Licence STS Université Claude Bernard Lyon I

LIFAP1 : ALGORITHMIQUE
ET PROGRAMMATION IMPERATIVE,
INITIATION

COURS 7 : ENUMERATION ET STRUCTURES



PLAN

L'énumération
Les structures
o Définition

o Intérét

° Syntaxe

o Manipulation



ENUMERATION EN C++ : DEFINITION

enum (abréviation de énumération)

o type défini par I'utilisateur
o permet de créer un ensemble de constantes nommeées.

Chaque constante est associée a une valeur entiere
=»automatiquement

enum Couleur {
Rouge,
Vert,
Bleu

~N NN
~N O
N~ O

b

=>»0u manuellement

enum Niveau {
Facile = 1,
Moyen = 3,
Difficile = 5
}s

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIEIIIIIII



ENUMERATION EN C++ : UTILISATION

#include <iostream>
using namespace std;

// Définition de 1'enum int main() {

enum Feu { Feu feuActuel = Rouge;
Rouge,
Orange, // Simulation du feu qui change 3 fois
Vert for (int i = 0; i < 3; ++i) {

b actionSelonFeu(feuActuel);

| if (feuActuel == Rouge)
feuActuel = Orange;
else if (feuActuel == Orange)
feuActuel = Vert;

// Fonction qui affiche 1l'action selon la couleur du feu
void actionSelonFeu(Feu couleur) {
switch (couleur) {
case Rouge:
cout << "Arrétez-vous !" << endl; else
break; feuActuel = Rouge;
case Orange: }
cout << "Préparez-vous a vous arréter." << endl;
break; return 0;
case Vert: }
cout << "Vous pouvez passer." << endl;
break;
default:
cout << "Feu inconnu." << endl;



STRUCTURE : DEFINITION ET VOCABULAIRE

Agrégat d’informations associées a une entité

Type complexe construit a I'aide de type simples ou d’autres types complexes

Chacune des informations contenue dans une structure
s'appelle un champ

Une variable de type structure est aussi appelée un enregistrement
o Analogie avec les bases de données



DECLARATION

En Algorithmique En C/C++

struct Nom Structure

{

Structure Nom Structure

champl : type type champl;

champ2 : type type champ?;

s

FFin structure



EXEMPLE : EN ALGORITHMIQUE

Structure IdentiteEtudiant

prenom : chaine[64] de caracteres o identite,note etnumero sontles

. . champs de la structure Etudiant.
nom : chalinel[64] de caracteres

FFin structure

Structure Etudiant

o Chacun des champs est

identite : IdentiteEtudiant o soit de type simple = nombre entier ou

réel
note : tableau[l0] de réels o soit de type complexe =
, IdentiteEtudiant
numero : entier

Fin Structure

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII



EXEMPLE : EN C/C++

struct IdentiteEtudiant Mot clé : struct
{
char prenom[64];

h 04] ; . e
}C. ar nom[64] En C on termine la définition de la

structure parun ";" apres 'accolade

struct Etudiant Tous les champs se terminent par un
{ II;II

struct IdentiteEtudiant

identite ;

float note[10];

int numero;

Y



UTILISATION DE CONSTANTES EN C

Possibilité de définir des constantes et de fixer leurs valeurs

const int longueurNom = 64 ;
const int nombreDeNotes = 10

struct etudiant

{
char nom[longueurNom] ;
float note[nombreDeNotes]

}o

.
14



DECLARATION D’UNE VARIABLE DE TYPE STRUCTURE

o Nécessaire avant d’utiliser la structure

o

o De méme gu’on écrit “int 1i” avant d’utiliser “1”,
on déclare une variable de type structure Nom Structure avantde l'utiliser

En algorithmique :
°c etu : etudiant

EnC:

o struct etudiant etu ;



ACCES A UN CHAMP

Pour remplir une variable de type structure, il faut procéder champ par
champ (pas de remplissage global) car les types des champs sont différents

Quelques exemples en C/C++

struct etudiant e; déclaration de e, variable de type etudiant
Cin >> e.numero; lit le numero de I'étudiant e

cout << e.notel[i]; affiche la i®™® note de l'étudiant e

cin >> e.ldentite.nom; avec un champ de type structure



UTILISATION DES STRUCTURES

o Une fonction peut retourner une structure

o Une structure peut faire 'objet d’'une affectation (avec une variable de
méme type !)
etudiant el,e2;

ez=el;

o Les tableaux de structures sont possibles
struct etudiant classe[20] ; /*tableau de 20 etudiants*/

struct etudiant y ;
y = creerEtudiant() ;

classe[0] = vy ;



UTILISATION

Exemple de création d’une fiche étudiant

struct etudiant creerEtudiant (void)

{

struct etudiant e ;

int 1 ;

cout << endl << "entrer le nom :" << endl ;

cin >> e.identite.nom ;

cout << endl << "entrer le prénom :" << endl ;

cin >> e.identite.prenom ;

cout << endl << "entrer le numero de 1 etudiant :" << endl ;

cin >> e.numero ;

for (i=0; 1 < nombreDeNotes; i++) {
cout << endl << "entrer la " << 1 << "éme note :" << endl;
cin >> e.notel[i] ;

}

return e ;

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIII



TRANSFORMATION

Il est possible de transformer la fonction précédente
en procédure

U'entéte devient alors :
o vold creerEtudiant (struct etudiant & e)

Une structure peut étre passée en donnée — résultat

Une structure peut étre retournée par une fonction



LES STRUCTURES EN REFERENCE CONSTANTE

Passer une structure par référence constante signifie transmettre une
variable de type struct a une fonction:

vold maFonction (const MaStructureé& s)

const : empéche la fonction de modifier la structure.

