
Essential configuration tasks
for open source Puppet
users

Included in Puppet Enterprise 2017.2.

NTP quick start guide
DNS quick start guide
Sudo users quick start guide
Firewall quick start guide

The following are common configuration tasks that you can manage with open source Puppet.
These steps provide an excellent introduction to the capabilities of Puppet.

NTP quick start guide
NTP is one of the most crucial, yet easiest, services to configure and manage with Puppet.
Follow this guide to properly get time synced across all your Puppet-managed nodes.

DNS quick start guide
This guide provides instructions for getting started managing a simple DNS nameserver file with
Puppet. A nameserver ensures that the “human-readable” names you type in your browser (for
example,  example.com ) resolve to IP addresses that computers can read.

Sudo users quick start guide
Managing sudo on your agents allows you to control which system users have access to
elevated privileges. This guide provides instructions for getting started managing sudo privileges
across your nodes, using a module from the Puppet Forge in conjunction with a simple module
you will write.

Firewall quick start guide
Follow the steps in this guide to get started managing firewall rules with a simple module you’ll
write that defines those rules.

https://docs.puppet.com/puppet/4.10/quick_start_essential_config.html#ntp-quick-start-guide
https://docs.puppet.com/puppet/4.10/quick_start_essential_config.html#dns-quick-start-guide
https://docs.puppet.com/puppet/4.10/quick_start_essential_config.html#sudo-users-quick-start-guide
https://docs.puppet.com/puppet/4.10/quick_start_essential_config.html#firewall-quick-start-guide
https://docs.puppet.com/puppet/4.10/quick_start_ntp.html
https://docs.puppet.com/puppet/4.10/quick_start_dns.html
https://docs.puppet.com/puppet/4.10/quick_start_sudo.html
https://docs.puppet.com/puppet/4.10/quick_start_firewall.html


NTP quick start guide
Included in Puppet Enterprise 2017.2.

Install the puppetlabs-ntp module
Add classes from the NTP module to the main manifest
Use multiple nodes to configure NTP for different permissions
Other resources

Welcome to the Open Source Puppet NTP Quick Start Guide. This document provides
instructions for getting started managing an NTP service using the Puppet NTP module.

The clocks on your servers are not inherently accurate. They need to synchronize with
something to let them know what the right time is. NTP is a protocol designed to synchronize
the clocks of computers over a network. NTP uses Coordinated Universal Time (UTC) to
synchronize computer clock times to within a millisecond.

Your entire datacenter, from the network to the applications, depends on accurate time for many
different things, such as security services, certificate validation, and file sharing across Puppet
agents. If the time is wrong, your Puppet master might mistakenly issue agent certificates from
the distant past or future, which other agents will treat as expired.

NTP is one of the most crucial, yet easiest, services to configure and manage with Puppet.
Using the Puppet NTP module, you can do the following tasks:

Ensure time is correctly synced across all the servers in your infrastructure.
Ensure time is correctly synced across your configuration management tools.
Roll out updates quickly if you need to change or specify your own internal NTP server
pool.

This guide will step you through the following tasks:

Install the  puppetlabs-ntp  module.
Add classes to the  default  node in your main manifest.
View the status of your NTP service.
Use multiple nodes in the main manifest to configure NTP for different permissions.

For this walk-through, log in as root or administrator on your nodes.

Prerequisites: This guide assumes you’ve already installed Puppet, and have installed
at least one *nix agent.

https://docs.puppet.com/puppet/4.10/quick_start_ntp.html#install-the-puppetlabs-ntp-module
https://docs.puppet.com/puppet/4.10/quick_start_ntp.html#add-classes-from-the-ntp-module-to-the-main-manifest
https://docs.puppet.com/puppet/4.10/quick_start_ntp.html#use-multiple-nodes-to-configure-ntp-for-different-permissions
https://docs.puppet.com/puppet/4.10/quick_start_ntp.html#other-resources
https://docs.puppet.com/puppet/4.10/quick_start_ntp.html#install-the-puppetlabs-ntp-module
https://docs.puppet.com/puppet/4.10/quick_start_ntp.html#add-classes-from-the-ntp-module-to-the-main-manifest
https://docs.puppet.com/puppet/4.10/quick_start_ntp.html#use-multiple-nodes-to-configure-ntp-for-different-permissions
https://docs.puppet.com/puppetserver/2.7/install_from_packages.html
https://docs.puppet.com/puppet/4.10/install_linux.html


Note: You can add the NTP service to as many agents as needed. For ease of
explanation, we will describe only one.

