
LIFAPI – TD 5 : Passage de paramètres

Objectifs : Comprendre la différence entre les modes de passage des paramètres : donnée

ou donnée / résultat
Comprendre la différence entre paramètres formels et paramètres effectifs

Recommandations : Pour chacun des algorithmes que vous écrirez, vous préciserez le mode

de passage des paramètres (donnée ou donnée / résultat) et vous écrirez le
programme principal appelant les sous-programmes que vous aurez écrits.

Données (passage par valeur)

 Le sous-programme dispose d'une copie de la valeur.
 Il peut la modifier, mais l'information initiale dans le code appelant n'est pas

affectée par ces modifications.
Syntaxe en C/C++ : type nom ;

Résultats ou données / résultats (passage par adresse)
 Le sous-programme dispose d'une information lui permettant d'accéder en mémoire à

la valeur que le code appelant cherche à lui transmettre.
 Il peut alors modifier cette valeur, le code appelant aura accès aux modifications

faites sur la valeur.
 Syntaxe en C/C++ : type & nom ;

1. Soit le programme suivant. Identifiez et notez :

a. le(s) paramètre(s) formel(s) / le(s) paramètre(s) effectif(s)
b. le(s) paramètre(s) en donnée / le(s) paramètre(s) en donnée / résultat
c. Qu’est censé faire ce programme ?
d. Quelle(s) modification(s) faudrait-il apporter pour obtenir un résultat plus logique ?

#include <iostream>
using namespace std ;

void mystere (int a, int b, int &c, int d)
{ c=a+b;
 d=a*b;
}

int main (void)
{ int e,f,g,h;
 cout<<"donnez une valeur";
 cin>>e;
 cout<<"donnez une valeur";
 cin>>f;
 mystere(e,f,g,h);
 cout<<" valeur "<<g<<" valeur :"<<h<<endl;
 return 0;
}

Profitez de ce premier exercice pour faire quelques rappels de cours en donnant les
définitions…

Rappels de cours (définition) :

Paramètre formel : variable utilisée dans le corps du sous-programme qui reçoit une
valeur de l’extérieur (ils font partie de la description de la fonction)
Paramètre effectif : il s'agit de la variable (ou valeur) fournie lors de l'appel du sous-
programme (valeurs fournies pour utiliser la fonction et valeurs renvoyées)
Copie de la valeur du paramètre effectif vers le paramètre formel correspondant lors
de l'appel.
Paramètres formel et effectif ont des noms différents

Données (passage par valeur) : le sous-programme dispose d'une copie de la
valeur.
Il peut la modifier, mais l'information initiale dans le code appelant n'est pas affectée
par ces modifications.

Syntaxe en C/C++ : type nom ;
Résultats ou données / résultats (passage par adresse) : le sous-programme
dispose d'une information lui permettant d'accéder en mémoire à la valeur que le
code appelant cherche à lui transmettre. Il peut alors modifier cette valeur, le code
appelant aura accès aux modifications faites sur la valeur.
Syntaxe en C/C++ : type & nom ;

Paramètres formels : a, b, c et d
Paramètres effectifs : e, f, g, h
Paramètres en donnée : a, b, d
Paramètres en donnée / résultat : c

Le programme est censé calculer et retourner la somme et le produit de deux variables
a et b. La somme est stockée dans la variable c et le produit dans la variable d. Pour
obtenir le résultat attendu, il faut passer le paramètre formel d en donnée / résultat
sinon la valeur calculée dans la procédure est perdue définitivement.

