
LIFAPI – TD 3 : Encore des algos…

Objectifs : Approfondir les notions vues dans le TD précédent (boucles, conditions,

structures de données, entrées / sorties, …)

La division euclidienne (ou division entière) et le modulo

Le reste est également appelé modulo => a modulo b = r
Ici, a, b, q et r sont des entiers.

Remarque : en affectant dans un entier le résultat d’un calcul réel, on récupère la partie
entière du résultat.

1. Écrire un algorithme qui teste si la somme des valeurs de 2 dés est paire ou impaire et

affiche le résultat à l’écran.
Début
 de1, de2, somme : entiers
 somme ← de1 + de2
 Si somme modulo 2 = 0 Alors
 Afficher ("La somme est paire.")
 Sinon
 Afficher ("La somme est impaire.")
 Fin Si
Fin

2. Écrire un algorithme qui calcule la somme des chiffres qui composent un nombre
choisi par l’utilisateur.
Exemple : valeur saisie : 1234  résultat : 10 (= 1 + 2 + 3 + 4)

Début
 Variables : nbre, sdc, i : entier

Afficher (‘Donnez une valeur’)
Saisir(valeur)
sdc  0
Tant que (valeur > 0) faire
 sdc  sdc + (valeur modulo 10)
 valeur  valeur / 10

 Fin tant que
 Afficher (‘La somme des chiffres qui composent ‘, nbre,’ est : ‘, sdc)
Fin

3. Écrire un algorithme qui calcule les racines réelles (si elles existent) d’un polynôme du
second degré décrit par 3 coefficients réels a, b et c (a non nul). Les solutions seront
affichées à l’écran.
Début

a,b,c,sol1, sol2, delta : réel
Afficher(‘Entrez les 3 coefficients du polynôme’)
Saisir(a,b,c)
delta  b*b -4*a*c // attention à l’écriture de l’expression !
Si (delta < 0) Alors afficher (‘pas de racines réelles’)
 Sinon Si (delta = 0) Alors sol1 -b /(2*a)
 Afficher (‘une racine double :’, sol1)
 Sinon sol1  (-b + sqrt(delta)) / (2*a)
 sol2  (-b - sqrt(delta)) / (2*a)
 Afficher(sol1,sol2)
 Fin Si
Fin Si
Fin

4. Écrire l’algorithme d’un programme permettant de vérifier si un entier est premier ou
non. Rappel : un nombre premier est un nombre qui n’est divisible que par 1 et par lui-
même.
Première version avec un pour mais sans s’arrêter dès qu’on a trouvé un diviseur
Début
 N : entier
 afficher ("Donnez un entier")

saisir (N)
 EstPremier ← Vrai
 Pour i de 2 à N - 1 Faire // rmq on peut interrompre la boucle à N/2 voir √n
 Si N modulo i = 0 Alors
 EstPremier ← Faux
 Fin Si
 Fin Pour
 Si EstPremier Alors
 Afficher "Ce nombre est premier."
 Sinon
 Afficher "Ce nombre n'est pas premier."
 Fin Si

Fin

2ème version avec un tant qui permet d’optimiser l’algo
Début

N : entier
 afficher ("Donnez un entier")

saisir (N)
 EstPremier ← Vrai
 i ← 2
 Tant que i < N ET EstPremier = Vrai Faire
 Si N modulo i = 0 Alors
 EstPremier ← Faux
 Fin Si
 i ← i + 1
 Fin Tant que

 Si EstPremier Alors
 Afficher "Ce nombre est premier."
 Sinon
 Afficher "Ce nombre n'est pas premier."
 Fin Si
 Fin

5. Écrire un algorithme qui permet de générer une valeur aléatoire comprise entre 1 et 6.
Outil : pour choisir un nombre aléatoire, on utilisera en algorithmique : aleatoire()
qui retourne un entier compris entre 0 et MAX exclu, MAX étant une valeur très
grande que l’on ne choisit pas.
Généraliser la formule précédente pour obtenir une valeur aléatoire dans [a ; b].
Valeur entre 1 et 6
Début
 Val : entier
 Val  aleatoire() modulo 6 +1
 Afficher (Val)
Fin

Le modulo donne le reste de la division entière par 6 donc une valeur comprise entre 0
et 5. Si on lui ajoute 1 on a bien une valeur comprise entre 1 et 6.

Formule générale

Début
 Val : entier
 Val  aleatoire() modulo (b-a+1) + a
 Afficher (Val)
Fin

6. Écrire un algorithme permettant de trouver une valeur choisie aléatoirement par le

programme. Le joueur disposera au maximum de 6 tentatives pour trouver cette valeur
et le programme lui indiquera à chaque essai si sa valeur est trop grande ou trop petite.
Outil : le programme choisira une valeur dans l’intervalle [10 ; 60] de la même
manière qu’à la question précédente.

Variables : a_trouver, valeur, nb_essais : entiers
Début
 a_trouver  aleatoire() modulo 51 + 10
 nb_essais  0
 Faire
 Afficher(‘Donnez une valeur’)
 Saisir(valeur)
 Si (valeur > a_trouver) Alors Afficher(‘trop grand’)
 Sinon Si (valeur < a_trouver)

Alors Afficher(‘trop petit’)
 Fin si
 Fin si
 nb_essais  nb_essais + 1
 Tant que ((valeur <> a_trouver) et (nb_essais < 6))
 Si (valeur = a_trouver) Alors Afficher(‘gagné en ‘,nb_essais)
 Sinon Afficher (‘perdu trop d essais’)
 Fin si
Fin