Install the puppetlabs-ntp module
The puppetlabs-ntp module is part of the supported modules program; these modules are
supported, tested, and maintained by Puppet. You can learn more about the puppetlabs-ntp
module by visiting http://forge.puppetlabs.com/puppetlabs/ntp.

To install the puppetlabs-ntp module:

From the Puppet master, run  puppet module install puppetlabs-ntp .

You should see output similar to the following:

    Preparing to install into /etc/puppetlabs/puppet/modules ... 
    Notice: Downloading from http://forgeapi.puppetlabs.com ... 
    Notice: Installing -- do not interrupt ... 
    /etc/puppetlabs/puppet/environments/production/modules 
    └── puppetlabs-ntp (v3.1.2)

That’s it! You’ve just installed the puppetlabs-ntp module.

Add classes from the NTP module to
the main manifest
The NTP module contains several classes. Classes are named chunks of Puppet code and are
the primary means by which Puppet configures nodes. The NTP module contains the following
classes:

ntp : the main class; this class includes all other NTP classes (including the classes in this
list).
ntp::install : this class handles the installation packages.
ntp::config : this class handles the configuration file.
ntp::service : this class handles the service.

You’re going to add the  ntp  class to the  default  node in your main manifest. Depending on
your needs or infrastructure, you might have a different group that you’ll assign NTP to, but you
would take similar steps.

To create the NTP class:

1. From the command line on the Puppet master, navigate to the main manifest:  cd
/etc/puppetlabs/code/environments/production/manifests .

2. Use your text editor to open  site.pp .
3. Add the following Puppet code to  site.pp :

http://forge.puppetlabs.com/supported
http://forge.puppetlabs.com/puppetlabs/ntp
https://docs.puppet.com/puppet/4.10/lang_classes.html


Note: If you already have a default node, just add the  class  and  servers  lines
to it. To see a list of other time servers, visit http://www.pool.ntp.org/.

4. From the command line on your Puppet agent, trigger a Puppet run with  puppet agent
-t .

That’s it! You’ve successfully configured Puppet to use NTP.

To check if the NTP service is running, run  puppet resource service ntpd  on your
Puppet agent. The output should be:

    service { 'ntpd': 
      ensure => 'running', 
     enable => 'true', 
 } 

Use multiple nodes to configure NTP for
different permissions
Until now, you’ve been using the default node in this Quick Start Guide. If you want to configure
the NTP service to run differently on different nodes, you can set up NTP differently in multiple
nodes in the  site.pp file.

In the example below, two ntp servers in the organization are allowed to talk to outside time
servers (“kermit” and “grover”). Other ntp servers get their time data from these two servers. One
of the primary ntp servers, “kermit”, is very cautiously configured — it can’t afford outages, so it’s
not allowed to automatically update its ntp server package without testing. The other servers are
more permissively configured.

The other ntp servers (“snuffie,” “bigbird,” and “hooper”) will use our two primary servers to sync
their time.

The  site.pp  looks like this:

 node default { 
     class { 'ntp': 
    servers => ['nist-time-server.eoni.com','nist1-lv.ustiming.org','ntp-nist.ldsbc.edu']
    } 
 } 

 node "kermit.example.com" { 
   class { "ntp": 
  servers    => [ '0.us.pool.ntp.org iburst','1.us.pool.ntp.org iburst','2.us.pool.ntp.org iburst','3.us.pool.ntp.org iburst'],

http://www.pool.ntp.org/


In this fashion, it is possible to create multiple nodes to suit your needs.

Other resources
For more information about working with the puppetlabs-ntp module, check out our How to
Manage NTP webinar.

Puppet offers many opportunities for learning and training, from formal certification courses to
guided online lessons. We’ve noted a few below. Head over to the learning Puppet page to
discover more.

The Puppet workshop contains a series of self-paced, online lessons that cover a variety
of topics on Puppet basics. You can sign up at the learning page.

  autoupdate => false, 
  restrict   => [], 
  enable     => true, 
     } 
    } 
 
 node "grover.example.com" { 
   class { "ntp": 
  servers    => [ 'kermit.example.com','0.us.pool.ntp.org iburst','1.us.pool.ntp.org iburst','2.us.pool.ntp.org iburst'],
  autoupdate => true, 
  restrict   => [], 
  enable     => true, 
     } 
    } 
 
 node "snuffie.example.com", "bigbird.example.com", "hooper.example.com" {
   class { "ntp": 
  servers    => [ 'grover.example.com', 'kermit.example.com'],
  autoupdate => true, 
  enable     => true, 
     } 
    } 

http://puppetlabs.com/webinars/how-manage-ntp
https://puppetlabs.com/learn
https://puppetlabs.com/learn


DNS Quick Start Guide
Included in Puppet Enterprise 2017.2.

