics Hardware 2001

Incremental and Hierarchical Hilbert Order
Edge Equation Polygon Rasterization

Michael D. McCool Chris Wales Kevin Moule

Computer Graphics Lab
Department of Computer Science

University of Waterloo
http://www.cgl.uwaterloo.ca/Projects/rendering/

⋂
=

Figure 1: The rasterization technique presented here can generate pixel fragments for a set of polygonal primitives (described by a set of
homogeneous edge equations) in the same order that would result from travelling along a Hilbert curve intersecting those primitives.

Abstract

A rasterization algorithm must efficiently generate pixel fragments
from geometric descriptions of primitives. In order to accomplish
per-pixel shading, shading parameters must also be interpolated
across the primitive in a perspective-correct manner. If some of
these parameters are to be interpreted in later stages of the pipeline
directly or indirectly as texture coordinates, then translating spa-
tial and parametric coherence into temporal coherence will improve
texture cache performance. Finally, if framebuffer access is also
organized around cached blocks, then organizing rasterization so
fragments are generated in block-sequential order will maximize
framebuffer cache performance. Hilbert-order rasterization accom-
plishes these goals, and also permits efficient incremental evalua-
tion of edge and interpolation equations.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture.

Keywords: Hardware accelerated image synthesis and shading.

1 Introduction

Rasterizing polygons using edge equation evaluation has been ex-
tensively investigated [4, 8, 9, 11]. In this approach, linear equa-
tions are first set up for each edge of a polygonal primitive. The
fragments of the rasterized polygon are defined as the fragments for
which all equations have a common sign (we will assume a positive
sign defines the interior halfspace of an edge equation in this pa-
per). Conceptually, an edge-equation based rasterizer simply tests
the positions of all potential fragments against the edge equations
for each polygon.

The advantages of this approach are numerous. Edge equations
can be set up directly from the homogeneous coordinates of the
transformed device-space vertices of polygonal primitives using a
regular and parallelizable computation, and without performing any
divisions. Special cases—the plane of the polygon crossing or be-
hind the eye, backfacing or not—can be handled correctly and eas-
ily. Clipping planes and viewport edge tests can be incorporated
into the same algorithm by setting up additional equations. A pure
edge equation rasterizer can also easily be extended to the rasteri-
zation of an entire collection of polygons in parallel. Finally, eval-
uation of basis functions for the interpolation of parameters can ex-
ploit the same hardware resources used to evaluate the edge equa-
tions.

However, the advantages of the edge-equation approach are
countered by the need to scan the area of primitives efficiently. Var-
ious approaches have been used, but to date most rasterization al-
gorithms using edge equations involve performing at least one divi-
sion to find a “starting” fragment for a single primitive, and unfor-
tunately this cancels many of the above advantages. An exception
is the approach taken by the PixelPlanes architecture [4] of actually

http://www.cgl.uwaterloo.ca/Projects/rendering/

Published in Graphics Hardware 2001

evaluating the edge equations in all pixels simultaneously using a
SIMD array, but this is rather expensive. While simultaneous eval-
uation of equations in a “tile” may be used to improve performance,
we typically do not want to test all fragments of the output buffer
for all primitives.

Our approach organizes the scan for pixel fragments using a
Hilbert curve. We actually move along the Hilbert curve in a hi-
erarchical fashion, using an outcode approach to skip over blocks
of potential fragments when all corners of such blocks are identified
as being exterior to at least one edge of every triangle in the active
set. The general idea of our approach is similar to the Warnock’s re-
cursive algorithm, or Greene’s quadtree algorithm [5] except we or-
der our visits to the children of each block in Hilbert-curve fashion.
The utility of the Hilbert curve is that its strict spatial locality allows
us to incrementally evaluate all edge equations. Furthermore, even
though we are using a conceptually “recursive” algorithm, when
using fixed-point arithmetic we can avoid the need for a large stack
by exactly reversing our incremental updates when backing out of
a recursive subdivision. The result is a relatively simple algorithm
that requires minimal storage and implementation complexity but
has excellent spatial coherence properties.

Space-filling curves [12] have been used before in computer
graphics for dithering [14], for generalizing stratified sampling in
multidimensional space (our work, as yet unpublished) and most
relevantly, as a coherence-enhancing scan order for raytracing [13].
By using a Hilbert curve as a scan order, we gain several advan-
tages. For the purposes of writing pixels to the framebuffer, the
Hilbert curve ordering visits all pixel locations in any2n × 2n

aligned block (for anyn), before moving onto a new one. This
means that if the framebuffer is organized into2n × 2n aligned
blocks (for any integern) and the blocks are cached, at least over
the active polygon set we will make maximum use of each cache
block before moving on. Secondly, the parameters interpolated by
the rasterizer will also be generated in a spatially coherent order,
which will improve locality in texture caches, even if nonlinear per-
pixel shading computations are performed before texture lookup.
The hierarchical nature of the Hilbert curve means that these ben-
efits will accrue at all scales, so the rasterization algorithm does
not need to be adjusted if the number of texels or pixels in a cache
block changes (for instance, if different colour representations or
precision modes pack different numbers of texels or pixels into a
cache block).

