
Quick start » Intro for *nix
users

Included in Puppet Enterprise 2017.2.

1. Perform pre-install tasks
2. Install Puppet
3. Create a user and group
4. Hello, world!
5. Install a module
6. Add classes
7. Write modules

Welcome to the Open Source Puppet Quick Start Guide. Whether you’re setting up a Puppet
installation for a real deployment or simply want to learn some fundamentals of configuration
management with Open Source Puppet, this series of guides provides the steps you need to
get up and running relatively quickly. We’ll walk you through Puppet installation and show you
how to automate some basic tasks that sysadmins regularly perform.

The following guides present tasks in the order that you would most likely perform them. See the
prerequisite sections in each guide to ensure you have the correct setup to perform the steps as
they’re provided:

1. Perform pre-install tasks
Follow these instructions to ensure you meet the system requirements for Puppet, to designate
servers, to decide on a deployment type, and more.

2. Install Puppet
Next, you’ll install and configure your Puppet master and agents.

A computer that runs the Puppet Server is called the “master.” Follow these instructions to
install and configure Puppet Server.

A computer that runs the Puppet agent is called a “Puppet agent” or simply “agent”. The Puppet
agent regularly pulls configuration catalogs from a master and applies them to the local system.

Follow these instructions to install a Puppet agent on Windows or *nix.

To learn how to get your Puppet master and agents to communicate with each other and to
ensure your Puppet master will receive certificates from its agents, follow the instructions in

https://docs.puppet.com/puppet/4.10/quick_start.html#perform-pre-install-tasks
https://docs.puppet.com/puppet/4.10/quick_start.html#install-puppet
https://docs.puppet.com/puppet/4.10/quick_start.html#create-a-user-and-group
https://docs.puppet.com/puppet/4.10/quick_start.html#hello-world
https://docs.puppet.com/puppet/4.10/quick_start.html#install-a-module
https://docs.puppet.com/puppet/4.10/quick_start.html#add-classes
https://docs.puppet.com/puppet/4.10/quick_start.html#write-modules
https://docs.puppet.com/puppet/4.10/install_pre.html
https://docs.puppet.com/puppetserver/2.7/install_from_packages.html
https://docs.puppet.com/puppet/4.10/install_windows.html
https://docs.puppet.com/puppet/4.10/install_linux.html

the Master/Agent Communication Quick Start Guide.

3. Create a user and group
Learn how to create a Puppet user and group with these instructions.

Instructions are available for *nix only.

4. Hello, world!
Modules contain classes, which are named chunks of Puppet code and are the primary means
by which Puppet configures and manages nodes. The instructions in the Hello World! Quick
Start Guide lead you through the fundamentals of Puppet module writing. You’ll write a very
simple module that contains classes to manage your message of the day (motd) and create a
Hello, World! notification on the command line.

5. Install a module
Next, learn how to install a Puppet module by following the Module Installation Quick Start
Guide.

The instructions are written specifically for *nix, but the installation process is the same for
Windows.

6. Add classes
Follow the Adding Classes Quick Start Guide to add a class to your module. The class you’ll
install is derived from the module you installed in the Module Installation Quick Start Guide.

Instructions are available for *nix only.

7. Write modules
Follow the Writing Modules Quick Start Guide for exercises in writing modules to help you
become more familiar with Puppet modules and module development.

Instructions are available for *nix only.

https://docs.puppet.com/puppet/4.10/quick_start_master_agent_communication.html
https://docs.puppet.com/puppet/4.10/quick_start_user_group.html
https://docs.puppet.com/puppet/4.10/lang_classes.html
https://docs.puppet.com/puppet/4.10/quick_start_helloworld.html
https://docs.puppet.com/puppet/4.10/quick_start_module_install_nix.html
https://docs.puppet.com/puppet/4.10/quick_start_adding_classes_nix.html
https://docs.puppet.com/puppet/4.10/quick_writing_nix.html

Installing Puppet: Pre-install
tasks

Included in Puppet Enterprise 2017.2.

To ease your Puppet installation, complete these tasks before installing Puppet agent.

Note: This document covers open source releases of Puppet. For instructions on
installing Puppet Enterprise, see its installation documentation.

1. Decide on a deployment type.

Puppet usually uses an agent/master (client/server) architecture, but it can also run in a
self-contained architecture. Your choice determines which packages you install, and what
extra configuration you need to do.

Additionally, consider using PuppetDB, which enables extra Puppet features and makes it
easy to query and analyze Puppet’s data about your infrastructure.

Learn more about Puppet’s architectures here.

2. If you choose the standard agent/master architecture, you need to decide which server(s)
acts as the Puppet master (and the PuppetDB server, if you choose to use it).

Completely install and configure Puppet on any Puppet masters and PuppetDB servers
before installing on any agent nodes. The master must be running some kind of *nix.
Windows machines can’t be masters.

A Puppet master is a dedicated machine, so it must be reachable at a reliable hostname.
Agent nodes default to contacting the master at the hostname puppet . If you make sure
this hostname resolves to the master, you can skip changing the server setting and
reduce your setup time.

3. Check OS versions and system requirements.

See the system requirements for the version of Puppet you are installing, and consider
the following:

Your Puppet master(s) should be able to handle the amount of agents they’ll need to
serve.
Systems we provide official packages for have an easier install path.
Systems we don’t provide packages for might still be able to run Puppet, as long as
the version of Ruby is suitable and the prerequisites are installed, but it means a

https://docs.puppet.com/pe/2017.2/install_basic.html
https://docs.puppet.com/puppetdb/4.4/
https://docs.puppet.com/puppet/latest/reference/architecture.html
https://docs.puppet.com/puppetdb/4.4/
https://docs.puppet.com/puppet/4.10/configuration.html#server
https://docs.puppet.com/puppet/4.10/system_requirements.html

more complex and often time consuming install path.
4. Check your network configuration.

In an agent/master deployment, you must prepare your network for Puppet’s traffic.

Firewalls: The Puppet master server must allow incoming connections on port
8140, and agent nodes must be able to connect to the master on that port.
Name resolution: Every node must have a unique hostname. Forward and
reverse DNS must both be configured correctly. If your site lacks DNS, you must
write an /etc/hosts file on each node.

Note: The default Puppet master hostname is puppet . Your agent nodes
can be ready sooner if this hostname resolves to your Puppet master.

5. Set timekeeping on your Puppet master server.

The time must be set accurately on the Puppet master server that acts as the certificate
authority. If the time is wrong, it can mistakenly issue agent certificates from the distant
past or future, which other nodes treat as expired. There are modules in the forge, such as
the ntp module that can help you with this.

Install Puppet Server before installing Puppet on your agent nodes. If you’re using PuppetDB,
install it once Puppet Server is up and running. Once you have completed these steps and
configured your master, you can install Puppet agent.