Write the resolver class
Add the resolv.conf file to your main manifest
Enforce the desired state of the resolver class
Other resources

Welcome to the Open Source Puppet DNS Quick Start Guide. This document provides
instructions for getting started managing a simple DNS nameserver file with Puppet. A
nameserver ensures that the “human-readable” names you type in your browser (for
example,  example.com ) can be resolved to IP addresses that computers can read.

Sysadmins typically need to manage a nameserver file for internal resources that aren’t
published in public nameservers. For example, let’s say you have several employee-maintained
servers in your infrastructure, and the DNS network assigned to those servers use Google’s
public nameserver located at  8.8.8.8 . However, there are several resources behind your
company’s firewall that your employees need to access on a regular basis. In this case, you’d
build a private nameserver (say at  10.16.22.10 ), and then use Puppet to ensure all the
servers in your infrastructure have access to it.

In this exercise, you will learn how to do the following steps:

Write a simple module that contains a class called  resolver  to manage a
nameserver file called  /etc/resolv.conf .
Enforce the desired state of that class from the command line of your puppet agent.

Before starting this walk-through, complete the previous exercise in the essential
configuration tasks, which is setting up NTP. Log in as root or administrator on your
nodes.

Note: You can add the DNS nameserver class to as many agents as needed. For ease
of explanation, this guide will describe only one agent.

Write the resolver  class
Some modules can be large, complex, and require a significant amount of trial and error, while
others often work right out of the box. This module will be a very simple module to write, as it
contains just one class and one template.

https://docs.puppet.com/puppet/4.10/quick_start_dns.html#write-the-resolver-class
https://docs.puppet.com/puppet/4.10/quick_start_dns.html#add-the-resolvconf-file-to-your-main-manifest
https://docs.puppet.com/puppet/4.10/quick_start_dns.html#enforce-the-desired-state-of-the-resolver-class
https://docs.puppet.com/puppet/4.10/quick_start_dns.html#other-resources
https://docs.puppet.com/puppet/4.10/quick_start_dns.html#write-the-resolver-class
https://docs.puppet.com/puppet/4.10/quick_start_dns.html#enforce-the-desired-state-of-the-resolver-class
https://docs.puppet.com/puppet/4.10/quick_start_essential_config.html
https://docs.puppet.com/puppet/4.10/quick_start_ntp.html


A quick note about modules
By default, Puppet keeps modules in an environment’s  modulepath , which for the
production environment defaults
to  /etc/puppetlabs/code/environments/production/modules . This includes
modules that Puppet installs, those that you download from the Forge, and those you
write yourself.

Note: Puppet also creates another module
directory:  /opt/puppetlabs/puppet/modules . Don’t modify or add anything in this
directory, including modules of your own.

There are plenty of resources about modules and the creation of modules that you can
reference. Check out Module Fundamentals, the Beginner’s Guide to Modules, and
the Puppet Forge.

Modules are directory trees. For this task, you’ll create the following files:

resolver  (the module name)
templates/

resolv.conf.erb  (contains template for  /etc/resolv.conf , the contents
of which will be populated after you add the class and run Puppet.)

To write the  resolver  class:

1. From the command line on the Puppet master, navigate to the modules directory:  cd
/etc/puppetlabs/code/environments/production/modules .

2. Run  mkdir -p resolver/templates  to create the new module directory and its
templates directory.

3. Use your text editor to create the  resolver/templates/resolv.conf.erb  file.

4. Edit the  resolv.conf.erb  file to add the following Ruby code. This Ruby code is a
template for populating  /etc/resolv.conf correctly, no matter what changes are
manually made to  /etc/resolv.conf , as we will see in a later example.

5. Save and exit the file.

That’s it! You’ve created a Ruby template to populate  /etc/resolv.conf .

Add the resolv.conf file to your main

 # Resolv.conf generated by Puppet 
 
 <% [@nameservers].flatten.each do |ns| -%> 
 nameserver <%= ns %> 
 <% end -%> 
 
 # Other values can be added or hard-coded into the template as needed.

https://docs.puppet.com/puppet/4.10/dirs_modulepath.html
https://docs.puppet.com/puppet/4.10/modules_fundamentals.html
https://docs.puppet.com/guides/module_guides/bgtm.html
https://forge.puppetlabs.com/


Add the resolv.conf file to your main
manifest

1. On the Puppet master, open  /etc/resolv.conf  with your text editor, and copy the IP
address of your master’s nameserver (in this example, the nameserver is  10.0.2.3 ).