We have implemented our rasterizer in support of a system that is
investigating various high-performance hardware-accelerated ren-
dering issues, including both pixel shading and geometry manipula-
tion. We wanted a simple rasterizer that would use a small number
of gates, since our prototyping system uses a field-programmable
gate array (FPGA) with a relatively limited number of gates and we
want to implement other subsystems on the same chip. Also, since
we are investigating programmable per-pixel shading, our rasteriza-
tion algorithm is designed to efficiently support the interpolation of
a large number of parameters at high precision over each primitive.
Rather than interpolate parameters directly, our algorithm evaluates
projectively corrected basis functions first and then uses these to
blend parameters stored at the vertices of each triangle.

In the following, first the background and setup computations
necessary for the edge-equation based approach are reviewed in
Section 2. We present the computations needed to set up equa-
tions for triangle edges, interpolation basis functions, and viewport
edges. We also discuss how to effectively convert from floating-
point values computed during setup to the fixed-point values used
by the rasterizer, while preserving precision and range. In Section 3
we discuss the Hilbert curve and present an efficient state-machine
technique for computing the Hilbert curve in hardware. Section 4
describes how the Hilbert curve and the set of potential fragments
are scanned by our algorithm in an efficient hierarchical fashion.

This section also describes how various quantities are updated in-
crementally. By using the reversibility of both the Hilbert curve
generation algorithm and the incremental updates (when using ex-
act fixed-point arithmetic), the hierarchical search can be organized
with only a very small stack (only two bits per level of recursion, no
more storage than needed to store the(x, y) locations of the frag-
ments themselves). Finally, in Section 5 we describe our prototype
hardware implementation.

2 Equation Setup

Polygonal primitives are specified as sequences of vertices that have
been transformed by a4× 4 matrix representing a projective trans-
formation into a device coordinate system. The edge equation ap-
proach is capable of rasterizing sets of triangles in parallel, but this
section considers only individual triangles, each triangle given by
three device-space homogeneous verticesv0, v1, andv2. Each ho-
mogeneous vertex has the form

vi =

 {wixi}
{wiyi}
{wizi}

wi

 , (1)

where values surrounded by braces are scalars. The values{wixi},
{wiyi}, and {wizi} are usually but not always generated from
products of the indicated component values; however, for points
at infinity these values may be non-zero whilewi must be zero.

The three homogeneous vertices defining each triangle will be
converted into three edge equations, which can then (optionally) be
combined with other equations defining clipping planes and view-
port edges to define a visible polygonal region for that triangle. The
visible region of each primitive is defined by the intersection of the
positive half-spaces of all edge equations. Zero edge equation eval-
uations are treated with a tie-breaking rule based on the signs of the
normal components of the edge equations. This avoids rasterizing
fragments of adjacent primitives twice and/or leaving gaps between
primitives. Basis functions for perspective-correct interpolation can
be derived from the evaluation of the equations for the edges of each
triangle.

2.1 Edge Equations

To convert homogeneous vertices to edge equations, first compute
the adjoint of the “vertex matrix” formed from the 2D orthographic
projections of all vertices:

M =

[
{w0x0} {w1x1} {w2x2}
{w0y0} {w1y1} {w2y2}

w0 w1 w2

]
(2)

A = adj(M) (3)

=

[
a0 b0 c0

a1 b1 c1

a2 b2 c2

]
. (4)

The computation of the adjoint is similar in complexity to the com-
putation of three cross products, and requires only multiplication
and subtraction in a regular and parallelizable pattern. The neces-
sary equations are

a0 = {w1y1}w2 − {w2y2}w1 (5)

a1 = {w2y2}w0 − {w0y0}w2 (6)

a2 = {w0y0}w1 − {w1y1}w0 (7)

b0 = {w2x2}w1 − {w1x1}w2 (8)

2

Published in Graphics Hardware 2001

b1 = {w0x0}w2 − {w2x2}w0 (9)

b2 = {w1x1}w0 − {w0x0}w1 (10)

c0 = {w1x1}{w2y2} − {w2x2}{w1y1} (11)

c1 = {w2x2}{w0y0} − {w0x0}{w2y2} (12)

c2 = {w0x0}{w1y1} − {w1x1}{w0y0} (13)

The adjoint is related to the inverse by a scale factor, specifically
the determinant of the original matrix:

M−1 =
adj(M)

det(M)
(14)

We can ignore the magnitude of this scale factor since we are work-
ing in homogeneous coordinates. The sign of the determinant gives
the orientation of the triangle: a counterclockwise order gives a pos-
itive determinant. Using only the adjoint, we will automatically cull
backfacing triangles, i.e. those with a clockwise vertex ordering. If
we wish to actually render back-facing triangles, we can compute
the determinant and invert the signs of all elements of the adjoint if
it is negative. The determinant can be computed using

det(M) = c0w0 + c1w1 + c2w2. (15)

where theci are the appropriate elements of the adjoint matrixA.
From the adjoint we can find the edge equations for the triangle;

they are simply the rows of the adjoint matrix:

E0 = [a0, b0, c0] , (16)

E1 = [a1, b1, c1] , (17)

E2 = [a2, b2, c2] , (18)

whereEk represents the edge between the two verticesopposite
vk. Given a fragment position(x, y), the value of edge equationE
at (x, y) is evaluated using a linear combination:

E(x, y) = [a, b, c][x, y, 1]T (19)

= ax + by + c. (20)

Linear equation evaluation has the following two useful properties,
which are exploited by our algorithm:

E(0, 0) = c, (21)

E(x + s, y + t) = E(x, y) + sa + tb, (22)

= [a, b, c + sa + tb] [x, y, 1]T . (23)

The first property lets us evaluate equations at the origin with zero
cost. The second lets us incrementally update an equation and its
evaluation by shifting the origin. An update only modifies thec
component of the equation.