Puppet Server: Installing
From Packages

Included in Puppet Enterprise 2017.2.

System Requirements
Platforms with Packages

a. Red Hat Enterprise Linux
b. Debian
c. Ubuntu
d. SuSE Linux Enterprise Server

Quick Start
Platforms without Packages
Memory Allocation

a. Location
Reporting Issues

System Requirements
Puppet Server is configured to use 2 GB of RAM by default. If you’d like to just play around with
an installation on a Virtual Machine, this much memory is not necessary. To change the memory
allocation, see Memory Allocation.

Note: Puppet masters running Puppet Server 2.6 depend on Puppet Agent 1.6.0 or
newer, which installs Puppet 4.6 and compatible versions of its related tools and
dependencies on the server. Puppet agents running older versions of Puppet Agent can
connect to Puppet Server 2.6 — this requirement applies to the Puppet Agent running
on the Puppet Server node only.

If you’re also using PuppetDB, check its requirements.

Platforms with Packages
Puppet provides official packages that install Puppet Server 2.4 and all of its prerequisites on the
following platforms, as part of Puppet Collections.

Red Hat Enterprise Linux

https://docs.puppet.com/puppetserver/2.7/install_from_packages.html#system-requirements
https://docs.puppet.com/puppetserver/2.7/install_from_packages.html#platforms-with-packages
https://docs.puppet.com/puppetserver/2.7/install_from_packages.html#red-hat-enterprise-linux
https://docs.puppet.com/puppetserver/2.7/install_from_packages.html#debian
https://docs.puppet.com/puppetserver/2.7/install_from_packages.html#ubuntu
https://docs.puppet.com/puppetserver/2.7/install_from_packages.html#suse-linux-enterprise-server
https://docs.puppet.com/puppetserver/2.7/install_from_packages.html#quick-start
https://docs.puppet.com/puppetserver/2.7/install_from_packages.html#platforms-without-packages
https://docs.puppet.com/puppetserver/2.7/install_from_packages.html#memory-allocation
https://docs.puppet.com/puppetserver/2.7/install_from_packages.html#location
https://docs.puppet.com/puppetserver/2.7/install_from_packages.html#reporting-issues
https://docs.puppet.com/puppetserver/2.7/install_from_packages.html#memory-allocation
https://docs.puppet.com/puppet/4.6/reference/about_agent.html
https://docs.puppet.com/puppet/4.6/
https://docs.puppet.com/puppetdb/latest/#system-requirements
https://docs.puppet.com/puppet/latest/reference/puppet_collections.html

Red Hat Enterprise Linux
Enterprise Linux 6
Enterprise Linux 7

Debian
Debian 7 (Wheezy)
Debian 8 (Jessie)

Ubuntu
Ubuntu 12.04 (Precise)
Ubuntu 14.04 (Trusty)
Ubuntu 15.10 (Wily)
Ubuntu 16.04 (Xenial)

SuSE Linux Enterprise Server
SLES 12

Quick Start
1. Enable the Puppet package repositories, if you haven’t already done so.
2. Stop the existing Puppet master service. The method for doing this varies depending on

how your system is set up.

If you’re running a WEBrick Puppet master, use: service puppetmaster stop .

If you’re running Puppet under Apache, you’ll instead need to disable the puppetmaster
vhost and restart the Apache service. The exact method for this depends on what your
Puppet master vhost file is called and how you enabled it. For full documentation, see
the Passenger guide.

On a Debian system, the command might be something like sudo a2dissite
puppetmaster .
On RHEL/CentOS systems, the command might be something like sudo mv
/etc/httpd/conf.d/puppetmaster.conf ~/ . Alternatively, you can delete the
file instead of moving it.

After you’ve disabled the vhost, restart Apache, which is a service called
either httpd or apache2 , depending on your OS.

Alternatively, if you don’t need to keep the Apache service running, you can stop Apache
with service httpd stop or service apache2 stop .

3. Install the Puppet Server package by running:

 yum install puppetserver

https://docs.puppet.com/puppet/latest/reference/puppet_collections.html
https://docs.puppet.com/guides/passenger.html

Or

 apt-get install puppetserver

Note that there is no - in the package name.

4. Start the Puppet Server service:

 systemctl start puppetserver

Or

 service puppetserver start

Platforms without Packages
For platforms where no official packages are available, you can build Puppet Server from source.
Such platforms are not tested, and running Puppet Server from source is not recommended for
production use.

For details, see Running from Source.

Memory Allocation
By default, Puppet Server is configured to use 2GB of RAM. However, if you want to experiment
with Puppet Server on a VM, you can safely allocate as little as 512MB of memory. To change
the Puppet Server memory allocation, you can edit the init config file.

Location
/etc/sysconfig/puppetserver — RHEL
/etc/default/puppetserver — Debian

1. Open the init config file:

Replace 2g with the amount of memory you want to allocate to Puppet Server. For
example, to allocate 1GB of memory, use JAVA_ARGS="-Xms1g -Xmx1g" ; for 512MB,
use JAVA_ARGS="-Xms512m -Xmx512m" .

 # Modify this if you'd like to change the memory allocation, enable JMX, etc
 JAVA_ARGS="-Xms2g -Xmx2g"

https://docs.puppet.com/puppetserver/2.7/dev_running_from_source.markdown

For more information about the recommended settings for the JVM, see Oracle’s docs on
JVM tuning.

2. Restart the puppetserver service after making any changes to this file.

http://docs.oracle.com/cd/E15523_01/web.1111/e13814/jvm_tuning.htm

Installing Puppet agent:
Linux

Included in Puppet Enterprise 2017.2.

About release packages

Install the Puppet agent so that your master can communicate with your Linux nodes.

Before you begin: Review the pre-install tasks and installing Puppet Server. If you’re familiar
with Puppet 3 and earlier, learn about new locations for many of the files and directories by
reading a summary of changes in Puppet 4 or referring to the full specification of Puppet
directories.

1. Install a release package to enable Puppet Collection repositories.

2. Confirm that you can run Puppet executables.

The location for Puppet’s executables is /opt/puppetlabs/bin/ , which is not in
your PATH environment variable by default.

The executable path doesn’t matter for Puppet services — for instance, service
puppet start works regardless of the PATH — but if you’re running
interactive puppet commands, you must either add their location to your PATH or
execute them using their full path.

To quickly add the executable location to your PATH for your current terminal session, use
the command export PATH=/opt/puppetlabs/bin:$PATH . You can also add this
location wherever you configure your PATH , such as
your .profile or .bashrc configuration files.

For more information, see details about files and directories moved in Puppet 4.

3. Install the puppet-agent package on your Puppet agent nodes using the command
appropriate to your system:

Yum – sudo yum install puppet-agent .
Apt – sudo apt-get install puppet-agent .