2. On the Puppet master, navigate to the main manifest:  cd
/etc/puppetlabs/code/environments/production/manifests .

3. Use your text editor to open the  site.pp  file and add the following Puppet code to
the  default  node, editing your nameserver value to match the one you found
in  /etc/resolv.conf :

 $nameservers = ['10.0.2.3'] 
 
 file { '/etc/resolv.conf': 
   ensure  => file, 
   owner   => 'root', 
   group   => 'root', 
   mode    => '0644', 
   content => template('resolver/resolv.conf.erb'), 
 } 

4. From the command line on your Puppet agent, run  puppet agent -t .
5. From the command line on your Puppet agent, run  cat /etc/resolv.conf . The result

should reflect the nameserver you added to your main manifest in step 3.

That’s it! You’ve written a module that contains a class that will ensure your agents
resolve to your internal nameserver.

Note the following about your new class:

It ensures the creation of the file  /etc/resolv.conf .
The content of  /etc/resolv.conf  is modified and managed by the
template,  resolv.conf.erb .

Enforce the desired state of the resolver  class
Finally, let’s take a look at how Puppet will ensure the desired state of the  resolver  class on
your agents. In the previous task, you set the nameserver IP address. Now imagine a scenario
where a member of your team changes the contents of  /etc/resolv.conf  to use a different
nameserver and can no longer access any internal resources.

1. On any agent to which you applied the  resolv.conf  class,
edit  /etc/resolv.conf  to be any nameserver IP address other than the one you desire



to use.
2. Save and exit the file.
3. From the command line on your Puppet agent, run  puppet agent -t --onetime .
4. From the command line on your Puppet agent, run  cat /etc/resolv.conf , and notice

that Puppet has enforced the desired state you specified on your Puppet master.

That’s it — Puppet has enforced the desired state of your agent!

Other resources
For more information about working with Puppet and DNS, check out our Dealing with Name
Resolution Issues blog post.

Puppet offers many opportunities for learning and training, from formal certification courses to
guided online lessons. We’ve noted a few below. Head over to the Learning Puppet page to
discover more.

The Puppet workshop contains a series of self-paced, online lessons that cover a variety
of topics on Puppet basics. You can sign up at the learning page.
Learn about Puppet DNS through this online training workshop.

http://puppetlabs.com/blog/resolving-dns-issues
https://puppetlabs.com/learn
https://puppetlabs.com/learn
https://puppetlabs.com/learn/puppet-dns


Sudo users quick start guide
Included in Puppet Enterprise 2017.2.

Install the saz-sudo module
Write the privileges class

a. A quick note about modules directories
Add the privileges and sudo classes

a. Other resources

Welcome to the Open Source Puppet Sudo Users Quick Start Guide. This document provides
instructions for getting started managing sudo privileges across your Puppet deployment, using
a module from the Puppet Forge in conjunction with a simple module you will write.

In most cases, managing sudo on your agents involves controlling which users have access to
elevated privileges. Using this guide, you will learn how to do the following tasks:

Install the  saz-sudo  module as the foundation for managing sudo privileges.
Write a simple module that contains a class called  privileges to manage a
resource that sets privileges for certain users, which will be managed by the  saz-
sudo  module.
Add classes from the privileges and sudo modules to your agents.

Before starting this walk-through, complete the previous exercises in the essential
configuration tasks. Log in as root or administrator on your nodes.

Prerequisites: This guide assumes you’ve already installed Puppet, and have installed
at least one *nix agent.

Note: You can add the sudo and privileges classes to as many agents as needed,
although we describe only one for ease of explanation.

Install the saz-sudo  module
The  saz-sudo  module, available on the Puppet Forge, is one of many modules written by a
member of the Puppet user community. You can learn more about the module by
visiting http://forge.puppetlabs.com/saz/sudo.