The 2D vector(a, b) will be perpendicular to the edge and will
point towards the interior halfspace; we will call this vector the
edge normal. Pseudocode to test for a fragment being “inside” with
respect to a given equation, including a tie-breaking rule based on
(a, b), is given in Figure 2. The tie-breaking rule is based on the ob-
servation that for triangles of the same orientation sharing an edge,
the shared edge is represented by equations whose coefficients are
negations of one another. The above rules give semi-open triangles
that are closed on their left sides, including any horizontal edge
along the bottom, and open on their right sides, including any top-
most horizontal side.

2.2 Parameters

Parameters will also be attached to the vertices of the triangle. Pa-
rameters may be world-space positions, texture coordinates, nor-
mal coordinates, tangent coordinates, or other user-defined values.

inside(E, x, y) {
if (E(x, y) > 0) return True;
if (E(x, y) < 0) return False;
if (a > 0) return True;
if (a < 0) return False;
if (a = 0 & b < 0) return False;
return True;

}

Figure 2:Test for a particular (x, y) position being on the “inside”
of a particular halfspace equation, with tie-breaking tests.

Our target is a system with a programmable per-pixel shading unit
[7] so we will be assuming a potentially large and variable num-
ber of parameters. For simplicity, we assume that all parameters
and all components of multidimensional parameters will be inter-
polated across the primitive identically as independent scalars with
perspective correction.

One approach to interpolating parameters [9] is to generate a lin-
ear equation for each per-vertex parameter triple and then substitute
in the appropriatex andy values for the fragment. The coefficients
Pk of the interpolation equation for the parameter triplepk can be
computed by postmultiplying each parameter’s per-vertex values,
placed in a row vector, by the inverse of the vertex matrix:

pk = [pk0, pk1, pk2] , (24)

Pk = pkM−1. (25)

These coefficients provide linear parameter interpolation, which is
only correct if all homogeneous scale factors are unity. In order for
parameter interpolation to be correct under perspective, we have to
divide by a common linear perspective correction factor. This factor
can be computed by setting up an equation for the “reference” per-
vertex parameter values[1, 1, 1]. We will denote this equation by
R:

R = [1, 1, 1]M−1. (26)

Because we will be dividing by the value given by the evaluation
of R, we can use the adjointA in the above equations rather than
M−1, since common scale factors will cancel. Furthermore, when
we have many parameters to interpolate, rather than computing a
linear equation per parameter triple, we can compute a set of basis
functions which can evaluated once and then used to create appro-
priate affine combinations of all parameter triples. To do this, we
first set up a trio of pseudo-parameter triples, and then transform
them as above:

F0 = [1, 0, 0]A = E0, (27)

F1 = [0, 1, 0]A = E1, (28)

F2 = [0, 0, 1]A = E2. (29)

No extra work is required to set up these equations, since the co-
efficients for eachFi are identical to the coefficients for the cor-
responding edge equationEi! Unfortunately, it turns out that we
cannot represent these two equations in fixed point in exactly the
same way, a point we discuss in Section 2.4, so we will useFi in-
stead ofEi for these equations. It is still necessary to compute the
perspective correction factor. Fortunately this is also easy, since

R′ = [1, 1, 1]A (30)

= [1, 0, 0]A + [0, 1, 0]A + [0, 0, 1]A (31)

= F0 + F1 + F2, (32)

3

Published in Graphics Hardware 2001

and so

R′(x, y) = F0(x, y) + F1(x, y) + F2(x, y) (33)

The necessary rational basis functions, which sum to unity and so
form an affine combination, are

r = 1/(F0(x, y) + F1(x, y) + F2(x, y)), (34)

f0(x, y) = rF0(x, y), (35)

f1(x, y) = rF1(x, y), (36)

f2(x, y) = rF2(x, y) (37)

= 1− f0(x, y)− f1(x, y). (38)

which requires one reciprocation (or two divisions) to compute.
After computing the basis functions, any parameter triplepk =
[pk0, pk1, pk2] can be interpolated in a perspectively correct man-
ner using

pk(x, y) = pk0f0(x, y) + pk1f1(x, y) + pk2f2(x, y).(39)

Depth values can be interpolated in the same manner as any other
parameter, or alternatively, a separate linear equation can be defined
and evaluated in the rasterizer. For simplicity our implementation
takes the former approach.

2.3 Viewport Equations

Viewport clipping can be accomplished by considering four more
equations during rasterization. The update and storage costs of
these equations can be reduced slightly in an implemention because
they have a simple form. A viewport with origin(x0, y0) and size
(w, h) in device coordinates will result in the edge equations

d0 = [1, 0,−x0] , (40)

d1 = [−1, 0, x0 + w] , (41)

d2 = [0, 1,−y0] , (42)

d3 = [0,−1, y0 + h] . (43)

According to our tie-breaking conventions, viewports are inclusive
on the bottom and left and exclusive on the top and right.

