
Why? Clean Model Branches Local reflog Flows Doc Ex

Advanced use of Git

Matthieu Moy

Matthieu.Moy@imag.fr
https://matthieu-moy.fr/cours/formation-git/advanced-git-slides.pdf

2017

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 1 / 74 >

https://matthieu-moy.fr/cours/formation-git/advanced-git-slides.pdf

Why? Clean Model Branches Local reflog Flows Doc Ex

Goals of the presentation

Understand why Git is important, and what can be done with it
Understand how Git works
Motivate to read further documentation

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 2 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Outline
1 Clean History: Why?

2 Clean commits

3 Understanding Git

4 Branches and tags in practice

5 Clean local history

6 Repairing mistakes: the reflog

7 Workflows

8 More Documentation

9 Exercises

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 3 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Merge branch ”asdfasjkfdlas/alkdjf” into sdkjfls-final

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 4 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Merge branch ”asdfasjkfdlas/alkdjf” into sdkjfls-final

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 4 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Git blame: Who did that?
git gui blame file

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 5 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Bisect: Find regressions
$ git bisect start
$ git bisect bad
$ git bisect good v1.9.0
Bisecting: 607 revisions left to test after this (roughly 9 steps)
[8fe3ee67adcd2ee9372c7044fa311ce55eb285b4] Merge branch ’jx/i18n’
$ git bisect good
Bisecting: 299 revisions left to test after this (roughly 8 steps)
[aa4bffa23599e0c2e611be7012ecb5f596ef88b5] Merge branch ’jc/coding-guidelines’
$ git bisect good
Bisecting: 150 revisions left to test after this (roughly 7 steps)
[96b29bde9194f96cb711a00876700ea8dd9c0727] Merge branch ’sh/enable-preloadindex’
$ git bisect bad
Bisecting: 72 revisions left to test after this (roughly 6 steps)
[09e13ad5b0f0689418a723289dca7b3c72d538c4] Merge branch ’as/pretty-truncate’
...

$ git bisect good
60ed26438c909fd273528e67 is the first bad commit
commit 60ed26438c909fd273528e67b399ee6ca4028e1e

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 6 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Bisect: Binary search
git bisect visualize

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 7 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Bisect: Binary search
git bisect visualize

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 7 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Bisect: Binary search
git bisect visualize

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 7 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Bisect: Binary search
git bisect visualize

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 7 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Bisect: Binary search
git bisect visualize

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 7 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Then what?
git blame and git bisect point you to a commit, then ...

Dream:
I The commit is a 50-lines long patch
I The commit message explains the intent of the programmer

Nightmare 1:
I The commit mixes a large reindentation, a bugfix and a real feature
I The message says “I reindented, fixed a bug and added a feature”

Nightmare 2:
I The commit is a trivial fix for the previous commit
I The message says “Oops, previous commit was stupid”

Nightmare 3:
I Bisect is not even applicable because most commits aren’t compilable.

Clean history is important
for software maintainability

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 8 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Then what?
git blame and git bisect point you to a commit, then ...

Dream:
I The commit is a 50-lines long patch
I The commit message explains the intent of the programmer

Nightmare 1:
I The commit mixes a large reindentation, a bugfix and a real feature
I The message says “I reindented, fixed a bug and added a feature”

Nightmare 2:
I The commit is a trivial fix for the previous commit
I The message says “Oops, previous commit was stupid”

Nightmare 3:
I Bisect is not even applicable because most commits aren’t compilable.

Which one do you prefer?

Clean history is important
for software maintainability

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 8 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Then what?
git blame and git bisect point you to a commit, then ...

Dream:
I The commit is a 50-lines long patch
I The commit message explains the intent of the programmer

Nightmare 1:
I The commit mixes a large reindentation, a bugfix and a real feature
I The message says “I reindented, fixed a bug and added a feature”

Nightmare 2:
I The commit is a trivial fix for the previous commit
I The message says “Oops, previous commit was stupid”

Nightmare 3:
I Bisect is not even applicable because most commits aren’t compilable.

Clean history is important
for software maintainability

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 8 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Then what?
git blame and git bisect point you to a commit, then ...

Dream:
I The commit is a 50-lines long patch
I The commit message explains the intent of the programmer

Nightmare 1:
I The commit mixes a large reindentation, a bugfix and a real feature
I The message says “I reindented, fixed a bug and added a feature”

Nightmare 2:
I The commit is a trivial fix for the previous commit
I The message says “Oops, previous commit was stupid”

Nightmare 3:
I Bisect is not even applicable because most commits aren’t compilable.

Clean history is as important as comments
for software maintainability

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 8 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Two Approaches To Deal With History

Approach 1

“Mistakes are part of history.”

Approach 2

“History is a set of lies agreed upon.”1

1Napoleon Bonaparte

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 9 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Approach 1: Mistakes are part of history

≈ the only option with Subversion/CVS/...
History reflects the chronological order of events
Pros:

I Easy: just work and commit from time to time
I Traceability

But ...
I Is the actual order of event what you want to remember?
I When you write a draft of a document, and then a final version, does the final version

reflect the mistakes you did in the draft?

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 10 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Approach 2: History is a set of lies agreed upon

Popular approach with modern VCS (Git, Mercurial. . .)
History tries to show the best logical path from one point to another
Pros:

I See above: blame, bisect, ...
I Code review
I Claim that you are a better programmer than you really are!