4. (Optional) Configure agent settings.

For example, if your master isn’t reachable at the default address, server = puppet ,
set the server setting to your Puppet master’s hostname.

For other settings you might want to change, see a list of agent-related settings.

https://docs.puppet.com/puppet/4.10/install_linux.html#about-release-packages
https://docs.puppet.com/puppet/4.10/install_pre.html
https://docs.puppet.com/puppetserver/2.7/install_from_packages.html
https://docs.puppet.com/puppet/4.10/whered_it_go.html
https://github.com/puppetlabs/puppet-specifications/blob/master/file_paths.md
https://docs.puppet.com/puppet/4.10/install_linux.html#about-release-packages
https://docs.puppet.com/puppet/4.10/whered_it_go.html
https://docs.puppet.com/puppet/4.10/config_important_settings.html#settings-for-agents-all-nodes

5. Start the puppet service: sudo /opt/puppetlabs/bin/puppet resource service
puppet ensure=running enable=true .

6. (Optional) To see a sample of Puppet agent’s output and verify any changes you may have
made to your configuration settings in step 5, manually launch and watch a Puppet
run: sudo /opt/puppetlabs/bin/puppet agent --test

7. Sign certificates on the certificate authority (CA) master.

On the Puppet master:

a. Run sudo /opt/puppetlabs/bin/puppet cert list to see any outstanding
requests.

b. Run sudo /opt/puppetlabs/bin/puppet cert sign <NAME> to sign a
request.

As each Puppet agent runs for the first time, it submits a certificate signing request (CSR)
to the CA Puppet master. You must log into that server to check for and sign certificates.
After an agent’s certificate is signed, it regularly fetches and applies configuration catalogs
from the Puppet master.

About release packages
Release packages configure your system to download and install appropriate versions of
the puppetserver and puppet-agent packages. These packages are grouped into
a Puppet Collection repository comprised of compatible versions of Puppet tools.

Note: This document covers the Puppet Collection repository of open source Puppet 4-
compatible software packages.

For Puppet 3.8 open source packages, see its repository documentation.
For Puppet Enterprise installation tarballs, see its installation documentation.

Puppet maintains official package repositories for several operating systems and distributions. To
make the repositories more predictable, we version them as “Puppet Collections” — each
collection has all of the software you need to run a functional Puppet deployment, in versions
that are known to work well with each other. Each collection is opt-in, and you must choose one
(and on some operating systems, install a package on Puppet-managed systems) to install
software and receive updates.

Collection repositories are organized into two tiers that correspond to Puppet Enterprise
releases, which are downstream from the collection’s open-source components:

Numbered collections, such as Puppet Collection 1 (PC1), are long-lived, stable
repositories from which long term support (LTS) Puppet Enterprise releases are built.
Numbered collections maintain the same major version of each component package
during its lifetime, which delivers bug fixes and minimizes breaking changes, but also
introduces fewer new features.
The “latest” collection follows every release of Puppet Enterprise, including versions not
considered LTS releases, and is updated with new major-version releases that might

https://docs.puppet.com/puppet/4.10/about_agent.html
https://docs.puppet.com/puppet/4.10/puppet_collections.html
https://docs.puppet.com/puppet/3.8/reference/puppet_repositories.html
https://docs.puppet.com/pe/latest/install_basic.html

introduce breaking changes.

Puppet publishes updates for operating systems starting from the time a package is first
published for that operating system to a collection repository, and stops updating those
packages 30 days after the end of the operating system’s vendor-determined lifespan.

See The Puppet Enterprise Lifecycle for information about phases of the Puppet Support
Lifecycle.

To receive the most up-to-date Puppet software without introducing breaking changes, use
the latest collection, pin your infrastructure to known versions, and update the pinned version
manually when you’re ready to update. For example, if you’re using the puppetlabs-
puppet_agent module to manage the installed puppet-agent package, use this resource to
pin it to version 1.7.0:

class { '::puppet_agent':
 collection => 'latest',
 package_version => '1.7.0',
}

When puppet-agent 2.0.0 is released, update package_version when you’re ready to
upgrade to that version:

class { '::puppet_agent':
 collection => 'latest',
 package_version => '2.0.0',
}

Package Contents

puppet-agent Puppet, Facter, Hiera, MCollective, pxp-
agent , root certificates, and prerequisites
like Ruby and Augeas

puppetserver Puppet Server; depends on puppet-agent

puppetdb PuppetDB

puppetdb-
termini

Plugins to let Puppet Server talk to PuppetDB

Yum-based systems:

To enable the Puppet Collection 1 repository, first choose the package based on your operating
system and version. The packages are located in the yum.puppetlabs.com repository and
named using the following convention:

puppetlabs-release-<COLLECTION>-<OS ABBREVIATION>-<OS VERSION>.noarch.rpm

https://puppet.com/misc/puppet-enterprise-lifecycle
https://forge.puppet.com/puppetlabs/puppet_agent
https://docs.puppet.com/puppet/4.10/about_agent.html
https://docs.puppet.com/facter/
https://docs.puppet.com/hiera/
https://docs.puppet.com/mcollective
https://www.ruby-lang.org/
http://augeas.net/
https://docs.puppet.com/puppetserver/
https://docs.puppet.com/puppetdb/
https://docs.puppet.com/puppetdb/latest/connect_puppet_master.html
https://yum.puppetlabs.com/

For instance, the package for Puppet Collection 1 on Red Hat Enterprise Linux 7 (RHEL 7)
is puppetlabs-release-pc1-el-7.noarch.rpm .

Next, use the rpm tool as root with the upgrade (-U) flag, and optionally the verbose (-v),
and hash (-h) flags:

The rpm tool outputs its progress:

Note: We only provide the puppet-agent package for recent versions of Puppet on
RHEL 5, and to install it you must first download the package as rpm on RHEL 5, as it
doesn’t support installing packages from a URL.

Apt-based systems:

To enable the Puppet Collection 1 repository, first choose the package based on your operating
system and version. The packages are located in the apt.puppetlabs.com repository and
named using the following convention:

puppetlabs-release-<COLLECTION>-<VERSION CODE NAME>.deb

For instance, the release package for Puppet Collection 1 on Debian 7 “Wheezy”
is puppetlabs-release-pc1-wheezy.deb . For Ubuntu releases, the code name is the
adjective, not the animal.

Next, download the release package and install it as root using the dpkg tool and
the install flag (-i):

wget https://apt.puppetlabs.com/puppetlabs-release-pc1-wheezy.deb
sudo dpkg -i puppetlabs-release-pc1-wheezy.deb

Finally, run apt-get update after installing the release package to update the apt package
lists.

sudo rpm -Uvh https://yum.puppetlabs.com/puppetlabs-release-pc1-el-7.noarch.rpm

Retrieving https://yum.puppetlabs.com/puppetlabs-release-pc1-el-7.noarch.rpm
Preparing... ################################# [100%]
Updating / installing...
1:puppetlabs-release-pc1-0.9.2-1.el################################# [100%]

https://apt.puppetlabs.com/

Open source Puppet quick
start guide series

Included in Puppet Enterprise 2017.2.