Three-dimensional user-specified clipping planes can also theo-
retically be supported. However, a different 2D edge equation must
be generated for the intersection of each triangle with every clip-
ping plane. To limit the number of equation evaluators in the ras-
terizer and reduce setup costs, we suggest implementing only full-
triangle clipping during rasterization setup; fragment clipping can
be performed after rasterization by evaluation of the 3D clipping
equations in device coordinates.

2.4 Conversion to Fixed-Point

We perform rasterization setup operations using floating-point
arithmetic. Rasterization itself uses only fixed-point arithmetic for
speed and compactness, and because we must exactly reverse incre-
mental updates.

As noted in Section 2.2, the edge equations and the interpolation
equations are mathematically identical. However, in practice, they
have to be converted to fixed point in slightly different ways, and
so will require separate interpolators. The conversion of the edge
equations must preserveorientation precision, but can scale each
edge equation separately and clampc values for edges outside of
the visible region to accomplish this. For interpolation, clamping
of thec coefficient would give the wrong answer, and likewise we
cannot scale the equations independently without invalidating the
perspective correction. Therefore, for interpolation equations we
try to preserve theirrange, and consider them together.

The homogeneous coefficients of an edge equation can be scaled
by an arbitrary amount without changing the geometric location of
the edge. We also don’t care about the exact position of edges that
are outside the visible part of the device coordinate system, just
whether they exclude or contain the visible fragments. We therefore
convert edge equations to fixed-point form by finding the largest ex-
ponent ofa andb and shifting the mantissas of all ofa, b, andc by
that amount, clampingc if it goes outside its representable range.
After this normalization, botha andb can safely be represented us-
ing fixed-point values in the range[−1, 1], and the length of the
normalized edge normal will be bounded between1 (if one of the
components is zero) and

√
2 (if both components have magnitude

1). Call this lengthr. The magnitude ofc will be the distance of
the origin of the 2D device coordinate system from the edge, scaled
by r. If the maximum horizontal or vertical size of the potentially
visible region of rasterization isV , and the origin is at the lower
left, then values ofc for which the edge intersects the visible region
must be in the range[−2V, 2V], since no fragment location can be
farther thanV

√
2 from the origin and the maximum ofr is

√
2. If

the normalized value ofc is outside this range, the edge is outside
the visible region and we we need only look at its sign. If the sign
of c is positive, then the entire visible region is inside the positive
halfspace of the equation and the equation can actually be discarded
from that triangle’s equation set (if this would improve performance
for a given implementation). If the sign is negative, the entire visi-
ble region is inside the negative halfspace of the edge equation and
no fragments could ever be generated, so we can discard the triangle
(this implements per-primitive view-frustum culling).

In contrast, for parameter interpolation equations, it is only pos-
sible to scale them all by a common factor—otherwise the perspec-
tive correction would be incorrect. To find a suitable factor, com-
pare the exponents of the coefficients of all parameter equations and
choose the largest exponent. Then, shiftall parameter equation co-
efficients down to just fit the largest coefficient into its representable
range. This process will be guaranteed to fit all coefficients into
the available fixed dynamic range while maximizing interpolation
precision, and is similar enough to the proceeding process that the
same hardware resources can be used. This procedure will cause
the precision of some parameters to suffer somewhat, however, if
wildly different dynamic ranges are present. This should happen
only when rasterizing primitives with extreme perspective distor-
tion, however, if the precision is sufficiently high. The fact that pa-
rameter interpolation equations must be treated together means that
while we can share edge equation evaluation for shared edges in a
set of triangles, wecannotshare evaluation of parameter equations
between triangles.1

3 Hilbert Curve

The space-filling curve used in Figure 1 is generally called the
Hilbert curve [12] (the class ofall space-filling curves are called
Peano curves). The Hilbert curve can be defined mathematically as
the limit of the set of geometric rewriting rules shown in Figure 3.
Normally, we only use an approximation to the true Hilbert curve
generated with a finite numberN of rewriting steps, in which case
we say that we have a Hilbert curveapproximationof orderN . In-
terestingly, by repeatedly applying the Hilbert rewriting rules, only
four different orientations of the base square (out of eight possible
orientations) are generated. We can represent the transitions be-
tween these four possible orientations using the diagram shown in
Figure 4.

1 These complications mean that for a given implementation, it may or
may not be advantageous to perform incremental evaluation of the param-
eter interpolation basis functions—it may be simpler to evaluate them di-
rectly after the framents are found.

4

Published in Graphics Hardware 2001

R

R

F FR

R

F

I

I I

F FR

F

F

I

R

FR

FR

FR I

R

10

11 10

00

11

01

00

01

01 00

1110

0110

11 00

01 11

1000

01 11

1000

01 11

1000

01 11

1000

Figure 3: The Hilbert curve can be defined as the fractal limit of
a set of rewriting rules. In our application, we apply the rewriting
rules only down to the level of individual pixels.

I

F FR

R

00

11

10

01 11/01

00/00

11/10

00/11
00/11

11/01

00/00

11/10

10/1101/01

01/10

10/11 10/00

01/01

10/0001/10

Figure 4:The Hilbert rewriting rules can be represented as a cyclic
scene graph, which can also be interpreted as a finite state machine.