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 11 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Another View About Version Control

2 roles of version control:
I For beginners: help the code reach upstream.
I For advanced users: prevent bad code from reaching upstream.

Several opportunities to reject bad code:
I Before/during commit
I Before push
I Before merge

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 12 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

What is a clean history

Each commit introduce small group of related changes (≈ 100 lines changed max,
no minimum!)
Each commit is compilable and passes all tests (“bisectable history”)
“Good” commit messages

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 13 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Outline
1 Clean History: Why?

2 Clean commits

3 Understanding Git

4 Branches and tags in practice

5 Clean local history

6 Repairing mistakes: the reflog

7 Workflows

8 More Documentation

9 Exercises

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 14 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Outline of this section

2 Clean commits
Writing good commit messages
Partial commits with git add -p, the index

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 15 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Reminder: good comments
Bad:

int i; // Declare i of type int
for (i = 0; i < 10; i++) { ... }
f(i)

Possibly good:

int i; // We need to declare i outside the for
// loop because we’ll use it after.

for (i = 0; i < 10; i++) { ... }
f(i)

Common rule: if your code isn’t clear enough,
rewrite it to make it clearer

instead of adding comments.

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 16 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Reminder: good comments
Bad: What? The code already tells

int i; // Declare i of type int
for (i = 0; i < 10; i++) { ... }
f(i)

Possibly good: Why? Usually the relevant question

int i; // We need to declare i outside the for
// loop because we’ll use it after.

for (i = 0; i < 10; i++) { ... }
f(i)

Common rule: if your code isn’t clear enough,
rewrite it to make it clearer

instead of adding comments.

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 16 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Good commit messages

Recommended format:
One-line description (< 50 characters)

Explain here why your change is good.

Write your commit messages like an email: subject and body
Imagine your commit message is an email sent to the maintainer, trying to convince
him to merge your code2

Don’t use git commit -m

2Not just imagination, see git send-email

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 17 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Good commit messages: examples
From Git’s source code

https://github.com/git/git/commit/90dce21eb0fcf28096e661a3dd3b4e93fa0bccb5

remote-curl: unquote incoming push-options

The transport-helper protocol c-style quotes the value of any options passed to the helper via the "option <key>
<value>" directive. However, remote-curl doesn’t actually unquote the push-option values, meaning that we will send
the quoted version to the other side (whereas git-over-ssh would send the raw value).

The pack-protocol.txt documentation defines the push-options as a series of VCHARs, which excludes most characters
that would need quoting. But:

1. You can still see the bug with a valid push-option that starts with a double-quote (since that triggers quoting).

2. We do currently handle any non-NUL characters correctly in git-over-ssh. So even though the spec does not say
that we need to handle most quoted characters, it’s nice if our behavior is consistent between protocols.

There are two new tests: the "direct" one shows that this already works in the non-http case, and the http one covers
this bugfix.

Reported-by: Jon Simons <jon@jonsimons.org>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 18 / 74 >

https://github.com/git/git/commit/90dce21eb0fcf28096e661a3dd3b4e93fa0bccb5

Why? Clean Model Branches Local reflog Flows Doc Ex

Good commit messages: counter-example
GNU-style changelogs

http://git.savannah.gnu.org/cgit/emacs.git/commit/?id=90ca83d4bf17a334902321e93fa89ccb1f4a5a4e

* lisp/isearch.el (search-exit-option): Add options ’shift-move’ and ’move’.

Change type from ‘boolean’ to ‘choice’. Extend docstring.
(isearch-pre-move-point): New variable.
(isearch-pre-command-hook, isearch-post-command-hook):
Handle search-exit-option for values ‘move’ and ‘shift-move’.

* doc/emacs/search.texi (Not Exiting Isearch): Document new
values ‘shift-move’ and ‘move’ of search-exit-option.

https://lists.gnu.org/archive/html/emacs-devel/2018-03/msg00013.html

Not much the patch didn’t already say ... (do you understand the problem the commit is
trying to solve?)

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 19 / 74 >

http://git.savannah.gnu.org/cgit/emacs.git/commit/?id=90ca83d4bf17a334902321e93fa89ccb1f4a5a4e

Why? Clean Model Branches Local reflog Flows Doc Ex

Outline of this section

2 Clean commits
Writing good commit messages
Partial commits with git add -p, the index

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 20 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 21 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

The index, or “Staging Area”

“the index” is where the next commit is prepared
Contains the list of files and their content
git commit transforms the index into a commit
git commit -a stages all changes in the worktree in the index before committing.
You’ll find it sloppy soon.

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 22 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Dealing with the index

Commit only 2 files:
git add file1.txt
git add file2.txt
git commit

Commit only some patch hunks:
git add -p
(answer yes or no for each hunk)
git commit

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 23 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

git add -p: example
$ git add -p
@@ -1,7 +1,7 @@
int main()

- int i;
+ int i = 0;

printf("Hello, ");
i++;

Stage this hunk [y,n,q,a,d,/,K,g,e,?]? y

@@ -5,6 +5,6 @@

- printf("i is %s\n", i);
+ printf("i is %d\n", i);

Stage this hunk [y,n,q,a,d,/,K,g,e,?]? n
$ git commit -m "Initialize i properly"
[master c4ba68b] Initialize i properly
1 file changed, 1 insertion(+), 1 deletion(-)

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 24 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

git add -p: example
$ git add -p
@@ -1,7 +1,7 @@
int main()

- int i;
+ int i = 0;

printf("Hello, ");
i++;

