
LIFAPI – TD 4 : Les sous-programmes

Objectifs : Assimiler la différence entre une fonction et une procédure
 Savoir déclarer et utiliser un sous-programme

Recommandations :

Pour chaque algorithme demandé, vous préciserez (en justifiant) s’il s’agit d’une
procédure ou d’une fonction.
Vous écrirez l’entête du sous-programme (sans oublier les préconditions, les
données et résultats, les déclarations des variables locales…) ainsi qu’un exemple
d’appel au sous-programme.

Fonction nom(liste paramètres):type retourné
 Préconditions :
 Données :
 Résultat :
 Description :
 Variables locales :
Début
 instruction(s)
 retourner valeur (ou renvoyer)
Fin nom

Appel : variable  nom (paramètres)
Exemple : f  factorielle (6)

Procédure nom (liste des paramètres)
 Préconditions :
 Données :
 Description :
 Variables locales :

Début
 instruction(s)
Fin nom

Appel : nom (paramètres)
Exemple : mention (12)

1. Rappeler en quelques mots la différence entre une fonction et une procédure. Donner

un exemple caractéristique pour chaque.
Fonction : renvoie un résultat mais ne modifie pas l’environnement
exemple : factorielle
Procédure : ne renvoie rien mais modifie l’environnement.
exemple : affichage_mention
Faire quelques rappels de cours sur :
- en-tête fonction / procédure
- paramètres formels / effectifs,
- appel d’une fonction (affichage du résultat, affectation, comparaison, …),
- appel d’une procédure (ce qu’on ne peut pas faire).

2. Écrire l’algorithme d’un sous-programme qui retourne la moyenne de deux réels a et b

donnés en paramètre. Écrire le programme principal qui utilise le sous-programme
précédent et affiche le résultat produit.

Fonction moyenne (a : réel, b : réel) : réel
Précondition : aucune
Données : a et b
Résultat : moyenne de a et b
Description : fonction qui calcule la moyenne de deux réels
Variable locale : c : réel
Début
 C  (a+b) / 2
 Retourner c
Fin moyenne

Début
 Variables locales : v1, v2, res : réels
 Afficher (‘première valeur :’)
 Saisir (v1)
 Afficher (‘deuxième valeur :’)
 Saisir (v2)
 res = moyenne (v1,v2) // ou Afficher (moyenne(v1,v2))
 Afficher (res)
Fin
Commencez à parler de paramètres formels (a et b) et effectifs (v1 et v2);
insistez sur le fait qu’ils portent des noms différents.

3. Écrire l’algorithme d’un sous-programme qui affiche les dix nombres suivants la

valeur n donnée en paramètre. Par exemple, si l'utilisateur entre le nombre 17, le
programme affichera les nombres de 18 à 27. Écrire le programme principal qui utilise
le sous-programme précédent.

Procédure suite (n : entier)
Précondition : aucune
Données : n
Description : Affiche les 10 valeurs suivant n
Variable locale : i : entier
Début
 Pour i allant de n+1 à n+10 par pas de 1 faire
 Afficher(i, ‘ ‘)
 Fin pour
Fin suite

Appel :
Début

Variables locales : val : entier
 Afficher(‘donnez votre valeur :’)

Saisir(val)
 suite(val)
Fin

4. Écrire l’algorithme d’un sous-programme qui calcule et retourne la somme des n

premiers entiers. Rappel : 1 + 2 + 3 + … + n = n*(n+1) / 2
Écrire le programme principal qui utilise le sous-programme précédent.

Fonction sommeN (n : entier) : entier
Précondition : n >= 0
Donnée : n
Résultat : somme des n premiers entiers naturels
Variables locales : som, i : entier
Début

som  0
i  n
Tant Que i > 0 Faire

som  som + i
i  i - 1

FinTantQue
Retourner som

Fin

Deuxième version
Fonction sommeN (n : entier) : entier
Précondition : n >= 0
Donnée : n
Résultat : somme des n premiers entiers naturels
Début

Retourner (n * (n + 1)) / 2
Fin

Évitez de leur parler de la version récursive, ça sera fait dans en LIFAPR.

Appel : (commun aux deux versions)
Début

Variables locales : val, res : réels
Afficher (‘Valeur jusqu'à laquelle on veut calculer la somme :’)
Saisir (val)
res  sommeN (val)
Afficher (res)

Fin

5. Un nombre parfait est un nombre naturel n non nul qui est égal à la somme de ses
diviseurs stricts (n exclus). Exemple : 6 = 1 + 2 + 3

a. Écrire en langage algorithmique une fonction booléenne qui retourne vrai si un
entier n passé en paramètre est un nombre parfait, faux sinon.

b. Écrire en langage algorithmique le programme principal permettant d’afficher
la liste des nombres parfaits compris entre 1 et 10000. On utilisera le résultat
renvoyé par la fonction précédente.

Fonction parfait (n : entier) : booléen
Précondition : n > 0
Donnée : n
Résultat : booléen
Description : retourne vrai si n est parfait, faux sinon
Variable locale : res : booléen, i, som : entiers
Début
 som  0
 Pour i allant de 1 à n-1 par pas de 1 faire
 Si (n modulo i) = 0 Alors som  som + i
 Fin si

Fin pour
Retourner (n = som)

Fin

Remarque : dès que som > n, on peut s’arrêter avec un tantque

Appel :
Début
 i : entier
 pour i allant de 1 à 10000 par pas de 1 faire
 si parfait(i) alors alors afficher(i, " est parfait.")
 fin si
 fin pour
fin