To install the  saz-sudo  module:

https://docs.puppet.com/puppet/4.10/quick_start_sudo.html#install-the-saz-sudo-module
https://docs.puppet.com/puppet/4.10/quick_start_sudo.html#write-the-privileges-class
https://docs.puppet.com/puppet/4.10/quick_start_sudo.html#a-quick-note-about-modules-directories
https://docs.puppet.com/puppet/4.10/quick_start_sudo.html#add-the-privileges-and-sudo-classes
https://docs.puppet.com/puppet/4.10/quick_start_sudo.html#other-resources
https://docs.puppet.com/puppet/4.10/quick_start_sudo.html#install-the-saz-sudo-module
https://docs.puppet.com/puppet/4.10/quick_start_sudo.html#write-the-privileges-class
https://docs.puppet.com/puppet/4.10/quick_start_sudo.html#add-the-privileges-and-sudo-classes
https://docs.puppet.com/puppet/4.10/quick_start_essential_config.html
https://docs.puppet.com/puppetserver/2.7/install_from_packages.html
https://docs.puppet.com/puppet/4.10/install_linux.html
http://forge.puppetlabs.com/saz/sudo


As the root user on the Puppet master, run  puppet module install saz-sudo .

You should see output similar to the following:

Preparing to install into /etc/puppetlabs/code/environments/production/modules …

That’s it! You’ve just installed the  saz-sudo  module.

Write the privileges  class
Some modules can be large, complex, and require a significant amount of trial and error as you
create them, while others often work right out of the box. This module will be a very simple
module to write. It contains just one class.

A quick note about modules directories
By default, Puppet keeps modules in an environment’s  modulepath , which for the
production environment defaults
to  /etc/puppetlabs/code/environments/production/modules . This includes
modules that Puppet installs, those that you download from the Forge, and those you
write yourself.

Note: Puppet also creates another module
directory:  /opt/puppetlabs/puppet/modules . Don’t modify or add anything in this
directory, including modules of your own.

There are plenty of resources about modules and the creation of modules that you can
reference. Check out Module Fundamentals, the Beginner’s Guide to Modules, and
the Puppet Forge.

Modules are directory trees. For this task, you’ll create the following files:

privileges/  (the module name)
manifests/

init.pp  (contains the  privileges  class)

To write the  privileges  class:

1. From the command line on the Puppet master, navigate to the modules directory:  cd
/etc/puppetlabs/code/environments/production/modules .

    Notice: Downloading from http://forgeapi.puppetlabs.com ... 
    Notice: Installing -- do not interrupt ... 
    /etc/puppetlabs/puppet/modules 
    └── saz-sudo (v2.3.6) 
          └── puppetlabs-stdlib (3.2.2) [/opt/puppet/share/puppet/modules]

https://docs.puppet.com/puppet/4.10/dirs_modulepath.html
https://docs.puppet.com/puppet/4.10/modules_fundamentals.html
https://docs.puppet.com/guides/module_guides/bgtm.html
https://forge.puppetlabs.com/


2. Run  mkdir -p privileges/manifests  to create the new module directory and its
manifests directory.

3. From the  manifests  directory, use your text editor to create the  init.pp  file, and edit it
so it contains the following Puppet code:

 class privileges { 
 
   sudo::conf { 'admins': 
   ensure  => present, 
   content => '%admin ALL=(ALL) ALL', 
   } 
 
 } 

4. Save and exit the file.

That’s it! You’ve written a module that contains a class that, once applied, ensures that
your agents have the correct sudo privileges set for the root user and the “admins” and
“wheel” groups.

Note the following about the resource in the  privileges  class:

The  sudo::conf ‘admins’  line creates a sudoers rule to ensure that members
of the  admins  group have the ability to run any command using sudo. This
resource creates configuration fragment file to define this rule
in  /etc/sudoers.d/ . It will be called something like  10_admins .

Add the privileges and sudo classes
1. From the command line on the Puppet master, navigate to the main manifest:  cd

/etc/puppetlabs/code/environments/production/manifests .
2. Open  site.pp  with your text editor and add the following Puppet code to

the  default  node:

class { 'sudo': } 
sudo::conf { 'web': 
  content  => "web ALL=(ALL) NOPASSWD: ALL", 
} 
class { 'privileges': } 
sudo::conf { 'jargyle':
  priority => 60, 
  content  => "jargyle ALL=(ALL) NOPASSWD: ALL", 
} 

1. Save and exit the file.



2. From the command line on your Puppet master, run  puppet parser validate
site.pp  to ensure that there are no errors. The parser will return nothing if there are no
errors.

3. From the command line on your Puppet agent, run  puppet agent -t  to trigger a
Puppet run.

That’s it! You have successfully installed the Sudo module and applied privileges and
classes to it.