Stage this hunk [y,n,q,a,d,/,K,g,e,?]? y
@@ -5,6 +5,6 @@

- printf("i is %s\n", i);
+ printf("i is %d\n", i);

Stage this hunk [y,n,q,a,d,/,K,g,e,?]? n

$ git commit -m "Initialize i properly"
[master c4ba68b] Initialize i properly
1 file changed, 1 insertion(+), 1 deletion(-)

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 24 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

git add -p: example
$ git add -p
@@ -1,7 +1,7 @@
int main()

- int i;
+ int i = 0;

printf("Hello, ");
i++;

Stage this hunk [y,n,q,a,d,/,K,g,e,?]? y
@@ -5,6 +5,6 @@

- printf("i is %s\n", i);
+ printf("i is %d\n", i);

Stage this hunk [y,n,q,a,d,/,K,g,e,?]? n
$ git commit -m "Initialize i properly"
[master c4ba68b] Initialize i properly
1 file changed, 1 insertion(+), 1 deletion(-)

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 24 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

git add -p: dangers

Commits created with git add -p do not correspond to what you have on disk
You probably never tested these commits ...
Solutions:

I git stash -k: stash what’s not in the index
I git rebase --exec: see later
I (and code review)

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 25 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Outline
1 Clean History: Why?

2 Clean commits

3 Understanding Git

4 Branches and tags in practice

5 Clean local history

6 Repairing mistakes: the reflog

7 Workflows

8 More Documentation

9 Exercises

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 26 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

If that doesn’t fix it, git.txt contains the phone
number of a friend of mine who understands
git. Just wait through a few minutes of “It’s
really pretty simple, just think of branches
as...” and eventually you’ll learn the
commands that will fix everything.

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 27 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

If that doesn’t fix it, git.txt contains the phone
number of a friend of mine who understands
git. Just wait through a few minutes of “It’s
really pretty simple, just think of branches
as...” and eventually you’ll learn the
commands that will fix everything.

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 27 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Why do I need to learn about Git’s internal?

Beauty of Git: very simple data model
(The tool is clever, the repository format is simple&stupid)
Understand the model, and the 150+ commands will become simple!

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 28 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Outline of this section

3 Understanding Git
Objects, sha1
References

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 29 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Content of a Git repository: Git objects
blob Any sequence of bytes, represents file content

tree Associates object to pathnames, represents a directory

commit Metadata + pointer to tree + pointer to parents

file
1.

tx
t file2.txt

di
r1

file3.txt

tree

parent

tree

dir1 file3.txt

parent

parent

parent

parent

... ...

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 30 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Content of a Git repository: Git objects
blob Any sequence of bytes, represents file content

tree Associates object to pathnames, represents a directory

commit Metadata + pointer to tree + pointer to parents
file

1.
tx

t file2.txt

di
r1

file3.txt

tree

parent

tree

dir1 file3.txt

parent

parent

parent

parent

... ...

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 30 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Content of a Git repository: Git objects
blob Any sequence of bytes, represents file content

tree Associates object to pathnames, represents a directory

commit Metadata + pointer to tree + pointer to parents
file

1.
tx

t file2.txt

di
r1

file3.txt

tree

parent

tree

dir1 file3.txt

parent

parent

parent

parent

... ...

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 30 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Content of a Git repository: Git objects
blob Any sequence of bytes, represents file content

tree Associates object to pathnames, represents a directory

commit Metadata + pointer to tree + pointer to parents
file

1.
tx

t file2.txt

di
r1

file3.txt

tree

parent

tree

dir1 file3.txt

parent

parent

parent

parent

... ...

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 30 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Content of a Git repository: Git objects
blob Any sequence of bytes, represents file content

tree Associates object to pathnames, represents a directory

commit Metadata + pointer to tree + pointer to parents
file

1.
tx

t file2.txt

di
r1

file3.txt

tree

parent

tree

dir1 file3.txt

parent

parent

parent

parent

... ...

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 30 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Content of a Git repository: Git objects
blob Any sequence of bytes, represents file content

tree Associates object to pathnames, represents a directory

commit Metadata + pointer to tree + pointer to parents
file

1.
tx

t file2.txt

di
r1

file3.txt

tree

parent

tree

dir1 file3.txt

parent

parent

parent

parent

... ...

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 30 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Content of a Git repository: Git objects
blob Any sequence of bytes, represents file content

tree Associates object to pathnames, represents a directory

commit Metadata + pointer to tree + pointer to parents
file

1.
tx

t file2.txt

di
r1

file3.txt

tree

parent

tree

dir1 file3.txt

parent

parent

parent

parent

... ...

