
LIFAPI – TP3 : Fonctions et Procédures

Objectifs : Le but de ce TP est de revoir et manipuler toutes les notions que vous avez vues
jusqu'à maintenant. A la fin, vous devrez bien maîtriser :

 l'importance de la fonction main ;
 l’utilisation des procédures et des fonctions ;
 les boucles simples (tant que, faire) ;
 les boucles imbriquées ;
 la structure conditionnelle (si…alors…sinon).

1. Maximum

Ecrire une fonction max_reel permettant de retourner le maximum entre deux réels a et
b passés en paramètres. En cas d’égalité, on renverra indifféremment l’une ou l’autre des
deux valeurs.

float maximum (float a, float b)
{
 if (a>b) return a ;
else return b;
}
int main (void)
{
 float r1,r2;
 cout<<"donnez la premiere valeur"<<endl;
 cin>>r1;
 cout<<"donnez la deuxieme valeur"<<endl;
 cin>>r2;
 cout<<"le maximum est "<<maximum(r1,r2);
 return 0;
}

2. Factorielle

Ecrire une fonction factorielle permettant de calculer et de retourner la valeur de la
factorielle d’un nombre n passé en paramètre.
Utilisez dans un premier temps ce soit programme pour afficher le résultat de la factorielle
d’un nombre choisi par l’utilisateur.

int facto (int n)
{
 int i,res;
 res=1;
 for (i=1;i<=n;i++)
 {
 res=res*i;
 }
 return res;
}
int main (void)
{
 int val;
 cout<<”Donnez la valeur don’t vous voulez la factorielle”<<endl;
 cin>>val
 cout<<”la factorielle de “ <<val<<” est : “<<facto(val)<<endl;
return 0;
}

Transformez ensuite le programme principal (et uniquement celui-ci) pour afficher les 15
premières valeurs des factorielles. Comparez les résultats de factorielle (13) et factorielle
(14). Ces résultats vous semblent-ils cohérents et corrects ? Pourquoi ? Modifiez le type de

retour de la fonction factorielle en "double" au lieu de "int" et observez les nouvelles
valeurs obtenues.

int facto (int n)
{
 int i,res;
 i=1;
 res=1;
 while (i<=n)
 {
 res=res*i;
 i=i+1;
 }
 return res;
}
int main (void)
{
 int i;
 for(i=0;i<15;i++)
 {
 cout<<facto(i)<<endl;
 }
return 0;
}

Pour factorielle de 13 on obtient : 1932053504
Pour factorielle de 14 on obtient : 1278945280
 On constate bien qu’il n’y a pas un facteur 14 entre les deux valeurs !!!
 On dépasse ici le domaine de définition de l’entier int. Avec double on a des résultats
corrects pour ces deux valeurs (mais on débordera vite aussi !!)

3. Somme puissances
Ecrire une fonction somme_puissances permettant de calculer la somme des n
premières puissances de 2. Par exemple si n= 4 onc calculera 20+21+22+23

On devra utiliser pour cela la fonction pow(x, y) de la bibliothèque math.h qui
calcule et retourne xy. Par exemple 2i s’écrira pow(2,i).

#include<math.h>
int somme_puissances2(int n)
{
 int i, som=0;
 for(i=1;i<=n;i++)
 {
 som+=pow(2,i);
 }
 return som;
}
int main()
{
 int nb ;
 cout << " donnez la valeur de n";
 cin>>nb;
 cout <<"la somme des "<<nb<<" premieres puissances de 2 est :
"<<somme_puissances2(nb);
return 0;
}

4. Valeurs aléatoires
L’exemple suivant permet de choisir aléatoirement une valeur comprise entre 0 et 29. La
fonction rand retourne un entier aléatoire compris entre 0 et une constante RAND_MAX
(32767).

#include <iostream>
#include <time.h> /* pour l’initialisation avec srand */
#include <stdlib.h> /* librairie contenant rand() */

using namespace std;

int main (void)
{
 int valea;
 srand(time(NULL)); /* une seule fois en début de programme */
 valea = rand()% 30; /* a chaque fois qu’on veut une valeur */
 cout<<"la valeur aleatoire est : "<<valea<<endl;
 return 0;
}

a. En vous aidant du TD3, modifiez le code précédent afin d’obtenir une valeur aléatoire

comprise entre 1 et 30 puis entre 10 et 25.
valea=rand()% 30 + 1;
valea=rand()% 16 + 10;

b. Utilisez ce code pour écrire un sous-programme alea_intervalle permettant de

tirer aléatoirement une valeur comprise entre deux bornes a et b passées en paramètres
et de la retourner au programme principal.

int valeur_aleatoire(int a, int b)
{
 return rand()% (b-a+1) + a ;
}

c. Ecrivez le programme principal d’utiliser cette fonction.

int main (void)
{
 int val, bi, bs;
 srand(time(NULL)); /* une seule fois en début de programme */
 cout<< »donnez les bornes de l’intervalle »<<endl ;
cin>>bi>>bs ;
 val = valeur_aleatoire(bi,bs)
 cout<<"la valeur aleatoire est : "<<val<<endl;
 return 0;
}

5. Dessin

On veut écrire un programme permettant de dessiner le contour d’un carré en choisissant
le caractère du contour et sa taille. Pour cela, on effectuera les étapes suivantes :

a. Ecrivez une procédure ligne_pleine qui affiche n fois le caractère c sur une
seule ligne (n et c étant donnés en paramètres)

b. Ecrivez une procédure ligne_creuse qui affiche le caractère c une
fois en début de ligne et 1 fois en fin de ligne (n longueur totale de la
ligne et c caractère étant donnés en paramètres)

c. Ecrire le sous-programme affiche_carre permettant d’afficher le
contour d’un carré en utilisant les deux procédures précédentes.
Exemple : afficherCarre(10, ‘*’);

d. Utilisez les sous-programmes précédents

* *
* *
* *
* *
* *
* *
* *
* *

void ligne_pleine(int n, char c)
{
 int i,j;

 for (i=0;i<n;i++)
 {
 cout<<c;
 }
 cout << endl;
}
void ligne_creuse(int n, char c)
{
 int i,j;

 cout<<c;
 for(j=1;j<n-1;j++)
 {
 cout<<" ";
 }
 cout<<c;

cout<<endl ;
 }

void affiche_carre(int n, char c)
{
 int i,j;

 ligne_pleine(n,c) ;
 for (i=1;i<n-1;i++)
 {
 igne_creuse(n,c);
 }

ligne_pleine(n,c) ;

int main (void)
{

 affiche_carre(10,'*');
 return (0);
}

Pour aller plus loin

Transformez tous les exercices du TP2 pour faire des sous-programmes avec les différents
motifs.