Overview
Modifying the /etc/hosts files
Opening port 8140 on your firewall

Overview
This guide walks you through the process to make sure your Puppet master and agents are able
to communicate. This involves modifying the /etc/hosts file on your master and agents, and
also opening the firewall to your master so that it is able to sign certificates from the agents.

Prerequisites: This guide assumes you’ve already installed Puppet, and have installed
at least one *nix agent.

For this walk-through, log in as root or administrator on your nodes.

Modifying the /etc/hostsfiles
To make sure your Puppet master and agents communicate, update the /etc/hosts file on
each so that they’re aware of each other. First, use your text editor to open /etc/hosts on
your Puppet master. Add each of your agents by IP address and name below the existing text. It
should look something like this:

 192.168.33.11 agent1.example.com

Next, add the name and IP address of your Puppet master to each of your Puppet agents. Use
your text editor to open /etc/hosts on your Puppet agent and add the IP address and name
of your Puppet master below the existing text, as well as the alias puppet . It should look similar
to this:

 192.168.33.10 master.example.com puppet

https://docs.puppet.com/puppet/4.10/quick_start_master_agent_communication.html#overview
https://docs.puppet.com/puppet/4.10/quick_start_master_agent_communication.html#modifying-the-etchosts-files
https://docs.puppet.com/puppet/4.10/quick_start_master_agent_communication.html#opening-port-8140-on-your-firewall
https://docs.puppet.com/puppetserver/2.7/install_from_packages.html
https://docs.puppet.com/puppet/4.10/install_linux.html

Repeat this step for all of your Puppet agents.

Congratulations! You’ve successfully made sure your Puppet master and agents can
communicate.

Opening port 8140 on your firewall
For your Puppet master to sign an agent certificate, the agent needs to be able to connect to
the master’s firewall through port 8140. You will learn to set full firewall rules later in the Quick
Start Guide.

WARNING: These next steps open the port 8140 in your firewall. This does create a security
risk, as you will need to keep port 8140 open so that the master and agents can continue to
communicate.

From the command line on your Puppet master, run:

From the command line on each Puppet agent, run puppet agent -t .

From your Puppet master, run puppet cert list and then puppet cert sign <AGENT
NAME> to sign the certificates of your Puppet agents.

That’s it! Your Puppet configuration is ready to go.

 iptables -I INPUT -m state --state NEW -m tcp -p tcp --dport 8140 -j ACCEPT

Users and groups quick start
guide

Included in Puppet Enterprise 2017.2.

Before you begin
Create a user and group
Add the group to the main manifest
Add the user to the main manifest

Before you begin
Prerequisites: This guide assumes you’ve already installed Puppet, and have installed
at least one *nix agent.

For this walk-through, log in as root or administrator on your nodes.

Create a user and group
Puppet uses some defaults for unspecified user and group attributes, so all you’ll need to do to
create a new user and group is set the ‘ensure’ attribute to ‘present’. This ‘present’ value tells
Puppet to check if the resource exists on the system, and to create the specified resource if it
does not.

1. To create a user named jargyle , on your Puppet master, run puppet apply -e
"user { 'jargyle': ensure => present, }" . The result should show, in
part, Notice: /Stage[main]/Main/User[jargyle]/ensure: created .

2. To create a group named web , on your Puppet master, run puppet apply -e "group
{ 'web': ensure => present, }" . The result should show, in part, Notice:
/Stage[main]/Main/Group[web]/ensure: created .

That’s it! You’ve successfully created the Puppet user jargyle and the Puppet
group web .

Add the group to the main manifest

https://docs.puppet.com/puppet/4.10/quick_start_user_group.html#before-you-begin
https://docs.puppet.com/puppet/4.10/quick_start_user_group.html#create-a-user-and-group
https://docs.puppet.com/puppet/4.10/quick_start_user_group.html#add-the-group-to-the-main-manifest
https://docs.puppet.com/puppet/4.10/quick_start_user_group.html#add-the-user-to-the-main-manifest
https://docs.puppet.com/puppetserver/2.7/install_from_packages.html
https://docs.puppet.com/puppet/4.10/install_linux.html

Add the group to the main manifest
1. From the command line on your Puppet master, run puppet resource -e group web .

This opens a file in your text editor with the following content:

 group { 'web':
 ensure => 'present',
 gid => '502',
 }

Note: Your gid (the group ID) might be a different number than the example shown
in this guide.

2. Copy the lines of code, and save and exit the file.

3. Navigate to your main manifest: cd
/etc/puppetlabs/code/environments/production/manifests .

4. Still using the Puppet master, paste the code you got from Steps 1 and 2 into the default
node site.pp , then save and exit.

5. From the command line on your Puppet master, run puppet parser validate
site.pp to ensure that there are no errors. The parser will return nothing if there are no
errors.

6. From the command line on your Puppet agent, use puppet agent -t to trigger a
Puppet run.

That’s it! You’ve successfully added your group, web , to the main manifest.

Add the user to the main manifest
1. From the command line on your Puppet master, run puppet resource -e user

jargyle . This opens a file in your text editor with the following content:

 user { 'jargyle':
 ensure => 'present',
 gid => '501',
 home => '/home/jargyle',
 password => '!!',
 password_max_age => '99999',
 password_min_age => '0',

 shell => '/bin/bash',
 uid => '501',
 }

 }

Note: Your uid (the user ID), or gid (the group ID) might be different numbers than
the examples shown in this guide.

2. Add the following Puppet code to the file:

 comment => 'Judy Argyle',
 groups => 'web',

3. Delete the following Puppet code from the file:

 gid => '501',

4. Copy all of the code, and save and exit the file.

5. Paste the code from Step 10 into your default node in site.pp . It should look like this:

 user { 'jargyle':
 ensure => 'present',
 home => '/home/jargyle',
 comment => 'Judy Argyle',
 groups => 'web',
 password => '!!',
 password_max_age => '99999',
 password_min_age => '0',
 shell => '/bin/bash',
 uid => '501',
 }

6. From the command line on your Puppet master, run puppet parser validate
site.pp to ensure that there are no errors. The parser will return nothing if there are no
errors.

7. From the command line on your Puppet agent, use puppet agent -t to trigger a
Puppet run.

Success! You have created a user, jargyle , and added jargyle to the group
with groups => web . For more information on users and groups, check out the
documentation for Puppet resource types regarding users and groups. With users and
groups, you can assign different permissions for managing Puppet.

https://docs.puppet.com/puppet/4.10/types/user.html
https://docs.puppet.com/puppet/4.10/types/group.html

Next: Hello, world!

https://docs.puppet.com/puppet/4.10/quick_start_helloworld.html

Hello world! Quick start guide
Included in Puppet Enterprise 2017.2.

