LIFAPI - TD 5 : Passage de parametres

Objectifs : Comprendre la différence entre les modes de passage des parametres : donnée
ou donnée / résultat
Comprendre la différence entre paramétres formels et parametres effectifs

Recommandations : Pour chacun des algorithmes que vous écrirez, vous préciserez le mode
de passage des parametres (donnée ou donnée / résultat) et vous écrirez le
programme principal appelant les sous-programmes que vous aurez écrits.

Données (passage par valeur)
. Le sous-programme dispose d'une copie de la valeur.
. Il peut la modifier, mais l'information initiale dans le code appelant n'est pas
affectée par ces modifications.
Syntaxe en C/C++ : type nom ;

Résultats ou données / résultats (passage par adresse)
o Le sous-programme dispose d'une information lui permettant d'accéder en mémoire a
la valeur que le code appelant cherche a lui transmettre.
. Il peut alors modifier cette valeur, le code appelant aura acces aux modifications
faites sur la valeur.
Syntaxe en C/C++ : type & nom ;

1. Soit le programme suivant. Identifiez et notez :
a. le(s) parameétre(s) formel(s) / le(s) parametre(s) effectif(s)
b. le(s) parameétre(s) en donnée / le(s) parametre(s) en donnée / résultat
c. Qu’est censé faire ce programme ?
d. Quelle(s) modification(s) faudrait-il apporter pour obtenir un résultat plus logique ?

#include <iostream>
using namespace std ;

void mystere (int a, int b, int &c, int d)
{c=a+b;

d=a*b;

}

int main (void)

{int e, f,g,h;

cout<<"donnez une valeur";

cin>>e;

cout<<"donnez une valeur";

cin>>f;

mystere(e,f,g,h);

cout<<" wvaleur "<<g<<" wvaleur :"<<h<<endl;
return 0;

Rappels de cours (définition) :

Parameétre formel : variable utilisée dans le corps du sous-programme qui regoit une
valeur de I'extérieur (ils font partie de la description de la fonction)

Parameétre effectif : il s'agit de la variable (ou valeur) fournie lors de I'appel du sous-
programme (valeurs fournies pour utiliser la fonction et valeurs renvoyées)

Copie de la valeur du paramétre effectif vers le paramétre formel correspondant lors
de l'appel.

Paramétres formel et effectif ont des noms différents

Données (passage par valeur) : le sous-programme dispose d'une copie de la
valeur.

Il peut la modifier, mais l'information initiale dans le code appelant n'est pas affectée
par ces modifications.



Syntaxe en C/C++ : type nom ;

Résultats ou données / résultats (passage par adresse) : le sous-programme
dispose d'une information lui permettant d'accéder en mémoire a la valeur que le
code appelant cherche a lui transmettre. Il peut alors modifier cette valeur, le code
appelant aura accés aux modifications faites sur la valeur.

Syntaxe en C/C++ : type & nom ;

2. Ecrivez I’algorithme d’une procédure effectuant la permutation circulaire de trois
variables : a=5 b=8 et c=2 donne aprés exécution : a=2 b=5 et c=8.

Début

3. Ecrire I’algorithme d’une fonction saisie valeur qui demande & I'utilisateur et
retourne au programme principal une valeur entiere comprise entre 0 et 20. La saisie sera
recommencée tant que la valeur choisie n’appartient pas a I’intervalle [0 ; 20]. Transformez
la fonction précédente en une procédure. Utiliser ces deux sous-programmes dans un
programme principal et constatez les différences.



4. Ecrire ’algorithme d’une fonction factorielle qui calcule et retourne la valeur de la
factorielle d’un entier passé en paramétres. Transformer la fonction en procédure. Utiliser
ensuite les deux sous-programmes dans un programme principal.



Variables locales : f, i : entier
Début
f <1
Pour i allant de 1 a n par pas de 1 faire // on peut commencer a 2
fef™i
Fin Pour
retourner f
Fin

Appel
début

Variables : n, facto : entier

Afficher(‘donnez la valeur de n’)

saisir(n)

facto < factorielle(n)

afficher (facto) /I ou directement afficher (factorielle(n))
fin

Avec une procédure

Procédure factorielle_proc (n : entier, f : entier)
Préconditions : n >=0
Données : n
Données / résultats : f
Description : calcule et "retourne" la factorielle de n
Variables locales : i: entier
Début
f <1
Pour i allant de 1 a n par pas de 1 faire // on peut commencer a 2
fef™i
Fin Pour
Fin

Appel

début
Variables : n, facto : entier
Afficher(‘donnez la valeur de n’)
saisir(n)
factorielle(n,facto)
afficher (facto)

fin