2. Écrivez l’algorithme d’une procédure effectuant la permutation circulaire de trois

variables : a=5 b=8 et c=2 donne après exécution : a=2 b=5 et c=8.
Procédure permutation_circulaire (a : entier, b : entier, c : entier)
Précondition : aucune
Données / Résultats : a, b et c
Description : effectue la permutation circulaire des 3 variables a, b et c
Variable locale : tampon : entier
Début
 tampon  c

c b
b a
a tampon

Fin permutation_circulaire

Appel :
Début

Variables locales : v1, v2, v3 : entier
Afficher (‘première valeur’)
Saisir (v1)
Afficher (‘deuxième valeur’)
Saisir (v2)
Afficher (‘troisième valeur’)
Saisir (v3)
permutation_circulaire (v1,v2,v3)
Afficher (‘nouvelles valeurs : ’, v1, ‘ ‘, v2, ‘ ‘, v3)

Fin

3. Écrire l’algorithme d’une fonction saisie_valeur qui demande à l’utilisateur et
retourne au programme principal une valeur entière comprise entre 0 et 20. La saisie sera
recommencée tant que la valeur choisie n’appartient pas à l’intervalle [0 ; 20]. Transformez
la fonction précédente en une procédure. Utiliser ces deux sous-programmes dans un
programme principal et constatez les différences.

Fonction saisie_valeur () : entier
Précondition : aucune
Donnée : aucune
Résultat : valeur entière comprise entre 0 et 20
Variables locales : valeur : entier
Début
 Faire
 Afficher ("donnez une valeur entière comprise entre 0 et 20")
 Saisir (valeur)
 Tant que ((valeur < 0) ou (valeur > 20))
 Retourner (valeur)
Fin

Deuxième version :

Fonction saisie_bornee () : entier
Précondition : aucune
Donnée : aucune
Résultat : valeur entière comprise entre 0 et 20
Variables locales : valeur : entier
Début
 Afficher ("donnez une valeur entière comprise entre 0 et 20")
 Saisir (valeur)
 Tant que ((valeur < 0) ou (valeur > 20))
 Afficher ("la valeur doit être comprise entre 0 et 20")
 Saisir (valeur)
 Fin tant que
 Retourner (valeur)
Fin

Version Procédure

Procédure saisie_bornee_proc (valeur : entier)
Précondition : aucune
Donnée : aucune
Donnée / résultat : valeur entière comprise entre 0 et 20
Variables locales : aucune
Début
 Afficher ("donnez une valeur entière comprise entre 0 et 20")
 Saisir (valeur)
 Tant que ((valeur < 0) ou (valeur > 20))
 Afficher ("la valeur doit être comprise entre 0 et 20")
 Saisir (valeur)
 Fin tant que
Fin

Appels avec la fonction
Début
 Afficher (saisie_valeur())
Fin

Ou
Début
 nombre : entier
 nombre  saisie_valeur()
 afficher (nombe)
Fin

Appel avec la procédure
Début
 nombre : entier

saisie_valeur(nombre)
afficher (nombre)

Fin

4. Écrire l’algorithme d’une fonction factorielle qui calcule et retourne la valeur de la

factorielle d’un entier passé en paramètres. Transformer la fonction en procédure. Utiliser
ensuite les deux sous-programmes dans un programme principal.

Fonction factorielle (n : entier) : entier
Préconditions : n >=0
Données : n
Données / résultats : aucun
Résultat : entier
Description : calcule et retourne la factorielle de n

Variables locales : f, i : entier
Début

 f 1
 Pour i allant de 1 à n par pas de 1 faire // on peut commencer à 2
 f  f * i
 Fin Pour

retourner f
Fin

 Appel
 début

Variables : n, facto : entier
 Afficher(‘donnez la valeur de n’)
 saisir(n)
 facto  factorielle(n)
 afficher (facto) // ou directement afficher (factorielle(n))
fin

Avec une procédure

Procédure factorielle_proc (n : entier, f : entier)
Préconditions : n >=0
Données : n
Données / résultats : f
Description : calcule et "retourne" la factorielle de n
Variables locales : i : entier
Début

 f 1
 Pour i allant de 1 à n par pas de 1 faire // on peut commencer à 2
 f  f * i
 Fin Pour
Fin

 Appel
 début

Variables : n, facto : entier
 Afficher(‘donnez la valeur de n’)
 saisir(n)
 factorielle(n,facto)
 afficher (facto)
fin