Note the following about your new resources in the  site.pp file:

sudo::conf ‘web’ : Creates a sudoers rule to ensure that members of the web
group have the ability to run any command using sudo. This resource creates a
configuration fragment file to define this rule in  /etc/sudoers.d/ .
sudo::conf ‘admins’ : Creates a sudoers rule to ensure that members of the
admins group have the ability to run any command using sudo. This resource
creates a configuration fragment file to define this rule in  /etc/sudoers.d/ . It will
be called something like  10_admins .
sudo::conf ‘jargyle’ : Creates a sudoers rule to ensure that the
user  jargyle  has the ability to run any command using sudo. This resource
creates a configuration fragment to define this rule in  /etc/sudoers.d/ . It will be
called something like  60_jargyle .

From the command line on the Puppet agent, run  sudo -l -U jargyle  to confirm it worked.
The results should resemble the following:

Other resources
For more information about working with Puppet and Sudo Users, check out our Module of The
Week: saz/sudo - Manage sudo configuration blog post.

Puppet offers many opportunities for learning and training, from formal certification courses to
guided online lessons. We’ve noted one below; head over to the learning Puppet page to
discover more.

 Matching Defaults entries for jargyle on this host: 
!visiblepw, always_set_home, env_reset, env_keep="COLORS DISPLAY HOSTNAME HISTSIZE
INPUTRC KDEDIR LS_COLORS", env_keep+="MAIL PS1 PS2 QTDIR USERNAME LANG LC_ADDRESS
LC_CTYPE", env_keep+="LC_COLLATE LC_IDENTIFICATION LC_MEASUREMENT LC_MESSAGES",
env_keep+="LC_MONETARY LC_NAME LC_NUMERIC LC_PAPER LC_TELEPHONE", env_keep+="LC_TIME
LC_ALL LANGUAGE LINGUAS _XKB_CHARSET XAUTHORITY", 
secure_path=/usr/local/bin\:/sbin\:/bin\:/usr/sbin\:/usr/bin 
 
 User jargyle may run the following commands on this host: 
(ALL) NOPASSWD: ALL 

https://puppetlabs.com/blog/module-of-the-week-sazsudo-manage-sudo-configuration
https://puppetlabs.com/learn


The Puppet workshop contains a series of self-paced, online lessons that cover a variety
of topics on Puppet basics. You can sign up at the learning page.
Learn about Managing sudo Privileges through this online training workshop.

https://puppetlabs.com/learn
https://puppetlabs.com/learn/managing-sudo-privileges


Firewall quick start guide
Included in Puppet Enterprise 2017.2.

Install the puppetlabs-firewall module
Write the my_firewall module

a. A quick note about module directories
Add the firewall module to the main manifest
Enforce the desired state of the my_firewall class
Other resources

Welcome to the Open Source Puppet Firewall Quick Start Guide. This document provides
instructions for getting started managing firewall rules with Puppet.

With a firewall, admins define a set of policies (also known as firewall rules) that consist of things
like application ports (TCP/UDP), network ports, IP addresses, and an accept/deny statement.
These rules are applied in a “top-to-bottom” approach. For example, when a service, say SSH,
attempts to access resources on the other side of a firewall, the firewall applies a list of rules to
determine if or how SSH communications are handled. If a rule allowing SSH access can’t be
found, the firewall will deny access to that SSH attempt.

To best manage such rules with Puppet, you want to divide these rules
into  pre  and  post  groups to ensure Puppet checks firewall rules in the correct order.

Using this guide, you will learn how to do the following tasks:

Install the puppetlabs-firewall module.
Write a simple module to define the firewall rules for your Puppet-managed
infrastructure.
Add the firewall module to the main manifest.
Enforce the desired state of the  my_firewall  class.

Before starting this walk-through, complete the previous exercises in the essential
configuration tasks. Log in as root or administrator on your nodes.

Prerequisites: This guide assumes you’ve already installed Puppet, and have installed
at least one *nix agent.

You should still be logged in as root or administrator on your nodes.

