
LIFAPI – TD 2 : Algorithmes un peu moins simples

Objectifs : Approfondir les notions vues dans le TD précédent (boucles, conditions,
structures de données, entrées / sorties, …)

Conditionnelle à choix multiple (sélective)

SELON (sélecteur) FAIRE
 Cas <liste de valeurs-1> : <suite d'action (s)-1>
 [Cas <liste de valeur-2> : <suite d'action (s)-2>
 ……….]
 [Autrement : <suite d'action (s)-n>]
FINSELON

Le sélecteur est une variable de type entier ou caractère

1. Écrire l’algorithme d’un programme permettant de simuler le fonctionnement d’une

calculatrice simple (+, -, *, /). Dans cet exercice, l’utilisateur saisira les deux opérandes,
l’opérateur et le programme lui affichera le résultat correspondant. Dans le cas d’une
division, on vérifiera bien que le dénominateur est non nul !

a. avec des si imbriqués
b. avec un sélecteur selon

Avec des si imbriqués

Début

Nb1, Nb2 : reels
Op : caractère
Afficher(‘Donnez le premier nombre :’)
Saisir(Nb1)
Afficher(‘Donnez le deuxième nombre :’)
Saisir(Nb2)
Afficher(‘Donnez le symbole de l’opération :‘)
Saisir(Op)
Si Op = ‘+’ alors Afficher (Nb1 + Nb2)
 Sinon si op= ‘-’ alors Afficher (Nb1 - Nb2)

Sinon si op= ‘*’ alors Afficher (Nb1 * Nb2)
Sinon si op= ‘/’ alors

Si (Nb2 = 0) Alors Afficher (‘Opération impossible’)
 Sinon Afficher(Nb1 / Nb2)
 Fin si

sinon Afficher (‘Opération inexistante’)
Fin si

Fin si
Fin si

Fin si
Fin

Avec un sélecteur

Début

Nb1, Nb2 : reels
Op : caractère
Afficher(‘Donnez le premier nombre :’)
Saisir(Nb1)
Afficher(‘Donnez le deuxième nombre :’)
Saisir(Nb2)
Afficher(‘Donnez le symbole de l’opération :‘)
Saisir(Op)

Selon Op
 ‘+’ : Afficher (Nb1 + Nb2)
 ‘-’ : Afficher (Nb1 - Nb2)
 ‘*’ : Afficher (Nb1 * Nb2)
 ‘/’ : Si (Nb2 = 0) Alors Afficher (‘Opération impossible’)
 Sinon Afficher(Nb1 / Nb2)
 Fin si
Autrement : Afficher (‘Opération inexistante’)

Fin Selon
 Fin

2. Écrire un algorithme permettant de calculer la factorielle d’un entier n donné par

l’utilisateur. On écrira une version avec une boucle conditionnelle et une avec une boucle
inconditionnelle.
Exemple : valeur saisie : 6  résultat : 720 (= 1 * 2 * 3 * 4 * 5 * 6)

Avec une boucle inconditionnelle

Début
Variables : n, factorielle, i : entier

 Afficher(‘donnez la valeur de n’)
 Saisir(n) // on ne vérifiera pas que n >0

factorielle 1
 Pour i allant de 1 à n par pas de 1 faire // on peut commencer à 2
 factorielle  factorielle * i
 Fin Pour

Afficher (factorielle)
Fin

Avec une boucle conditionnelle

Début
Variables : n, factorielle, i : entier

 Afficher(‘donnez la valeur de n’)
 Saisir(n) // on ne vérifiera pas que n >0

factorielle 1
i1

 Tant que i<=n faire
 factorielle  factorielle * i
 ii+1
 Fin tant que

Afficher (factorielle)
Fin

3. Écrire un algorithme permettant de calculer la somme des n premiers nombres impairs.