& : signifie que la structure est passée par référence, donc sans copie
inutile

=» Quand on veut par exemple afficher une structure



LES STRUCTURES EN REFERENCE CONSTANTE

void afficherEtudiant (const struct etudiant &e)

{

int 1 ;
cout << "nom :" << e.identite.nom <<endl;
cout << "prénom " << e.identite.prenom <<endl;
cout << "numero de 1 etudiant :" << e.numero <<endl ;
for (1i=0; 1 < nombreDeNotes; i++) {
cout << 1 << "eme note :" <<e.note[i]<<endl; ;

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIII



AUTRE EXEMPLE =2 RESOLUTION D’UN POLYNOME DU 2NP DEGRE

Informations a connaitre ou a évaluer
o Les coefficients du polynbme : a, b, c donnés par l'utilisateur
o Le discriminant delta calculé en fonction de a, b, et c
o Le nombre de racine (en fonction de delta 0 1 ou 2 racines)
o Les racines réelles dans la mesure ou elles existent

Soit on utilise 7 variables différentes

Soit on met toutes ces informations dans une structure



LA STRUCTURE "POLYNOME"

En algo En C/C++
Structure polynome Struct polynome
a,b,c : réels {

delta ? reel | float a,b,c;
nb racines : entilers

float delta;
int nb racines;
double racl, rac?2;

Y

racl,rac?2 : réels
Fin Structure



LES FONCTIONS ASSOCIEES

o Plusieurs fonctions a écrire
o Saisie des coefficients
o Calcul de delta
o Calcul du résultat
o Affichage du résultat

o 1 paramétre unique a passer = une variable de type "polynome"

o Certains champs seront remplis / calculés / affichés

o Structure passée en donnée / résultat ou retournée en résultat



LA FONCTION DE SAISIE

On demande a l'utilisateur de donner les 3 coefficients a, b et c

struct polynome sailsie coefficlents (void)

{
struct polynome p;
cout << "donnez a, b et c" ;
cin>>p.a>>p.b>>p.c;

return p;

On crée la structure avant de la retourner car elle n’existe pas au départ



LA FONCTION DE CALCUL DE DELTA

On calcule delta en fonction de a, b et c

volid calcul delta(struct polynome & p)

{
p.delta = (p.b*p.b) - 4*p.a*p.c;

p est passé en donnée/résultat car on va utiliser 3 champs pour en
remplir un.



LA FONCTION DE CALCUL DES RACINES

On calcule les racines en fonction de delta, a, b et c

vold calcul racines (struct polynome & p)
{
if (p.delta == 0)
{
p.racl=-p.b / (2*p.a);
p.rac2 =-p.b / (2*p.a);
p.nb racines=1;
}
else if (p.delta > 0)
{
p.racl=(-p.b + sqgrt(p.delta))/ (2*p.a);
p.rac?2 =(-p.b - sgrt(p.delta))/ (2*p.a);
p.nb racines=2;
}

else p.nb racines=0



EXEMPLE AVEC DES ENUM =2 DECLARATION DES STRUCTURES DE DONNEES

// Enum des types de biscuits
enum TypeBiscuit {

Cookie,

Sable,

Madeleine,

BiscuitSec

s

// Structure représentant un biscuit
struct Biscuit {

char nom[20];

TypeBiscuit type;

bool contientChocolat;

int cuissonMinutes;

s



EXEMPLE AVEC DES ENUM =2 AFFICHAGE ET UTILISATION

void afficherBiscuit (const Biscuité& b) {

cout << "Nom : " << b.nom << endl;
cout << "Type : " ;
switch (b.type) {
case Cookie: cout << "Cookie"; break;

case Sable: cout << "Sable"; break;
case Madeleine: cout << "Madeleine"; break;
case BiscuitSec: cout << "Biscuit sec"; break;
}
cout << "Contient du chocolat : " ;
if (b.contientChocolat) cout<< "Oui'"<<endl ;
else cout<< "Non" << endl;
cout << « Cuisson :" << Db.cuissonMinutes << "min" << endl;

int main() {
Biscuit bl = {"Croquant du matin", Sable, false, 12};
afficherBiscuit (bl);
return 0;

}



CONCLUSION

Stuctures

o Permettent de ranger dans une méme variable toutes les informations relatives a un
objet : exemple étudiant

o Moins de variables, informations mieux organisées
o Possibilité de faire des tableaux de structures

Type énum et utilisation dans les structures

Passages par référence constate d’une structure