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 30 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Git objects: On-disk format
$ git log
commit 7a7fb77be431c284f1b6d036ab9aebf646060271
Author: Matthieu Moy <Matthieu.Moy@univ-lyon1.fr>
Date: Wed Jul 2 20:13:49 2014 +0200

Initial commit
$ find .git/objects/
.git/objects/
.git/objects/fc
.git/objects/fc/264b697de62952c9ff763b54b5b11930c9cfec
.git/objects/a4
.git/objects/a4/7665ad8a70065b68fbcfb504d85e06551c3f4d
.git/objects/7a
.git/objects/7a/7fb77be431c284f1b6d036ab9aebf646060271
.git/objects/50
.git/objects/50/a345788a8df75e0f869103a8b49cecdf95a416
.git/objects/26
.git/objects/26/27a0555f9b58632be848fee8a4602a1d61a05f

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 31 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Git objects: On-disk format
$ echo foo > README.txt; git add README.txt
$ git commit -m "add README.txt"
[master 5454e3b] add README.txt
1 file changed, 1 insertion(+)
create mode 100644 README.txt

$ find .git/objects/
.git/objects/
.git/objects/fc
.git/objects/fc/264b697de62952c9ff763b54b5b11930c9cfec
.git/objects/a4
.git/objects/a4/7665ad8a70065b68fbcfb504d85e06551c3f4d
.git/objects/59
.git/objects/59/802e9b115bc606b88df4e2a83958423661d8c4
.git/objects/7a
.git/objects/7a/7fb77be431c284f1b6d036ab9aebf646060271
.git/objects/25
.git/objects/25/7cc5642cb1a054f08cc83f2d943e56fd3ebe99
.git/objects/54
.git/objects/54/54e3b51e81d8d9b7e807f1fc21e618880c1ac9
...

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 32 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Git objects: On-disk format
By default, 1 object = 1 file
Name of the file = object unique identifier content
Content-addressed database:

I Identifier computed as a hash of its content
I Content accessible from the identifier

Consequences:
I Objects are immutable
I Objects with the same content have the same identity

(deduplication for free)
I No known collision in SHA1 until recently, still very hard to find
⇒ SHA1 uniquely identifies objects

I Acyclic (DAG = Directed Acyclic Graph)

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 33 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

On-disk format: Pack files
$ du -sh .git/objects/
68K .git/objects/
$ git gc
...
$ du -sh .git/objects/
24K .git/objects/
$ find .git/objects/
.git/objects/
.git/objects/pack
.git/objects/pack/pack-f9cbdc53005a4b500934625d...a3.idx
.git/objects/pack/pack-f9cbdc53005a4b500934625d...a3.pack
.git/objects/info
.git/objects/info/packs
$

 More efficient format, no conceptual change
(objects are still there)

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 34 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Exploring the object database
git cat-file -p : pretty-print the content of an object

$ git log --oneline
5454e3b add README.txt
7a7fb77 Initial commit
$ git cat-file -p 5454e3b
tree 59802e9b115bc606b88df4e2a83958423661d8c4
parent 7a7fb77be431c284f1b6d036ab9aebf646060271
author Matthieu Moy <Matthieu.Moy@univ-lyon1.fr> 1404388746 +0200
committer Matthieu Moy <Matthieu.Moy@univ-lyon1.fr> 1404388746 +0200

add README.txt
$ git cat-file -p 59802e9b115bc606b88df4e2a83958423661d8c4
100644 blob 257cc5642cb1a054f08cc83f2d943e56fd3ebe99 README.txt
040000 tree 2627a0555f9b58632be848fee8a4602a1d61a05f sandbox
$ git cat-file -p 257cc5642cb1a054f08cc83f2d943e56fd3ebe99
foo
$ printf ’blob 4\0foo\n’ | sha1sum
257cc5642cb1a054f08cc83f2d943e56fd3ebe99 -

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 35 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Merge commits in the object database
$ git checkout -b branch HEAD^
Switched to a new branch ’branch’
$ echo foo > file.txt; git add file.txt
$ git commit -m "add file.txt"
[branch f44e9ab] add file.txt
1 file changed, 1 insertion(+)
create mode 100644 file.txt

$ git merge master
Merge made by the ’recursive’ strategy.
README.txt | 1 +
1 file changed, 1 insertion(+)
create mode 100644 README.txt

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 36 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Merge commits in the object database
$ git checkout -b branch HEAD^
$ echo foo > file.txt; git add file.txt
$ git commit -m "add file.txt"
$ git merge master
$ git log --oneline --graph

* 1a7f9ae (HEAD, branch) Merge branch ’master’ into branch
|\
| * 5454e3b (master) add README.txt

* | f44e9ab add file.txt
|/

* 7a7fb77 Initial commit
$ git cat-file -p 1a7f9ae
tree 896dbd61ffc617b89eb2380cdcaffcd7c7b3e183
parent f44e9abff8918f08e91c2a8fefe328dd9006e242
parent 5454e3b51e81d8d9b7e807f1fc21e618880c1ac9
author Matthieu Moy <Matthieu.Moy@univ-lyon1.fr> 1404390461 +0200
committer Matthieu Moy <Matthieu.Moy@univ-lyon1.fr> 1404390461 +0200

Merge branch ’master’ into branch

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 37 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Snapshot-oriented storage

A commit represents exactly the state of the project
A tree represents only the state of the project (where we are, not how we got there)
Renames are not tracked, but re-detected on demand
Diffs are computed on demand (e.g. git diff HEAD HEADˆ)
Physical storage still efficient

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 38 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Outline of this section

3 Understanding Git
Objects, sha1
References

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 39 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Branches, tags: references
In Java:

String s; // Reference named s
s = new String("foo"); // Object pointed to by s
String s2 = s; // Two refs for the same object

In Git: likewise!
$ git log -oneline
5454e3b add README.txt
7a7fb77 Initial commit
$ cat .git/HEAD
ref: refs/heads/master
$ cat .git/refs/heads/master
5454e3b51e81d8d9b7e807f1fc21e618880c1ac9
$ git symbolic-ref HEAD
refs/heads/master
$ git rev-parse refs/heads/master
5454e3b51e81d8d9b7e807f1fc21e618880c1ac9

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 40 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

References (refs) and objects

file
1.

tx
t file2.txt

di
r1

file3.txt

tree

master

parent

tree

dir1 file3.txt

parent

parent

parent

parent

... ...