Figure 4 can be interpreted as either a cyclic scene graph [6]
giving a recurrence defining the fractal Hilbert curve or as a state
machine [1].

To interpret Figure 4 as a cyclic scene graph or recurrence, the
arc labelsr1r0/xy should be read as affine transformations:xy
indicates a translation inx and/ory, with an implicit scale of1/2,
while r1r0 indicates one of four children for each node.

To interpret the diagram as a state machine,r1r0 should be inter-
preted as the high-order (input) bits of the curve arclength, andxy
as the corresponding high-order output bits of thex andy position
of that point along the curve. Using this state machine it is possible,
in n clock cycles and using minimal amounts of hardware, to trans-
form a 2n-bit arclength into twon-bit positions. We have imple-
mented this in a pipelined fashion using 9K NAND gate equivalents
for a separate application (stratified sampling). For 64-bitr values
we have obtained a 100MHz conversion rate, basically one conver-
sion per clock at the maximum clock rate of our FPGA prototyping
system. For comparison, a highly optimized in-register software
implementation acheives a 3MHz conversion rate on a 1.4GHz Pen-
tium 4.

The state machine can also be run backwards, translating posi-

tions into arclength. This inverse mode could be used, for instance,
for translating multidimensional spatial coordinates into coherent
unidimensional memory addresses. This inverse mode can also be
used to back reversibly out of a Hilbert curve traversal, so recur-
sive algorithms can be implemented without necessarily using an
explicit stack.

We have labelled the states usingI, R, F, andFR. These actually
represent transformations from the initial orientation. The transfor-
mationI is the identity,F is a “flip” over thex = y axis (which can
be computed by exchangingx andy) andR is a rotation by180◦

about the center of the cell (which can be computed, sincex and
y are single bits, by complementing bothx andy). The labelFR
indicates a composition ofF andR (which happens to be equivalent
to a composition ofR andF). The state assignments we have made
use bit 0 for the presence of aF transformation and bit 1 for the
presence of aR transformation, an encoding which lets us easily
apply the required transformation ofx andy using a small number
of gates.

There are other bit-oriented algorithms for generating the Hilbert
curve [2, 3], but we feel that the state-machine approach is the sim-
plest for hardware implementation, at least in 2D.

4 Scanning

In this section we describe our rasterization algorithm and also pro-
vide detailed pseudocode for it. We focus on the organization of
the hierarchical scanning process and its incrementalization. For
simplicity, we describe the rasterization process only for a single
polygon; extension of the algorithm to simultaneous rasterization
of a set of polygons amounts to keeping track of which equations
define which primitives, and flipping oracle results as appropriate
for shared equations.

Let E be the set of all edge equations, andF the set of interpo-
lation equations. Conceptually, we exhaustively check each poten-
tial fragment position in the framebuffer and output fragments for
which inside (E, x, y) is true for allE ∈ E , evaluating the equa-
tions inF at those points. In practice, such a brute-force algorithm
would be horribly inefficient. Instead, we test blocks of fragments
hierarchically.

Before we evaluate the equations for fragments in some2n× 2n

block of the framebuffer, we test whetherany potential fragment
position in that block could possibly be part of the polygon. This
can be done by applying outcode tests to the corners of the block.
If we can prove that a block cannot contain any fragments of the
polygon, by showing that all corners are “out” against at least one
equation, we can skip that block and move onto the next block at the
current level of the hierarchy. Otherwise, we recursively subdivide
the block into four subblocks of size2n−1 × 2n−1. Subblocks are
scanned recursively until the fragment level is reached, then point
tests are made to terminate the recursion. To output fragments in
Hilbert order, the state machine given in Figure 4 is used to con-
trol the order in which subblocks are scanned. Finally, although the
algorithm can be described recursively, the reversibilty of the incre-
mental update (in fixed-point arithmetic) and the reversibility of the
Hilbert state machine can be used to avoid the need (almost) for a
stack.

It is possible to use outcodes to further “optimize” the algorithm.
Specifically, once it has been proved that a block is completely in-
terior or exterior with respect to a specific linear equation, this will
also true for all subblocks of that block. Therefore, it is not re-
ally necessary to test against that particular equation again for any
deeper levels of the recursion. Unfortunately, in practice, the book-
keeping required to keep track of when evaluation of such equations
can be omitted and when they must be evaluated again eliminates
any advantage. Normally all equations would be updated in paral-
lel, since a relatively small amount of hardware is required to in-

5

Published in Graphics Hardware 2001

crementally update each equation. Since no clock cycles can be
saved anyways when using parallel evaluation, we have not used
this optimization, but it might be useful in other contexts.

We incrementalize the algorithm by updating equations as we
move along the Hilbert curve hierarchically. Equations are always
expressed relative to the lower-left corner of the current block. Af-
ter each update, thec coefficient of each equation will in fact be
equal to the evaluation of the equation at the lower-left corner of
the current block, and we do not need extra storage to hold the eval-
uated value. The interpolation equations are incrementally updated
in the same way, although we do not use them when testing blocks
for subdivision. When we reach a fragment, we just need to look
at the current values of thec coefficient of the three interpolation
equations. We can use this information to compute rational basis
functions suitable for interpolation.

