
LIFAPI – TP6 : Tableaux 1D

Objectifs : Manipulation de tableaux à 1 dimension

1. Les tableaux à une dimension : taille fixée par une constante
a. Écrivez une procédure tabRemplir qui remplit un tableau de taille TAILLE

en demandant à l'utilisateur les valeurs. On définira TAILLE comme une
constante au début du programme :
// En ALGO
Constante : TAILLE : Entier = 5
Procédure tabRemplir(T : Tableau[TAILLE] d'Entier)

// En C
#include <iostream>
Using namespace std;
const int TAILLE=5;
void tabRemplir(...

b. Écrivez une procédure tabAff qui affiche à l’écran le contenu du tableau
d'entiers défini précédemment.

c. Écrivez le programme principal qui teste ces deux sous-programmes.

2. En C/C++, un tableau ne peut pas avoir une taille variable : sa taille doit être une
constante. Pour pouvoir gérer un tableau de taille quelconque une manière de faire est
de définir une grande valeur pour TAILLE et d'utiliser une valeur tailleT pour
indiquer la taille réellement utilisée du tableau.

// En ALGO
Constante :
TAILLE : Entier = 100
Proc tabAff(T : donnée Tab[TAILLE] d'Entier , tailleT :donnée
Entier)

// En C
const int TAILLE=100;
void tabAff(int T[TAILLE], int tailleT)
{...}

Modifiez les procédures des questions a et b pour prendre en compte cette
amélioration et testez dans le programme principal avec une taille choisie par
l’utilisateur.

3. Tableaux générés aléatoirement et extraction de valeurs caractéristiques.
Soit T un tableau de taille TAILLE rempli jusqu’à TailleT (comme dans l’exercice
2). Tous les sous-programmes doivent être testés au fur et à mesure.

a. Écrivez une procédure genere_aleatoire qui remplit les TailleT
premières valeurs d’un tableau de taille TAILLE avec des valeurs aléatoires
comprises entre -15 et +30.

b. Écrivez une procédure affiche_tab qui affiche le tableau précédent.
c. Écrivez un sous-programme min_max qui détermine et "retourne" la plus

petite valeur ET la plus grande valeur du tableau T.
d. Écrivez une fonction booléenne verifie_tout_positif qui retourne vrai

si tous les éléments du tableau sont strictement positifs, faux sinon.
e. Écrivez une fonction compte_superieur qui compte et retourne le nombre

de valeurs supérieures à un entier n passé en paramètre dans le tableau T.

4. Tri par comptage : le tri par comptage consiste pour chaque élément du tableau à
compter combien d'éléments sont plus petits que lui ; grâce à ce chiffre on connaît sa
position dans le tableau résultat. Soit le tableau initial suivant :

Tableau initial 52 10 1 25 62 3 8 55

Tableau comptage 5 3 0 4 7 1 2 6

Tableau résultat 1 3 8 10 25 52 55 62

Écrire l’algorithme d’un sous-programme permettant de trier un tableau de 10 entiers
distincts en utilisant la méthode décrite précédemment.
Le tableau initial est fourni en paramètre d’entrée, le tableau de comptage est calculé
dans le sous-programme et permet de remplir et renvoyer le tableau résultat.