HEAD

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 41 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

References (refs) and objects

file
1.

tx
t file2.txt

di
r1

file3.txt

tree

master

parent

tree

dir1 file3.txt

parent

parent

parent

parent

... ...

HEAD

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 41 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

References (refs) and objects

file
1.

tx
t file2.txt

di
r1

file3.txt

tree

master

parent

tree

dir1 file3.txt

parent

parent

parent

parent

... ...

HEAD

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 41 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

References (refs) and objects

file
1.

tx
t file2.txt

di
r1

file3.txt

tree

master

parent

tree

dir1 file3.txt

parent

parent

parent

parent

... ...

HEAD

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 41 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

References (refs) and objects

file
1.

tx
t file2.txt

di
r1

file3.txt

tree

master

parent

tree

dir1 file3.txt

parent

parent

parent

parent

... ...

HEAD

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 41 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

References (refs) and objects

file
1.

tx
t file2.txt

di
r1

file3.txt

tree

master

parent

tree

dir1 file3.txt

parent

parent

parent

parent

... ...

HEAD

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 41 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Sounds Familiar?

≈

parent

parent

parent

parent

parent

branch
masterHEAD

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 42 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Branches, HEAD, tags

A branch is a ref to a commit
A lightweight tag is a ref (usually to a commit) (like a branch, but doesn’t move)
Annotated tags are objects containing a ref + a (signed) message
HEAD is “where we currently are”

I If HEAD points to a branch, the next commit will move the branch
I If HEAD points directly to a commit (detached HEAD), the next commit creates a commit

not in any branch (warning!)

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 43 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Outline
1 Clean History: Why?

2 Clean commits

3 Understanding Git

4 Branches and tags in practice

5 Clean local history

6 Repairing mistakes: the reflog

7 Workflows

8 More Documentation

9 Exercises

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 44 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Branches and Tags in Practice
Create a local branch and check it out:
git checkout -b branch-name

Switch to a branch:
git checkout branch-name

List local branches:
git branch

List all branches (including remote-tracking):
git branch -a

Create a tag:
git tag tag-name

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 45 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Outline
1 Clean History: Why?

2 Clean commits

3 Understanding Git

4 Branches and tags in practice

5 Clean local history

6 Repairing mistakes: the reflog

7 Workflows

8 More Documentation

9 Exercises

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 46 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Example

Implement git clone -c var=value : 9 preparation patches, 1 real (trivial) patch at
the end!

https://github.com/git/git/commits/
84054f79de35015fc92f73ec4780102dd820e452

Did the author actually write this in this order?

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 47 / 74 >

https://github.com/git/git/commits/84054f79de35015fc92f73ec4780102dd820e452
https://github.com/git/git/commits/84054f79de35015fc92f73ec4780102dd820e452

Why? Clean Model Branches Local reflog Flows Doc Ex

Outline of this section

5 Clean local history
Avoiding merge commits: rebase Vs merge
Rewriting history with rebase -i

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 48 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Merging With Upstream

Question: upstream (where my code should eventually end up) has new code, how do I
get it in my repo?

Approach 1: merge (default with git pull)

A Merge1 B C

Merge2

Drawbacks:
I Merge1 is not relevant, distracts reviewers (unlike Merge2).

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 49 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Merging With Upstream

Question: upstream (where my code should eventually end up) has new code, how do I
get it in my repo?

Approach 1: merge (default with git pull)

A Merge1 B C

Merge2

Drawbacks:
I Merge1 is not relevant, distracts reviewers (unlike Merge2).

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 49 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Merging With Upstream

Question: upstream (where my code should eventually end up) has new code, how do I
get it in my repo?

Approach 1: merge (default with git pull)

A

Merge1 B C

Merge2

Drawbacks:
I Merge1 is not relevant, distracts reviewers (unlike Merge2).

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 49 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Merging With Upstream

Question: upstream (where my code should eventually end up) has new code, how do I
get it in my repo?

Approach 1: merge (default with git pull)

A

Merge1 B C

Merge2

Drawbacks:
I Merge1 is not relevant, distracts reviewers (unlike Merge2).

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 49 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Merging With Upstream

Question: upstream (where my code should eventually end up) has new code, how do I
get it in my repo?

Approach 1: merge (default with git pull)

A Merge1

B C

Merge2

Drawbacks:
I Merge1 is not relevant, distracts reviewers (unlike Merge2).

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 49 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Merging With Upstream

Question: upstream (where my code should eventually end up) has new code, how do I
get it in my repo?

Approach 1: merge (default with git pull)

A Merge1

B C

Merge2

Drawbacks:
I Merge1 is not relevant, distracts reviewers (unlike Merge2).

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 49 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Merging With Upstream

Question: upstream (where my code should eventually end up) has new code, how do I
get it in my repo?

Approach 1: merge (default with git pull)

A Merge1 B C

Merge2

Drawbacks:
I Merge1 is not relevant, distracts reviewers (unlike Merge2).

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 49 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Merging With Upstream

Question: upstream (where my code should eventually end up) has new code, how do I
get it in my repo?

Approach 1: merge (default with git pull)

A Merge1 B C

Merge2

Drawbacks:
I Merge1 is not relevant, distracts reviewers (unlike Merge2).