Overview
Write the helloworld class

a. A quick note about modules
Add the helloworld and helloworld::motd classes to the main manifest

a. Viewing the results
Other resources

Overview
The following Quick Start Guide introduces the essential components of Puppet module writing. In this guide, you
will write a simple *nix-based module that contains two classes—one that manages your message of the day
(motd) and one that creates a notification on the command line when you run Puppet.

While the module you’ll write doesn’t have an incredible amount of functionality, you’ll learn the basic module
directory structure and how to apply classes to the main manifest. You’ll encounter more complex module writing
scenarios in other quick start guides.

For this walk-through, log in as root or administrator on your nodes.

Write the helloworld class
Some modules can be large, complex, and require a significant amount of trial and error. This module will be a
very simple module to write; it contains just two classes.

A quick note about modules
By default, Puppet keeps modules in an environment’s modulepath , which for the production
environment defaults to /etc/puppetlabs/code/environments/production/modules . This
includes modules that Puppet installs, those that you download from the Forge, and those you write
yourself.

Note: Puppet also creates another module directory: /opt/puppetlabs/puppet/modules . Don’t
modify or add anything in this directory, including modules of your own.

Modules are directory trees. For this task, you’ll create the following structure and files:

helloworld/ (the module name)
manifests/

init.pp (manifest file that contains the helloworld class)
motd.pp (manifest file that contains a file resource that ensures the creation of the motd)

Every manifest (.pp file) in a module contains a single class. File names map to class names in a predictable way,
described in the Autoloader Behavior documentation. The init.pp file is a special case that contains a class

https://docs.puppet.com/puppet/4.10/quick_start_helloworld.html#overview
https://docs.puppet.com/puppet/4.10/quick_start_helloworld.html#write-the-helloworld-class
https://docs.puppet.com/puppet/4.10/quick_start_helloworld.html#a-quick-note-about-modules
https://docs.puppet.com/puppet/4.10/quick_start_helloworld.html#add-the-helloworld-and-helloworldmotd-classes-to-the-main-manifest
https://docs.puppet.com/puppet/4.10/quick_start_helloworld.html#viewing-the-results
https://docs.puppet.com/puppet/4.10/quick_start_helloworld.html#other-resources
https://docs.puppet.com/puppet/4.10/dirs_modulepath.html
https://docs.puppet.com/puppet/4.10/lang_namespaces.html#autoloader-behavior

named after the module, helloworld . Other manifest files contain classes called <MODULE NAME>::<FILE
NAME> , or in this case, helloworld::motd .

For more on how modules work, see Module Fundamentals in the Puppet documentation.
For more on best practices, methods, and approaches to writing modules, see the Beginners Guide to
Modules.

To write the helloworld class:

1. From the command line on the Puppet master, navigate to the modules directory: cd
/etc/puppetlabs/code/environments/production/modules .

2. Run mkdir -p helloworld/manifests to create the new module directory and its manifests directory.
3. In the manifests directory, use your text editor to create the init.pp file, and edit it so that it contains

the following Puppet code:

 class helloworld {
 notify { 'hello, world!': }
 }

4. Save and exit the file.
5. In the manifests directory, use your text editor to create the motd.pp file, and edit it so that it contains

the following Puppet code:

 class helloworld::motd {

 file { '/etc/motd':
 owner => 'root',
 group => 'root',
 mode => '0644',
 content => "hello, world!\n",
 }

 }

6. Save and exit the file.

Hooray! You’ve written a module that contains two classes that will, once applied, show a notification
message when Puppet runs, and manage the motd on your server.

Add
the helloworld and helloworld::motd classes
to the main manifest
For this procedure, you’re going to add the helloworld classes to the default node in the main manifest. You
will be using the default node throughout the Quick Start Guide.

The default node is a special value for node names. If no node statement matching a given node name can be
found, the default node will be used, making it an easy way to ensure compilation for any node will be successful.
In Puppet, a given agent will only get the contents of one node definition. In order to simplify this process, and
ensure that compilations are always successful, this guide will consistently use the default node in
the site.pp manifest. The default node’s properties apply to all the agents which have not had definitions
applied to them yet, so in the case of this guide, the contents of the default node will apply to all of your agents.

https://docs.puppet.com/puppet/4.10/modules_fundamentals.html
https://docs.puppet.com/guides/module_guides/bgtm.html
https://docs.puppet.com/puppet/4.10/lang_node_definitions.html#the-default-node

To create the default node

1. From the command line on the Puppet master, navigate to the main manifest: cd
/etc/puppetlabs/code/environments/production/manifests .

2. Use your text editor to create the site.pp file, and edit it so that it contains the following Puppet code:

 node default {

 }

3. Add the following Puppet code within node default { } :

 class { 'helloworld': }
 class { 'helloworld::motd': }

4. Save and exit the file.

5. Ensure that there are no errors in the Puppet code by running puppet parser validate site.pp on
your Puppet master. The parser will return nothing if there are no errors. If it does detect a syntax error, open
the file again and fix the problem before continuing.

6. From the CLI of your Puppet agent, use puppet agent -t to trigger a Puppet run.

Viewing the results
After you kick off the puppet run, you will see the following on the command line as the helloworld class is
applied:

From the command line of your agent, run cat /etc/motd . The result should show hello, world!

Other resources
There are plenty of resources about modules and the creation of modules that you can reference. Check
out Module Fundamentals, the Beginner’s Guide to Modules, and the Puppet Forge.

Check out the remainder of the Quick Start Guide series for additional module writing exercises.

Next: Installing Modules (*nix)

 [root@agent1 ~]# puppet agent -t
 Info: Retrieving pluginfacts
 Info: Retrieving plugin
 Info: Loading facts
 Info: Caching catalog for agent1.example.com
 Info: Applying configuration version '1437172035'
 Notice: hello, world!
 Notice: /Stage[main]/Main/Node[default]/Notify[hello, world!]/message: defined 'message' as 'hello, world!'
 Notice: Applied catalog in 1.25 seconds

https://docs.puppet.com/puppet/4.10/modules_fundamentals.html
https://docs.puppet.com/guides/module_guides/bgtm.html
https://forge.puppetlabs.com/
https://docs.puppet.com/puppet/4.10/quick_start.html
https://docs.puppet.com/puppet/4.10/quick_start_module_install_nix.html

Module installation quick
start guide

Included in Puppet Enterprise 2017.2.