Install the puppetlabs-

https://docs.puppet.com/puppet/4.10/quick_start_firewall.html#install-the-puppetlabs-firewall-module
https://docs.puppet.com/puppet/4.10/quick_start_firewall.html#write-the-myfirewall-module
https://docs.puppet.com/puppet/4.10/quick_start_firewall.html#a-quick-note-about-module-directories
https://docs.puppet.com/puppet/4.10/quick_start_firewall.html#add-the-firewall-module-to-the-main-manifest
https://docs.puppet.com/puppet/4.10/quick_start_firewall.html#enforce-the-desired-state-of-the-myfirewall-class
https://docs.puppet.com/puppet/4.10/quick_start_firewall.html#other-resources
https://docs.puppet.com/puppet/4.10/quick_start_firewall.html#install-the-puppetlabs-firewall-module
https://docs.puppet.com/puppet/4.10/quick_start_firewall.html#write-the-myfirewall-module
https://docs.puppet.com/puppet/4.10/quick_start_firewall.html#add-the-firewall-module-to-the-main-manifest
https://docs.puppet.com/puppet/4.10/quick_start_firewall.html#enforce-the-desired-state-of-the-myfirewall-class
https://docs.puppet.com/puppet/4.10/quick_start_essential_config.html
https://docs.puppet.com/puppetserver/2.7/install_from_packages.html
https://docs.puppet.com/puppet/4.10/install_linux.html


Install the puppetlabs-
firewall  module
The firewall module, available on the Puppet Forge, introduces the firewall resource, which is
used to manage and configure firewall rules from with Puppet. Learn more about the module by
visiting http://forge.puppetlabs.com/puppetlabs/firewall.

To install the firewall module:

From the Puppet master, run  puppet module install puppetlabs-firewall .

You should see output similar to the following:

That’s it! You’ve just installed the firewall module.

Write the my_firewallmodule
Some modules can be large, complex, and require a significant amount of trial and error. This
module, however, will be a very simple module to write. It contains just three classes.

A quick note about module directories
By default, Puppet keeps modules in an environment’s  modulepath , which for the
production environment defaults
to  /etc/puppetlabs/code/environments/production/modules . This includes
modules that Puppet installs, those that you download from the Forge, and those you
write yourself.

Note: Puppet also creates another module
directory:  /opt/puppetlabs/puppet/modules . Don’t modify or add anything in this
directory, including modules of your own.

There are plenty of resources about modules and the creation of modules that you can
reference. Check out Module Fundamentals, the Beginner’s Guide to Modules, and
the Puppet Forge.

Modules are directory trees. For this task, you’ll create the following files:

my_firewall/  (the module name)

    Preparing to install into /etc/puppetlabs/puppet/environments/production/modules ...
    Notice: Downloading from https://forgeapi.puppetlabs.com ... 
    Notice: Installing -- do not interrupt ... 
    /etc/puppetlabs/puppet/environments/production/modules 
    └── puppetlabs-firewall (v1.6.0) 

http://forge.puppetlabs.com/puppetlabs/firewall
https://docs.puppet.com/puppet/4.10/dirs_modulepath.html
https://docs.puppet.com/puppet/4.10/modules_fundamentals.html
https://docs.puppet.com/guides/module_guides/bgtm.html
https://forge.puppetlabs.com/


manifests/
pre.pp
post.pp

To write the  my_firewall  module:

1. From the command line on the Puppet master, navigate to the modules directory:  cd
/etc/puppetlabs/code/environments/production/modules .

2. Run  mkdir -p my_fw/manifests  to create the new module directory and its manifests
directory.

3. From the  manifests  directory, use your text editor to create  pre.pp .

4. Edit  pre.pp  so it contains the following Puppet code. These rules allow basic networking
to ensure that existing connections are not closed.

 class my_fw::pre { 
    Firewall { 
        require => undef,
    } 

# Default firewall rules

5. Save and exit the file.
6. From the  manifests  directory, use your text editor to create  post.pp .

     firewall { '000 accept all icmp': 
       proto  => 'icmp', 
       action => 'accept', 
     } 
     firewall { '001 accept all to lo interface': 
       proto   => 'all', 
       iniface => 'lo', 
       action  => 'accept', 
     } 
     firewall { '002 reject local traffic not on loopback interface':
       iniface     => '! lo',
       proto       => 'all', 
       destination => '127.0.0.1/8', 
       action      => 'reject',
     } 
     firewall { '003 accept related established rules': 
       proto  => 'all', 
       state  => ['RELATED', 'ESTABLISHED'], 
       action => 'accept', 
     } 
   } 



7. Edit  post.pp  so it contains the following Puppet code. This drops any requests that don’t
meet the rules defined in  pre.pp or your rules defined in  site.pp  (see next section).

 class my_fw::post { 
     firewall { '999 drop all':
       proto  => 'all', 
       action => 'drop', 
       before => undef, 
     } 
   } 

8. Save and exit the file.

That’s it! You’ve written a module that contains a class that, once applied, ensures your
firewall has rules in it that will be managed by Puppet. Note the following about your new
class:

pre.pp  defines the “pre” group rules the firewall applies when a service requests
access. It is run before any other rules.
post.pp  defines the rule for the firewall to drop any requests that haven’t met the
rules defined by  pre.pp  or in  site.pp  (see next section).