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 49 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Merging With Upstream

Question: upstream (where my code should eventually end up) has new code, how do I
get it in my repo?

Approach 2: no merge

A B C

Merge2

Drawbacks:
I In case of conflict, they have to be resolved by the developer merging into upstream

(possibly after code review)
I Not always applicable (e.g. “I need this new upstream feature to continue working”)

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 50 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Merging With Upstream

Question: upstream (where my code should eventually end up) has new code, how do I
get it in my repo?

Approach 2: no merge

A B C

Merge2

Drawbacks:
I In case of conflict, they have to be resolved by the developer merging into upstream

(possibly after code review)
I Not always applicable (e.g. “I need this new upstream feature to continue working”)

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 50 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Merging With Upstream

Question: upstream (where my code should eventually end up) has new code, how do I
get it in my repo?

Approach 2: no merge

A

B C

Merge2

Drawbacks:
I In case of conflict, they have to be resolved by the developer merging into upstream

(possibly after code review)
I Not always applicable (e.g. “I need this new upstream feature to continue working”)

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 50 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Merging With Upstream

Question: upstream (where my code should eventually end up) has new code, how do I
get it in my repo?

Approach 2: no merge

A

B C

Merge2

Drawbacks:
I In case of conflict, they have to be resolved by the developer merging into upstream

(possibly after code review)
I Not always applicable (e.g. “I need this new upstream feature to continue working”)

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 50 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Merging With Upstream

Question: upstream (where my code should eventually end up) has new code, how do I
get it in my repo?

Approach 2: no merge

A B C

Merge2

Drawbacks:
I In case of conflict, they have to be resolved by the developer merging into upstream

(possibly after code review)
I Not always applicable (e.g. “I need this new upstream feature to continue working”)

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 50 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Merging With Upstream

Question: upstream (where my code should eventually end up) has new code, how do I
get it in my repo?

Approach 2: no merge

A B C

Merge2

Drawbacks:
I In case of conflict, they have to be resolved by the developer merging into upstream

(possibly after code review)
I Not always applicable (e.g. “I need this new upstream feature to continue working”)

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 50 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Merging With Upstream
Question: upstream (where my code should eventually end up) has new code, how do I

get it in my repo?

Approach 3: rebase (git rebase or git pull --rebase)

A A’

B

C

A”

B’

C’

Merge2

master

Drawbacks: rewriting history implies:
I A’, A”, B’, C’ probably haven’t been tested (never existed on disk)
I What if someone branched from A, A’, B or C?
I Basic rule: don’t rewrite published history

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 51 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Merging With Upstream
Question: upstream (where my code should eventually end up) has new code, how do I

get it in my repo?

Approach 3: rebase (git rebase or git pull --rebase)

A A’

B

C

A”

B’

C’

Merge2

master

Drawbacks: rewriting history implies:
I A’, A”, B’, C’ probably haven’t been tested (never existed on disk)
I What if someone branched from A, A’, B or C?
I Basic rule: don’t rewrite published history

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 51 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Merging With Upstream
Question: upstream (where my code should eventually end up) has new code, how do I

get it in my repo?

Approach 3: rebase (git rebase or git pull --rebase)

A

A’

B

C

A”

B’

C’

Merge2

master

topic

Drawbacks: rewriting history implies:
I A’, A”, B’, C’ probably haven’t been tested (never existed on disk)
I What if someone branched from A, A’, B or C?
I Basic rule: don’t rewrite published history

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 51 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Merging With Upstream
Question: upstream (where my code should eventually end up) has new code, how do I

get it in my repo?

Approach 3: rebase (git rebase or git pull --rebase)

A

A’

B

C

A”

B’

C’

Merge2

master

topic

Drawbacks: rewriting history implies:
I A’, A”, B’, C’ probably haven’t been tested (never existed on disk)
I What if someone branched from A, A’, B or C?
I Basic rule: don’t rewrite published history

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 51 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Merging With Upstream
Question: upstream (where my code should eventually end up) has new code, how do I

get it in my repo?

Approach 3: rebase (git rebase or git pull --rebase)

A A’

B

C

A”

B’

C’

Merge2

master

topic

Drawbacks: rewriting history implies:
I A’, A”, B’, C’ probably haven’t been tested (never existed on disk)
I What if someone branched from A, A’, B or C?
I Basic rule: don’t rewrite published history

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 51 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Merging With Upstream
Question: upstream (where my code should eventually end up) has new code, how do I

get it in my repo?

Approach 3: rebase (git rebase or git pull --rebase)

A A’

B

C

A”

B’

C’

Merge2

master

topic

Drawbacks: rewriting history implies:
I A’, A”, B’, C’ probably haven’t been tested (never existed on disk)
I What if someone branched from A, A’, B or C?
I Basic rule: don’t rewrite published history

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 51 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Merging With Upstream
Question: upstream (where my code should eventually end up) has new code, how do I

get it in my repo?

Approach 3: rebase (git rebase or git pull --rebase)

A A’

B

C

A”

B’

C’

Merge2

master

topic

Drawbacks: rewriting history implies:
I A’, A”, B’, C’ probably haven’t been tested (never existed on disk)
I What if someone branched from A, A’, B or C?
I Basic rule: don’t rewrite published history

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 51 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Merging With Upstream
Question: upstream (where my code should eventually end up) has new code, how do I

get it in my repo?