Overview
Installing a Forge module

a. A quick note about module directories

Overview
In this guide, you’ll install the puppetlabs-apache module, a Puppet-supported module. Modules
contain classes, which are named chunks of Puppet code and are the primary means by which
Puppet configures and manages nodes. In the Module Writing Basics for Linux Quick Start
Guide you’ll learn more about modules, including customizing and writing your own modules on
*nix platforms.

The process for installing a module is the same on both Windows and *nix operating systems.

Prerequisites: This guide assumes you’ve already installed Puppet, and have installed
at least one *nix agent.

Before starting this walk-through, complete the Hello World exercise in the introductory
quick start guide. You should still be logged in as root or administrator on your nodes.

Installing a Forge module
1. On the Puppet master, run puppet module search apache . This command

searches for modules from the Puppet Forge with apache in their names or descriptions.

The search results will display:

 Searching http://forgeapi.puppetlabs.com ...
 NAME DESCRIPTION AUTHOR KEYWORDS
 puppetlabs-apache Puppet module for apache @puppetlabs apache

https://docs.puppet.com/puppet/4.10/quick_start_module_install_nix.html#overview
https://docs.puppet.com/puppet/4.10/quick_start_module_install_nix.html#installing-a-forge-module
https://docs.puppet.com/puppet/4.10/quick_start_module_install_nix.html#a-quick-note-about-module-directories
https://docs.puppet.com/puppet/4.10/lang_classes.html
https://docs.puppet.com/puppet/4.10/quick_writing_nix.html
https://docs.puppet.com/puppetserver/2.7/install_from_packages.html
https://docs.puppet.com/puppet/4.10/install_linux.html
https://docs.puppet.com/puppet/4.10/quick_start_helloworld.html
https://docs.puppet.com/puppet/4.10/quick_start.html

To view detailed information about the module, see the Apache module on Forge.

2. To install the Apache module, run: puppet module install puppetlabs-apache .
The result looks like this:

That’s it! You have installed a Puppet module. All of the classes in the module are now
available to be assigned to nodes.

A quick note about module directories
By default, Puppet keeps modules in an environment’s modulepath , which for the
production environment defaults
to /etc/puppetlabs/code/environments/production/modules . This includes
modules that Puppet installs, those that you download from the Forge, and those you
write yourself.

Note: Puppet also creates another module
directory: /opt/puppetlabs/puppet/modules . Don’t modify or add anything in this
directory, including modules of your own.

puppetlabs-apache is a PE-supported module. It is tested and maintained by
Puppet, and Puppet Enterprise users are able to file support escalations on these
modules.

Next: Adding classes to Puppet agents (*nix)

 Preparing to install into /etc/puppetlabs/code/environments/production/modules ...
 Notice: Downloading from http://forgeapi.puppetlabs.com ...
 Notice: Installing -- do not interrupt ...
 /etc/puppetlabs/code/environments/production/modules
 └── puppetlabs-apache (v1.1.1)

https://forge.puppetlabs.com/puppetlabs/apache
https://docs.puppet.com/puppet/4.10/dirs_modulepath.html
https://forge.puppetlabs.com/supported
https://docs.puppet.com/puppet/4.10/quick_start_adding_classes_nix.html

Adding Classes Quick Start
Guide

Included in Puppet Enterprise 2017.2.

Overview
Add Apache to the main manifest
Create the index.html file
Editing class parameters in the main manifest

Overview
Every module contains one or more classes. Classes are named chunks of Puppet code and
are the primary means by which Puppet configures nodes. The puppetlabs-apache module you
installed in the Module Installation Quick Start Guide contains a class called apache . In this
example, you will:

Use the apache class to launch the default Apache virtual host
Edit class parameters in the main manifest

Prerequisites: This guide assumes you’ve already installed Puppet, and have installed
at least one *nix agent and the puppetlabs-apache module.

Before starting this walk-through, complete the previous exercises in the introductory
quick start guide. You should still be logged in as root or administrator on your nodes.

Add Apache to the main manifest
1. From the command line of your Puppet master, navigate to the main manifest directory: cd

/etc/puppetlabs/code/environments/production/manifests .
2. Use your text editor to open the site.pp file, and edit it so that it contains the following

Puppet code:

 node default {
 include apache

https://docs.puppet.com/puppet/4.10/quick_start_adding_classes_nix.html#overview
https://docs.puppet.com/puppet/4.10/quick_start_adding_classes_nix.html#add-apache-to-the-main-manifest
https://docs.puppet.com/puppet/4.10/quick_start_adding_classes_nix.html#create-the-indexhtml-file
https://docs.puppet.com/puppet/4.10/quick_start_adding_classes_nix.html#editing-class-parameters-in-the-main-manifest
https://docs.puppet.com/puppet/4.10/lang_classes.html
https://docs.puppet.com/puppet/4.10/quick_start_module_install_nix.html
https://docs.puppet.com/puppet/4.10/quick_start_adding_classes_nix.html#add-apache-to-the-main-manifest
https://docs.puppet.com/puppet/4.10/quick_start_adding_classes_nix.html#editing-class-parameters-in-the-main-manifest
https://docs.puppet.com/puppetserver/2.7/install_from_packages.html
https://docs.puppet.com/puppet/4.10/install_linux.html
https://docs.puppet.com/puppet/4.10/quick_start_module_install_nix.html
https://docs.puppet.com/puppet/4.10/quick_start.html

 }

Note: If you have already created the default node class, simply add include
apache to it. Code from the Hello World! exercise does not need to be removed,
but a class cannot be declared twice. We will explore this later in the guide.

3. Ensure that there are no errors in the Puppet code by running puppet parser
validate site.pp on the command line of your Puppet master. The parser will return
nothing if there are no errors. If it does detect a syntax error, open the file and fix the
problem before continuing.

4. From the command line of your Puppet agent, run puppet agent -t to trigger a Puppet
run.

Create the index.html file
1. On the Puppet agent, navigate to /var/www/html , and create a file

called index.html if it does not already exist.
2. Open index.html in your text editor and fill it with some content (for example, “Hello

World”) or edit what is already there.
3. From the command line of your Puppet agent, run puppet agent -t .
4. Open a web browser and enter the IP address for the Puppet agent, adding port 80 on the

end, as in http://myagentnodeIP:80/ .

You will see the contents of /var/www/html/index.html displayed.

Editing class parameters in the main
manifest
You can edit the parameters of a class in site.pp as well. Parameters allow a class to
request external data. If a class needs to configure itself with data other than Puppet facts,
provide that data to the class via a parameter.

To edit the parameters of the apache class:

1. From the command line of your Puppet master, navigate
to /etc/puppetlabs/code/environments/production/manifests .

2. Use your text editor to open site.pp .
3. Replace the include apache command with the following Puppet code:

 class { 'apache':
 docroot => '/var/www'
 }

https://docs.puppet.com/puppet/4.10/quick_start_helloworld.html
https://docs.puppet.com/puppet/4.10/lang_classes.html#defining-classes
https://docs.puppet.com/puppet/4.10/lang_facts_and_builtin_vars.html

Note: You must remove include apache because Puppet will only allow you
to declare a class once.