Add the firewall module to the main
manifest

1. On your Puppet master, navigate to the main manifest:  cd
/etc/puppetlabs/code/environments/production/manifests .

2. Use your text editor to open  site.pp .
3. Add the following Puppet code to your  site.pp  file. This will clear any existing rules and

make sure that only rules defined in Puppet exist on the machine.

   resources { 'firewall': 
     purge => true, 
   } 

4. Add the following Puppet code to your  site.pp  file. These defaults will ensure that
the  pre  and  post  classes are run in the correct order to avoid locking you out of your
box during the first Puppet run, and declaring  my_fw::pre  and  my_fw::post satisfies
the specified dependencies.

   Firewall { 
     before  => Class['my_fw::post'], 
     require => Class['my_fw::pre'], 
   } 

https://docs.puppet.com/puppet/4.10/quick_start_firewall.html#add-the-firewall-module-to-the-main-manifest
https://docs.puppet.com/puppet/4.10/quick_start_firewall.html#add-the-firewall-module-to-the-main-manifest
https://docs.puppet.com/puppet/4.10/lang_relationships.html


 
   class { ['my_fw::pre', 'my_fw::post']: } 

5. Add the  firewall  class to your  site.pp  to ensure the correct packages are installed:

   class { 'firewall': } 

That’s it! To check your firewall configuration, run  iptables --list  from the
command line of your Puppet agent. The result should look similar to this:

Enforce the desired state of
the my_firewall  class
Lastly, let’s take a look at how Puppet ensures the desired state of the  my_firewall  class on
your agents. In the previous task, you applied your firewall class. Now imagine a scenario where
a member of your team changes the contents of the  iptables  to allow connections on a
random port that was not specified in  my_firewall .

1. Select an agent on which you applied the  my_firewall  class, and run  iptables --
list .

2. Note that the rules from the  my_firewall  class have been applied.

3. From the command line, insert a new rule to allow connections to port 8449 by
running  iptables -I INPUT -m state --state NEW -m tcp -p tcp --dport
8449 -j ACCEPT .

4. Run  iptables --list  again and note that this new rule is now listed.

5. Run  puppet agent -t --onetime  to trigger a Puppet run on that agent.

 Chain INPUT (policy ACCEPT) 
 target     prot opt source               destination 
 ACCEPT     icmp --  anywhere             anywhere            /* 000 accept all icmp */
 ACCEPT     all  --  anywhere             anywhere            /* 001 accept all to lo interface */
 REJECT     all  --  anywhere             loopback/8          /* 002 reject local traffic not on loopback interface */ reject-with icmp-port-unreachable
 ACCEPT     all  --  anywhere             anywhere            /* 003 accept related established rules */ state RELATED,ESTABLISHED
 DROP       all  --  anywhere             anywhere            /* 999 drop all */
 
 Chain FORWARD (policy ACCEPT) 
 target     prot opt source               destination 
 
 Chain OUTPUT (policy ACCEPT) 
 target     prot opt source               destination 



6. Run  iptables --list  on that node once more, and notice that Puppet has enforced
the desired state you specified for the firewall rules.

That’s it–Puppet has enforced the desired state of your agent!

Other resources
You can learn more about the Puppet Firewall module by visiting the Puppet Forge.

Check out the other quick start guides in our Puppet QSG series:

NTP quick start guide
DNS quick start guide
Sudo users quick start guide

Puppet offers many opportunities for learning and training, from formal certification courses to
guided online lessons. We’ve noted one below; head over to the learning Puppet page to
discover more.

The Puppet workshop contains a series of self-paced, online lessons that cover a variety
of topics on Puppet basics. You can sign up at the learning page.

http://forge.puppetlabs.com/puppetlabs/firewall
https://docs.puppet.com/puppet/4.10/quick_start_ntp.html
https://docs.puppet.com/puppet/4.10/quick_start_dns.html
https://docs.puppet.com/puppet/4.10/quick_start_sudo.html
https://puppetlabs.com/learn
https://puppetlabs.com/learn

	8 - Quick Start » Essential configuration — Documentation — Puppet
	9 - Quick Start » NTP — Documentation — Puppet
	10 - Quick Start » DNS — Documentation — Puppet
	11 - Quick Start » Sudo users — Documentation — Puppet
	12 - Quick Start » Firewall — Documentation — Puppet