Approach 3: rebase (git rebase or git pull --rebase)

A A’

B

C

A”

B’

C’

Merge2

master

topic

Drawbacks: rewriting history implies:
I A’, A”, B’, C’ probably haven’t been tested (never existed on disk)
I What if someone branched from A, A’, B or C?
I Basic rule: don’t rewrite published history

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 51 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Merging With Upstream
Question: upstream (where my code should eventually end up) has new code, how do I

get it in my repo?

Approach 3: rebase (git rebase or git pull --rebase)

A A’

B

C

A”

B’

C’

Merge2 master

topic

Drawbacks: rewriting history implies:
I A’, A”, B’, C’ probably haven’t been tested (never existed on disk)
I What if someone branched from A, A’, B or C?
I Basic rule: don’t rewrite published history

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 51 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Merging With Upstream
Question: upstream (where my code should eventually end up) has new code, how do I

get it in my repo?

Approach 3: rebase (git rebase or git pull --rebase)

A A’

B

C

A”

B’

C’

Merge2 master

topic

Drawbacks: rewriting history implies:
I A’, A”, B’, C’ probably haven’t been tested (never existed on disk)
I What if someone branched from A, A’, B or C?
I Basic rule: don’t rewrite published history

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 51 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Merging With Upstream
Question: upstream (where my code should eventually end up) has new code, how do I

get it in my repo?

Approach 3: rebase (git rebase or git pull --rebase)

A A’

B

C

A”

B’

C’

Merge2 master

topic

Drawbacks: rewriting history implies:
I A’, A”, B’, C’ probably haven’t been tested (never existed on disk)
I What if someone branched from A, A’, B or C?
I Basic rule: don’t rewrite published history

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 51 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Outline of this section

5 Clean local history
Avoiding merge commits: rebase Vs merge
Rewriting history with rebase -i

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 52 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Rewriting history with rebase -i
git rebase: take all your commits, and re-apply them onto upstream
git rebase -i: show all your commits, and asks you what to do when applying
them onto upstream:
pick ca6ed7a Start feature A
pick e345d54 Bugfix found when implementing A
pick c03fffc Continue feature A
pick 5bdb132 Oops, previous commit was totally buggy

Rebase 9f58864..5bdb132 onto 9f58864
#
Commands:
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit’s log message
x, exec = run command (the rest of the line) using shell
#
These lines can be re-ordered; they are executed from top to bottom.
#
If you remove a line here THAT COMMIT WILL BE LOST.
#
However, if you remove everything, the rebase will be aborted.

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 53 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

git rebase -i commands (1/2)
p, pick use commit (by default)

r, reword use commit, but edit the commit message
Fix a typo in a commit message

e, edit use commit, but stop for amending
Once stopped, use git add -p, git commit -amend, ...

s, squash use commit, but meld into previous commit
f, fixup like "squash", but discard this commit’s log message

Very useful when polishing a set of commits (before or after review):
make a bunch of short fixup patches, and squash them into the real
commits. No one will know you did this mistake ;-).

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 54 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

git rebase -i commands (2/2)

x, exec run command (the rest of the line) using shell
Example: exec make check. Run tests for this commit, stop if test fail.
Use git rebase -i --exec ’make check’3 to run make check
for each rebased commit.

3Implemented by Ensimag students!

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 55 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Outline
1 Clean History: Why?

2 Clean commits

3 Understanding Git

4 Branches and tags in practice

5 Clean local history

6 Repairing mistakes: the reflog

7 Workflows

8 More Documentation

9 Exercises

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 56 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Git’s reference journal: the reflog
Remember the history of local refs.
6= ancestry relation.

A A’

B

C

A”

B’

C’

Merge2 master

topic

topic@{0}topic@{1}

topic@{2}

topic@{3}topic@{4}

HEAD@{1}

HEAD@{2}

ref@{n}: where ref was before the n last ref update.
ref~n: the n-th generation ancestor of ref
refˆ: first parent of ref
git help revisions for more

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 57 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Git’s reference journal: the reflog
Remember the history of local refs.
6= ancestry relation.

A A’

B

C

A”

B’

C’

Merge2 master

topic

topic@{0}topic@{1}

topic@{2}

topic@{3}topic@{4}

HEAD@{1}

HEAD@{2}

ref@{n}: where ref was before the n last ref update.
ref~n: the n-th generation ancestor of ref
refˆ: first parent of ref
git help revisions for more

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 57 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Git’s reference journal: the reflog
Remember the history of local refs.
6= ancestry relation.

A A’

B

C

A”

B’

C’

Merge2 master

topic

topic@{0}topic@{1}

topic@{2}

topic@{3}topic@{4}

HEAD@{1}

HEAD@{2}

ref@{n}: where ref was before the n last ref update.
ref~n: the n-th generation ancestor of ref
refˆ: first parent of ref
git help revisions for more

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 57 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Git’s reference journal: the reflog
Remember the history of local refs.
6= ancestry relation.

A A’

B

C

A”

B’

C’

Merge2 master

topic

topic@{0}topic@{1}

topic@{2}

topic@{3}topic@{4}

HEAD@{1}

HEAD@{2}

ref@{n}: where ref was before the n last ref update.
ref~n: the n-th generation ancestor of ref
refˆ: first parent of ref
git help revisions for more

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 57 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Outline
1 Clean History: Why?