That’s it! You have set the Apache web server’s root directory to /var/www instead of
its default /var/www/html . If you refresh http://myagentnodeIP:80/ in your web
browser, it shows the list of files in /var/www . If you click html , the browser will again
show the contents of /var/www/html/index.html .

Note: If you have Puppet Enterprise, you can do the steps in this guide through the PE
web UI, the console.

Next: Quick Start: Writing Modules

https://docs.puppet.com/puppet/4.10/lang_classes.html#declaring-classes
https://docs.puppet.com/pe/2017.2/console_accessing.html
https://docs.puppet.com/puppet/4.10/quick_writing_nix.html

Module writing basics for *nix
Included in Puppet Enterprise 2017.2.

Editing a Forge module
a. Module basics
b. About module directories
c. Writing a Puppet module

Writing a Puppet module
a. Writing a class in a module
b. Using your custom module in the main manifest
c. Using Puppet to manage your app

Using a site module
Summary

Welcome to the Module Writing section of the Quick Start Guide series. This walk-through will help you become
more familiar with Puppet modules and module development. Follow along to learn how to:

Modify a module obtained from the Forge
Write your own Puppet module
Create a site module that composes other modules into machine roles

Before starting this walk-through, complete the previous exercises in the introductory quick start guide.
These steps assume that you have installed Puppet and Puppet agents, and have installed the latest
version of the puppetlabs-apache module. You should still be logged in as root or administrator on
your nodes.

Editing a Forge module
Although many Forge modules are exact solutions that fit your site, many are almost but not quite what you
need. Sometimes you will need to edit some of your Forge modules.

Module basics

About module directories
By default, Puppet keeps modules in an environment’s modulepath , which for the production
environment defaults to /etc/puppetlabs/code/environments/production/modules . This
includes modules that Puppet installs, those that you download from the Forge, and those you write
yourself. In a fresh installation, you need to create this modules subdirectory yourself by navigating
to /etc/puppetlabs/code/environments/production and running mkdir modules .

Note: Puppet also creates another module directory: /opt/puppetlabs/puppet/modules . Don’t
modify or add anything in this directory, including modules of your own.

There are plenty of resources about modules and the creation of modules that you can reference. Check
out Module Fundamentals, the Beginner’s Guide to Modules, and the Puppet Forge.

https://docs.puppet.com/puppet/4.10/quick_writing_nix.html#editing-a-forge-module
https://docs.puppet.com/puppet/4.10/quick_writing_nix.html#module-basics
https://docs.puppet.com/puppet/4.10/quick_writing_nix.html#about-module-directories
https://docs.puppet.com/puppet/4.10/quick_writing_nix.html#writing-a-puppet-module
https://docs.puppet.com/puppet/4.10/quick_writing_nix.html#writing-a-puppet-module-1
https://docs.puppet.com/puppet/4.10/quick_writing_nix.html#writing-a-class-in-a-module
https://docs.puppet.com/puppet/4.10/quick_writing_nix.html#using-your-custom-module-in-the-main-manifest
https://docs.puppet.com/puppet/4.10/quick_writing_nix.html#using-puppet-to-manage-your-app
https://docs.puppet.com/puppet/4.10/quick_writing_nix.html#using-a-site-module
https://docs.puppet.com/puppet/4.10/quick_writing_nix.html#summary
https://docs.puppet.com/puppet/4.10/quick_writing_nix.html#editing-a-forge-module
https://docs.puppet.com/puppet/4.10/quick_writing_nix.html#writing-a-puppet-module
https://docs.puppet.com/puppet/4.10/quick_writing_nix.html#using-a-site-module
https://docs.puppet.com/puppet/4.10/quick_start.html
https://docs.puppet.com/puppet/4.10/quick_start_module_install_nix.html
https://docs.puppet.com/puppet/4.10/dirs_modulepath.html
https://docs.puppet.com/puppet/4.10/modules_fundamentals.html
https://docs.puppet.com/guides/module_guides/bgtm.html
https://forge.puppetlabs.com/

Modules are directory trees. For these exercises you’ll use the following files:

apache/ (the module name)
manifests/

init.pp (contains the apache class)
templates/

vhost/
_file_header.erb (contains the vhost template, managed by Puppet)

Every manifest (.pp file) in a module contains a single class. File names map to class names in a predictable
way, described in the Autoloader Behavior documentation. The init.pp file is a special case that contains
a class named after the module, apache . Other manifest files contain classes called <MODULE NAME>::
<FILE NAME> or <MODULE NAME>::<FOLDER>::<FILE NAME> . Many modules, including Apache, contain
directories other than manifests and templates . For simplicity’s sake, we do not cover them in this
introductory guide.

For more on how modules work, see Module Fundamentals in the Puppet documentation.
For more on best practices, methods, and approaches to writing modules, see the Beginners Guide to
Modules.

Writing a Puppet module
In this simplified exercise, you’ll modify a template from the Puppet Apache module,
specifically vhost.conf.erb , to include some simple variables that will be populated by facts (using Puppet’s
implementation of Facter) about your node.

1. On the Puppet master, navigate to the modules directory by running cd
/etc/puppetlabs/code/environments/production/modules .

2. Run ls to view the currently installed modules, and note that apache is present.
3. Open apache/templates/vhost/_file_header.erb in a text editor. Avoid using Notepad because it

can introduce errors. _file_header.erb contains the following header:

 # ************************************
 # Vhost template in module puppetlabs-apache
 # Managed by Puppet
 # ************************************

4. Collect the following facts about your agent:
on your Puppet agent, run facter osfamily . This returns your agent’s OS.
on your Puppet agent, run facter id . This returns the id of the currently logged in user.

5. Edit the header of _file_header.erb so that it contains the following variables for Facter lookups:

6. From the command line of your Puppet agent, run puppet agent -t to trigger a Puppet run.

 # ************************************
 # Vhost template in module puppetlabs-apache
 # Managed by Puppet
 #
 # This file is authorized for deployment by <%= scope.lookupvar('::id') %>.
 #
 # This file is authorized for deployment ONLY on <%= scope.lookupvar('::osfamily') %> <%= scope.lookupvar('::operatingsystemmajrelease') %>.
 #
 # Deployment by any other user or on any other system is strictly prohibited.
 # ************************************

https://docs.puppet.com/puppet/4.10/lang_namespaces.html#autoloader-behavior
https://docs.puppet.com/puppet/4.10/modules_fundamentals.html
https://docs.puppet.com/guides/module_guides/bgtm.html

At this point, Puppet configures Apache and starts the httpd service. When this happens, a default Apache
virtual host is created based on the contents of _file_header.erb .