The top level of the rasterization algorithm is given in pseu-
docode in Figure 5. This algorithm depends on a few subroutines
given in Figures 6, 7, 8, and 9, and finally the edge test given earlier
in Figure 2. It also depends on the setE , the set of all edge equa-
tions, and the setF = {F0,F1,F2}, the set of three equations
used for interpolation and perspective correction (see Section 2.2).

Int< dlg(N)e> n;
Int< 2> s;
Int< 2> r[N + 1];
Int< N + 1> x, y;
Bool finished;

scan(E , F) {
n = N ;
r[N] = 0;
x = 0;
y = 0;
s = F;
finished = False;
do {

if (0 == n) {
testfrag(E , F);
update(E , F);

} else {
if (subdivide(E) {

descend(E , F);
} else {

update(E , F);
}

}
while (finished) {

n++;
s = prevstate[s][x[n]][y[n]];
finished = False;
update(E , F);

}
} until (N == n);

}

Figure 5: Pseudocode for a hierarchical Hilbert scan of a 2N ×
2N region of the screen, using edge equation set E . The entries of
prevstate , a (4 × 2 × 2) 7→ 2 table (32 bits), can be derived
from Figure 4 by following the backward arcs. The integers x and
y are treated as arrays of bits here.

The testfrag subroutine tests the active equations at a spe-
cific candidate fragment position. This routine is given in Figure 6
as pseudocode. First, we test if the given fragment position is in-
side the polygon by checking the signs of the edge equations. We

assume sampling in the lower-left corner of each pixel region (an
appropriate pre-transformation of all primitives can be used to sim-
ulate center sampling if desired) so the current values of thec coeffi-
cient in the edge equations, which have been updated to be relative
to the lower-left of the pixel region, can be used directly in these
tests. If a fragment is to be output, then the information necessary
to evaluate the interpolation basis functions at the center position
is output along with the device-space position of the fragment. To
compute the interpolation basis functions we just need the sample-
relative coefficients of the three interpolation equationsF0, F1, and
F2, which have already been computed. Actually, derivatives, nec-
essary for antialiasing, can also be evaluated using this informa-
tion. This subroutine could also implement a parallel fragment test
across a tile if greater performance were desired, or multisampling
if greater quality were desired.

testfrag(E , F) {
Bool interior = True;
for (E ∈ E) {

interior &= inside(E, x, y);
}
if (interior) {

renderfrag(x, y, F);
}

}

Figure 6:Test a fragment position at the lower-left corner of pixel
region and output the fragment if it belongs to a primitive’s rasteri-
zation.

The subdivide oracle (Figure 7) determines if there is any
need to divide a block into smaller blocks. This is done by trying to
prove if all corners of the block are completely contained in the neg-
ative halfspace of any equation. If this is true for any equation, we
do not need to subdivide the block (when rasterizing multiple prim-
itives simultaneously, this would have to be true for all primitives).
In hardware, it is possible to classify all corners of a block against
all edge equations in a single clock cycle using parallel evaluation.

If we have decided to subdivide a block, thedescend subrou-
tine updates the Hilbert state and all equations to be relative to the
first (r = 0) subblock of the subdivision. The active equations
need to be updated during a recursive descent if the orientation of
the scan order is such that first subblock is in the upper right of the
parent block, which is true for theR andFR orientations. Using
the Hilbert state encoding given in Figure 4, this corresponds to the
high-order bit (bit 1) of the state being set.

subdivide(E) {
Bool subdiv = True;
Bool t00, t10, t01, t11;
for (E ∈ E) {

t00 = (E. c < 0);
t10 = (E. c+(E. a<<n) < 0);
t01 = (E. c+(E. b<<n) < 0);
t11 = (E. c+(E. a<<n)+(E. b<<n) < 0);
subdiv &= !(t00 & t01 & t10 & t11);

}
return subdiv;

}

Figure 7:Test all edge equations, and determine whether the current
block should be subdivided. A block does not need to be subdivided
if it is contained entirely in the negative halfspace of at least one
equation.

6

Published in Graphics Hardware 2001

descend(E , F) {
t = nextstate[s][r[n]];
n--;
if (s[1]) {

for (E ∈ E ∪ F) {
E. c += (E. a+E. b)<< n;

}
}
r[n] = 0;
s = t;

}

Figure 8:Descend to a finer level. If the current state is R or FR, as
indicated by the topmost bit of the state variable, we need to update
the equations to the lower-left corner of the upper right subblock.
The entries of nextstate , a (4 × 4) 7→ 2 table (32 bits), can be
derived from Figure 4 by following the forward arcs.

update (E , F) {
switch (hmove[r[n]][s]) {

case RIGHT: x += (1<< n); break;
case LEFT: x -= (1<< n); break;
case UP: y += (1<< n); break;
case DOWN: y -= (1<< n); break;

}
for (E ∈ E ∪ F) {

switch (hmove[r[n]][s]) {
case RIGHT: E. c += (E. a<<n); break;
case LEFT: E. c -= (E. a<<n); break;
case UP: E. c += (E. b<<n); break;
case DOWN: E. c -= (E. b<<n); break;

}
}
r[n]++;
finished = (0 == r[n]);

}

Figure 9:Update equations when moving from one block to another
at resolution level n. Equations are always updated four times using
exact arithmetic at any given resolution level. This returns all equa-
tions to their starting point in the lower-left corner of the parent
block. The table hmove (see Table 1) indicates how incremental
updates in r translate into incremental updates in (xy) for each of
the four possible Hilbert states.