Exemple : valeur saisie : 6  résultat : 36 (= 1 + 3 + 5 + 7 + 9 + 11)

Début
Variables : n, somme, i : entier

 Afficher(‘donnez la valeur de n’)
 Saisir(n)

somme0
 Pour i allant de 1 à 2*n par pas de 2 faire
 somme somme + i
 Fin Pour
 Afficher (somme)
Fin

Exemple pour n=5
Somme = 1+3+5+7+9 = 25 = 5²

Donc la somme des n premiers nombres impairs est égale au carré de n.

4. Écrire un algorithme permettant d’afficher toutes les combinaisons possibles de valeurs sur

2 dés. Résultat : 1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 2-1, 2-2, … , 6-5, 6-6.

Début
 // Déclaration des variables
 de1, de2 : entier

 // Boucles imbriquées pour générer les combinaisons
 pour de1 allant de 1 à 6 par pas de 1 faire
 pour de2 allant de 1 à 6 par pas de 1 faire
 afficher (dé1, "-", dé2)
 fin pour
 fin pour
Fin

5. Modifier le programme précédent pour ne pas afficher les doublons (1-2 et 2-1 par

exemple).

Début
 // Déclaration des variables
 de1, de2 : entier

 // Boucles imbriquées pour générer les combinaisons
 pour de1 allant de 1 à 6 par pas de 1 faire
 pour de2 allant de de1 à 6 par pas de 1 faire
 afficher (dé1, "-", dé2)
 fin pour
 fin pour
Fin

6. Écrire un algorithme qui calcule la moyenne de n valeurs saisies par l’utilisateur, n étant
choisi préalablement par l’utilisateur. On recommencera la saisie de n tant qu’il n’est pas
strictement positif.

Début
 n, i : entier // Déclaration des variables
 valeur, somme, moyenne : réel
 somme ← 0 // Initialisation
 faire // Saisie de n avec vérification
 afficher "Combien de valeurs voulez-vous saisir ?"
 lire (n)
 tant que n <= 0
 pour i allant de 1 à n par pas de 1 faire // Saisie des n valeurs et calcul de la somme
 afficher ("Entrez la valeur ", i)
 lire (valeur)
 somme ← somme + valeur
 fin pour
 moyenne ← somme / n // Calcul de la moyenne
 afficher ("La moyenne est : ", moyenne) // Affichage du résultat
Fin

Note : on peut compacter les 2 dernières instructions en afficher ("La moyenne", somme / n)

Exercices pour aller plus loin …

1. Écrire un algorithme permettant de lire 20 nombres entiers au clavier. Si le nombre x saisi

est pair, on affiche la valeur (x / 2) sinon on affiche (3*x + 1). Attention, on ne mémorisera
pas les 20 valeurs saisies.

Puisque l'on connaît le nombre de passages dans la boucle, on utilise la boucle pour :
Début

Variables : nbre, i : entier
Pour i allant de 1 à 20 par pas de 1 faire
 Afficher (‘Entrez un nombre’)
 Saisir(nbre)
 Si (nbre modulo 2) = 0 Alors nbre  nbre / 2
 Sinon nbre  3*nbre + 1
 FinSi
 Afficher(nbre)
FinPour

Fin
2. Afficher tous les nombres pairs compris entre 0 et 20 inclus

a. en utilisant une boucle pour
b. en utilisant une boucle tant que

a- en utilisant une boucle pour

 Début

i : Entier
Pour i allant de 0 à 20 par pas de 2 faire
 Afficher(i, ‘ ‘)
Fin Pour

Fin

Début
i : Entier
Pour i allant de 0 à 10 par pas de 1 faire
 Afficher(i*2, ‘ ‘)
Fin Pour

Fin

b- en utilisant une boucle tant que

Début
i : entier
i ← 0
 Tant que (i ≤ 20)
 Afficher(i, ‘ ‘)
 i ← i + 2
 Fin tant que
Fin

Début
i : entier
i ← 0
 Tant que (i ≤ 10)
 Afficher(i *2, ‘ ‘)
 i ← i + 1
 Fin tant que
Fin