1. On the agent, navigate to one of the following locations based on your operating system:
Redhat-based: /etc/httpd/conf.d
Debian-based: /etc/apache2/sites-available

2. View 15-default.conf . Depending on the node’s OS, the header will show some variation of the
following contents:

As you can see, Puppet has used Facter to retrieve some key facts about your node, and then used those facts
to populate the header of your vhost template.

But now, let’s see what happens when you write your own Puppet code.

Writing a Puppet module
Puppet modules save time, but at some point you may need to write your own modules.

Writing a class in a module
In this exercise, you will create a class called puppet_quickstart_app that will manage a PHP-based web
app running on an Apache virtual host.

1. On the Puppet master, make sure you’re still in the modules directory (cd
/etc/puppetlabs/code/environments/production/modules) and then run mkdir -p
puppet_quickstart_app/manifests to create the new module directory and its manifests directory.

2. Use your text editor to create and open the puppet_quickstart_app/manifests/init.pp file.
3. Edit the init.pp file so it contains the following Puppet code, and then save it and exit the editor:

 class puppet_quickstart_app {

 class { 'apache':
 mpm_module => 'prefork',
 }

 include apache::mod::php

 apache::vhost { 'puppet_quickstart_app':
 port => '80',
 docroot => '/var/www/puppet_quickstart_app',
 priority => '10',
 }

 file { '/var/www/puppet_quickstart_app/index.php':

 # ************************************
 # Vhost template in module puppetlabs-apache
 # Managed by Puppet
 #
 # This file is authorized for deployment by root.
 #
 # This file is authorized for deployment ONLY on Redhat 6.
 #
 # Deployment by any other user or on any other system is strictly prohibited.
 # ************************************

 ensure => file,
 content => "<?php phpinfo() ?>\n",
 mode => '0644',
 }

 }

You have written a new module containing a new class that includes two other
classes: apache and apache::mod::php .

Note the following about your new class:

The class apache has been configured to include the mpm_module attribute. This attribute
determines which multi-process module is configured and loaded for the Apache (HTTPD) process.
In this case, the value is set to prefork .
include apache::mod::php indicates that your new class relies on those classes to function
correctly. Puppet understands that your node needs to be classified with these classes and will
take care of that work automatically when you classify your node with
the puppet_quickstart_app class. In other words, you don’t need to worry about classifying
your nodes with Apache and Apache PHP.
The priority attribute of 10 ensures that your app has a higher priority on port 80 than the
default Apache vhost app.
The file /var/puppet_quickstart_app/index.php contains whatever is specified by
the content attribute. This is the content you will see when you launch your app. Puppet uses
the ensure attribute to create that file the first time the class is applied.

Using your custom module in the main manifest
1. From the command line on the Puppet master, navigate to the main manifest (cd

/etc/puppetlabs/code/environments/production/manifests).
2. With your text editor, open site.pp and add the following Puppet code to your default node. Remove

the apache class you added previously. Your site.pp file should look like this after you make your
changes (although you may have portions from earlier in the Quick Start Guide):

 node default {
 class { 'puppet_quickstart_app': }
 }

Note: Since the puppet_quickstart_app includes the apache class, you need to remove the
first apache class you added the master node, as Puppet will only allow you to declare a class
once.

3. From the command line on your agent, run puppet agent -t to trigger a Puppet run.

When the Puppet run is complete, you will see in the agent’s log that a vhost for the app has been created
and the Apache service (httpd) has been started.

4. Use a browser to navigate to port 80 of the IP address for your node, as in http://<yournodeip>:80 .

Tip: Be sure to use http instead of https .

Congratulations! You have created a new class from scratch and used it to launch a Apache PHP-based web
app. Needless to say, in the real world, your apps will do a lot more than display PHP info pages. But for the
purposes of this exercise, let’s take a closer look at how Puppet is managing your app.

Using Puppet to manage your app
1. On the Puppet agent, open /var/www/puppet_quickstart_app/index.php , and change the

content to something like, “THIS APP IS MANAGED BY PUPPET!”
2. Refresh your browser, and notice that the PHP info page has been replaced with your new message.
3. Run puppet agent -t --onetime on your Puppet agent.
4. Refresh your browser, and notice that Puppet has reset your web app to display the PHP info page. (You

can also see that the contents of /var/www/puppet_quickstart_app/index.php has been reset to
what was specified in your manifest.)

Using a site module
Many users create a “site” module. Instead of describing smaller units of a configuration, the classes in a site
module describe a complete configuration for a given type of machine. For example, a site module might
contain:

A site::basic class, for nodes that require security management but haven’t been given a specialized
role yet.
A site::webserver class for nodes that serve web content.
A site::dbserver class for nodes that provide a database server to other applications.

Site modules hide complexity so you can more easily divide labor at your site. System architects can create the
site classes, and junior admins can create new machines.

On the Puppet master,
create /etc/puppetlabs/code/environments/production/modules/site/manifests/basic.pp ,
and edit the file to contain the following:

 class site::basic {
 if $::kernel == 'Linux' {
 include puppet_quickstart_app
 }
 elsif $::kernel == 'windows' {
 include registry::compliance_example
 }
 }

This class declares other classes with the include function. Note the “if” conditional that sets different classes
for different kernels using the $kernel fact. In this example, if an agent is a Linux machine, Puppet will apply
your puppet_quickstart_app class. If it is a Windows machine, Puppet will apply
the registry::compliance_example class.

1. From the command line on the Puppet master, navigate to the main manifest: cd
/etc/puppetlabs/code/environments/production/manifests .

2. Add the following Puppet code to the default node in site.pp , retaining the classes you have already
added:

 class { ‘site::basic’: }

3. Save and exit, then run puppet agent -t from the command line of your Puppet agent.

Summary

Summary
You have now performed the core workflows of an intermediate Puppet user. In the course of their normal work,
intermediate users:

Download and modify Forge modules to fit their deployment’s needs.
Create new modules and write new classes to manage many types of resources, including files, services,
and more.
Build and curate a site module to safely empower junior admins and simplify the decisions involved in
deploying new machines.

	0 - Quick start » Intro for _nix users — Documentation — Puppet
	1 - Installing Puppet_ Pre-install tasks — Documentation — Puppet
	2.1 - Puppet Server_ Installing From Packages — Documentation — Puppet
	2.2 - Installing Puppet agent_ Linux — Documentation — Puppet
	2.3 - Quick start » Puppet master_agent communication — Documentation — Puppet
	3 - Quick Start » Creating users and groups — Documentation — Puppet
	4 - Quick start » Hello world! — Documentation — Puppet
	5 - Quick start » Module installation (_nix) — Documentation — Puppet
	6 - Quick start » Adding classes (_nix) — Documentation — Puppet
	7 - Quick start » Writing modules (_nix) — Documentation — Puppet