If no subdivision is required, or if the fragment level has been
reached, or after we have returned from processing a block, we can
use theupdate subroutine to incrementally update the equations
along the blocks at the current level, in order by Hilbert arclength.
The sequence in which blocks is visited is controlled byhmove,
given in Table 1. The “moves”, which depend on both the current
r value at the current level and the current state, are designed to
return the equations to their original state, relative to the lower-left
corner of the parent block, fourupdate calls after adescent
call. For theI andF orientations, the last move completes a cycle
to return to the lower left; for theR andFR orientations, the last
move reverses the second-to-last move to return to the lower left.
In both cases “extra” computation is used to return equations to a
previous configuration; however, this extra computation avoids the
use of a large stack which would otherwise be required to return to
this previous state. Note again that all the operations in this routine
can be performed in parallel, taking only a single clock cycle.

Although this is a “recursive” algorithm, only a negligibly small

hmove

r I F R FR
0 UP RIGHT DOWN LEFT
1 RIGHT UP LEFT DOWN
2 DOWN LEFT UP RIGHT
3 LEFT DOWN DOWN LEFT

Table 1: Table to control subblock progression as a function of
Hilbert state and progress so far. Updates are set up so we will
end up back in the lower left of the parent block after four cycles.

stack is required, namely the array for the values ofr at each of
the different levels of recursion, two bits per level. The size of
thex andy registers also grows with resolution, but this would be
required in almost any implementation, and the total number of bits
in r must be only be equal to the total needed to represent these
two quantities. The cost of the (virtual) elimination of the stack
is some extra arithmetic to restore equations to their previous state
upon return from the “recursive” processing of the subblocks of a
block. However, the gate count for an implementation using a stack
would be much greater.

5 Results

Our prototype implementation was performed on a RC1000-PP
prototyping board using a Xilinx XCV1000 field-programmable
gate array (FPGA). This prototype rasterizes only a single polygon
and does setup in software. We are working on an implementation
that rasterizes multiple triangles at once and does setup in hardware
but unfortunately it was not completed in time for the publication
deadline of this paper.

We implemented the algorithm given in Section 4 in Handel-C
[10], a silicon compiler originally developed at Oxford and now dis-
tributed commercially by Celoxica. This system compiles directly
from an extended C-like language to a hardware design targeted at
a specific FPGA architecture. Handel-C is not a hardware descrip-
tion language like VHDL but a programming language that targets
hardware. The control constructs of this language are translated into
a one-hot controller structure and the arithmetic computations are
translated into an appropriate datapath, using one clock cycle per
statement (in other words, the C language is interpreted as a register
transfer language, variables are implemented using registers, mul-
tiplexers are inferred when different statements write to the same
variable, etc.). Special language constructs permit the specification
of microparallelism and synchronous communication.

The RC1000-PP prototyping board runs at up to 100MHz and
has four separate 2MB banks of 32-bit wide single-cycle 7ns static
RAM. Data can be transferred between the host and any bank of
memory using DMA while the FPGA is accessing other banks. In
our system, we use one bank of memory to hold the output image
andz-buffer and two others to hold the specifications of the poly-
gons to render (letting the FPGA read from one bank while the host
downloads new data into the other). We have reserved the fourth
bank for storage of texture maps.2

The host, a 1.4GHz Pentium 4, currently performs the setup of
the equations using single-precision floating-point computations.
The results are then downloaded by DMA to the prototyping board.

The rasterization unit, with support for up to 16 equations3 and

2Our current prototype does not use texture maps yet, unfortunately,
even though one of the points of Hilbert-order traversal is better texture
cache behaviour.

3Overkill for one triangle; we were attempting to model the gate require-
ments for a multiple-triangle implementation.

7

Published in Graphics Hardware 2001

on-chip buffering for up to 74 parameter triples, consumes57.9K
NAND gate equivalents after compilation and optimization by the
Handel-C compiler. We use 32-bit fixed-point precision for thec
values of all equations and parameters and 16-bit precision fora and
b, and update all equations and evaluate the subdivision oracle using
multiple parallel 32-bit shifter/adder units. The rasterization unit
does not output a fragment every clock, since some time is spent
moving up and down the hierarchy, but does identify fragments at a
rate of nearly one every two clocks for large polygons to one every
2N clocks for single-pixel polygons. Depending on the number of
parameters to interpolate, however, more clocks may be required
to actually form the interpolated parameters in the output fragment
once it has been identified. Fortunately, interpolation computations
can take place in parallel with a continuation of the fragment scan.

This algorithm is somewhat disadvantageous for small poly-
gons, due to the overhead involved in hierarchical searching, and
of course the coherency of the Hilbert order will not matter much if
a polygon only covers one fragment. However, if several polygons
are rasterized simultaneously, a relatively simple extension given
the nature of the algorithm, then the overall area covered will be
larger and this disadvantage will be offset. Furthermore, if the set
of polygons rasterized as a group are coherent, i.e. they form a small
“patch” on a surface (a consequence of triangle stripping and ver-
tex caching geometry optimizations anyways) and use the same tex-
tures, etc. then it will be possible to exploit spatial coherence over
this patch in the pixel shading unit. Note that it might be possible
for two primitives in a set to cover the same fragment position. In
this case, such co-located fragments should be output in the order
of specification of the primitives.