2 Clean commits

3 Understanding Git

4 Branches and tags in practice

5 Clean local history

6 Repairing mistakes: the reflog

7 Workflows

8 More Documentation

9 Exercises

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 58 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Outline of this section

7 Workflows
Centralized Workflow with a Shared Repository
Triangular Workflow with pull-requests
Code Review in Triangular Workflows
Continuous Integration

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 59 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Centralized workflow
do {

while (nothing_interesting())
work();

while (uncommited_changes()) {
while (!happy) { // git diff --staged ?

while (!enough) git add -p;
while (too_much) git reset -p;

}
git commit; // no -a
if (nothing_interesting())

git stash;
}
while (!happy)

git rebase -i;
} while (!done);
git push; // send code to central repository

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 60 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Outline of this section

7 Workflows
Centralized Workflow with a Shared Repository
Triangular Workflow with pull-requests
Code Review in Triangular Workflows
Continuous Integration

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 61 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Triangular Workflow with pull-requests
Developers pull from upstream, and push to a “to be merged” location
Someone else reviews the code and merges it upstream

Upstream A’s public repo

A’s private repo

clone, pull

pu
sh

merge
B’s public repo

B’s private repo

clo
ne,

pull

pu
sh

merge

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 62 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Pull-requests in Practice

Contributor create a branch, commit, push
Contributor click “Create pull request” (GitHub, GitLab, BitBucket, ...), or git

request-pull

Maintainer receives an email
Maintainer review, comment, ask changes
Maintainer merge the pull-request

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 63 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Outline of this section

7 Workflows
Centralized Workflow with a Shared Repository
Triangular Workflow with pull-requests
Code Review in Triangular Workflows
Continuous Integration

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 64 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Code Review

What we’d like:
1 A writes code, commits, pushes
2 B does a review
3 B merges to upstream

What usually happens:
1 A writes code, commits, pushes
2 B does a review
3 B requests some changes
4 ... then ?

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 65 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Iterating Code Reviews

At least 2 ways to deal with changes between reviews:
1 Add more commits to the pull request and push them on top
2 Rewrite commits (rebase -i, . . .) and overwrite the old pull request

F The resulting history is clean
F Much easier for reviewers joining the review effort at iteration 2
F e.g. On Git’s mailing-list, 10 iterations is not uncommon.

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 66 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Triangular Workflow: Advantages

Beginners integration:
I start committing on day 0
I get reviewed later

In general:
I Do first
I Ask permission after

For Open-Source:
I Anyone can contribute in good condition
I “Who’s the boss?” is a social convention

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 67 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Outline of this section

7 Workflows
Centralized Workflow with a Shared Repository
Triangular Workflow with pull-requests
Code Review in Triangular Workflows
Continuous Integration

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 68 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Continuous Integration: example with GitLab-CI
https://github.com/moy/travis-demo

Configuration (.gitlab-ci.yml):
before_script:
- pip install flake8
- pip install rstcheck

python_3_5:
image: python:3.5
script:
- flake8 .
- rstcheck *.rst
- ./test.py

python_2_7:
image: python:3.5
script:
- ./test.py

Use: work as usual ;-). Tests launched at each git push.

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 69 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Continuous Integration: example with GitHub and Travis-CI
https://github.com/moy/travis-demo

Configuration (.travis.yml):
language: python
python:
- "2.7"
- "3.4"

install:
- pip install pep8

script:
- pep8 main.py
- ./test.py

Use: work as usual ;-). Tests launched at each git push.

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 70 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Outline
1 Clean History: Why?

2 Clean commits

3 Understanding Git

4 Branches and tags in practice

5 Clean local history

6 Repairing mistakes: the reflog

7 Workflows

8 More Documentation

9 Exercises

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 71 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

More Documentation

http://ensiwiki.ensimag.fr/index.php/Maintenir_un_historique_
propre_avec_Git

http://ensiwiki.ensimag.fr/index.php/Ecrire_de_bons_messages_
de_commit_avec_Git

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 72 / 74 >

http://ensiwiki.ensimag.fr/index.php/Maintenir_un_historique_propre_avec_Git
http://ensiwiki.ensimag.fr/index.php/Maintenir_un_historique_propre_avec_Git
http://ensiwiki.ensimag.fr/index.php/Ecrire_de_bons_messages_de_commit_avec_Git
http://ensiwiki.ensimag.fr/index.php/Ecrire_de_bons_messages_de_commit_avec_Git

Why? Clean Model Branches Local reflog Flows Doc Ex

Outline
1 Clean History: Why?

2 Clean commits

3 Understanding Git

4 Branches and tags in practice

5 Clean local history

6 Repairing mistakes: the reflog

7 Workflows

8 More Documentation

9 Exercises

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 73 / 74 >

Why? Clean Model Branches Local reflog Flows Doc Ex

Exercises

Visit https://github.com/moy/dumb-project.git
Fork it from the web interface (or just git clone)
Clone it on your machine
Repair the dirty history!

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2017 < 74 / 74 >

https://github.com/moy/dumb-project.git

	Clean History: Why?
	Clean commits
	Writing good commit messages
	Partial commits with git add -p, the index

	Understanding Git
	Objects, sha1
	References

	Branches and tags in practice
	Clean local history
	Avoiding merge commits: rebase Vs merge
	Rewriting history with rebase -i

	Repairing mistakes: the reflog
	Workflows
	Centralized Workflow with a Shared Repository
	Triangular Workflow with pull-requests
	Code Review in Triangular Workflows
	Continuous Integration

	More Documentation
	Exercises