Performance could also be improved by using a tiled evaluator
at the lowest level, and of course by using multiple rasterizer units.
Since system complexity is reduced by the elimation of the clipper,
for a given gate budget more parallel rasterizers can be used. Tiled
subdivision oracles could also be used at higher levels to reduce the
depth of the search tree.

The storage space for the parameters in our implementation dou-
bles as an input FIFO buffer. A streaming packet-based interface
is used to communicate between modules in our system, with the
maximum packet size set at256 × 4B = 1KB. This is the size
of the input buffer RAM in each rasterizer. When smaller packets
than the maximum size are used, which of course is the usual case,
the RAM is used to buffer them in FIFO fashion. The gate count
could be reduced if a more direct interface were used with support
for fewer parameters.

Unfortunately we have not yet implemented the setup compu-
tation in hardware. However, since the setup computations require
regular computations involving only multiplication and subtraction,
it should be possible to get good performance with a relatively sim-
ple implementation. Our plan is to use a shared floating-point unit
for both triangle setup and fragment post-processing, and to overlap
setup and interpolation computations with the search for fragments.

6 Conclusions

A rasterization algorithm has been described that can be imple-
mented in a relatively small number of gates, generates polygon
fragments in a coherent order (exact multiresolution block coher-
ence in the case of the framebuffer locations), can rasterize multiple
primitives in parallel, and can be used to interpolate a large number
of parameters efficiently. This algorithm is based on edge-equation
testing but uses a hierarchical search for valid pixel fragments based
on the Hilbert curve. This rasterization technique works entirely in
homogeneous coordinates and does not require a clipper.

Acknowledgements

This research was sponsored by research grants from the National
Science and Engineering Research Council of Canada (NSERC)
and the Centre for Information Technology of Ontario (CITO).
Celoxica Inc. provided free access to the beta-test version of
the Handel-C silicon compiler and Xilinx graciously donated an
XCV1000 part. Other tools made available through the Canadian
Microelectronics Corporation (CMC), specifically place-and-route
software, were used to complete our hardware prototype.

References

[1] T. Bially. Space-Filling Curves: Their Generation and Their
Application to Bandwidth Reduction.IEEE Transactions on
Information Theory, 15:658–664, November 1969.

[2] Arthur R. Butz. Convergence with Hilbert’s Space-Filling
Curve.Journal of Computer and System Sciences, 3:128–146,
1969.

[3] Arthur R. Butz. Alternative Algorithm for Hilbert’s Space-
Filling Curve.IEEE Transactions on Computers, 20:424–426,
April 1971.

[4] H. Fuchs, J. Goldfeather, J. Hultquist, S. Spach, J. Austin,
F. Brooks, Jr., J. Eyles, and J. Poulton. Fast Spheres, Shadows,
Textures, Transparencies, and Image Enhancements in Pixel-
Planes. InProc. ACM SIGGRAPH, pages 111–120, July 1985.

[5] Ned Greene. Hierarchical polygon tiling with coverage
masks. InProc. SIGGRAPH, pages 65–74, 1996.

[6] John C. Hart. The object instancing paradigm for linear fractal
modeling. InProc. Graphics Interface, pages 224–231, May
1992.

[7] Michael D. McCool. SMASH: A Next-Generation API for
Programmable Graphics Accelerators. Technical Report CS-
2000-14, Department of Computer Science, University of Wa-
terloo, April 2001. Published as part of the SIGGRAPH 2001
Course Notes.

[8] Joel McCormack and Robert McNamara. Tiled Polygon
Traversal Using Half-Plane Edge Functions. InProc. Eu-
rographics/SIGGRAPH Workshop on Graphics Hardware,
pages 15–21, 2000.

[9] Marc Olano and Trey Greer. Triangle Scan Conversion us-
ing 2D Homogeneous Coordinates. InProc. Eurograph-
ics/SIGGRAPH Workshop on Graphics Hardware, pages 89–
95, 1997.

[10] I. Page and R. Dettmer. Software to Silicon.IEE Review,
46(5):15–19, September 2000.

[11] Juan Pineda. A Parallel Algorithm for Polygon Rasterization.
In Proc. ACM SIGGRAPH, pages 17–20, August 1988.

[12] I. J. Schoenberg. On the Peano Curve of Lebesgue.Bull. Am.
Math. Soc., 44:519, 1938.

[13] Douglas Voorhies. Space-Filling Curves and a Measure of
Coherence. In James Arvo, editor,Graphics Gems, volume II,
pages 26–30. Academic Press, 1991.

[14] I. H. Witten and R. M. Neal. Using peano curves for bilevel
display of continuous-tone images.IEEE Computer Graphics
& Applications, 2:47–52, May 1982.

8

	Introduction
	Equation Setup
	Edge Equations
	Parameters
	Viewport Equations
	Conversion to Fixed-Point

	Hilbert Curve
	Scanning
	Results
	Conclusions

