
C O U R S 7 : É N U M É R AT I O N E T S T R U C T U R E S

1

Licence STS Université Claude Bernard Lyon I

LIFAP1 : ALGORITHMIQUE
ET PROGRAMMATION IMPÉRATIVE,

INITIATION

PLAN

L’énumération

Les structures
◦ Définition
◦ Intérêt
◦ Syntaxe
◦ Manipulation

2

ENUMÉRATION EN C++ : DÉFINITION

enum (abréviation de énumération)

o type défini par l’utilisateur
o permet de créer un ensemble de constantes nommées.

Chaque constante est associée à une valeur entière
automatiquement

enum Couleur {
Rouge, // 0
Vert, // 1
Bleu // 2

};

ou manuellement

enum Niveau {
Facile = 1,
Moyen = 3,
Difficile = 5

};

3

ENUMÉRATION EN C++ : UTILISATION

4

STRUCTURE : DEFINITION ET VOCABULAIRE

Agrégat d’informations associées à une entité

Type complexe construit à l’aide de type simples ou d’autres types complexes

Chacune des informations contenue dans une structure
s’appelle un champ

Une variable de type structure est aussi appelée un enregistrement
◦ Analogie avec les bases de données

5

DÉCLARATION

En Algorithmique

Structure Nom_Structure
champ1 : type
champ2 : type
…

Fin structure

En C/C++

struct Nom_Structure
{

type champ1;
type champ2;
…

};

6

EXEMPLE : EN ALGORITHMIQUE

Structure IdentiteEtudiant

prenom : chaine[64] de caractères

nom : chaine[64] de caractères

Fin structure

Structure Etudiant

identite : IdentiteEtudiant

note : tableau[10] de réels

numero : entier

Fin Structure

o identite, note et numero sont les
champs de la structure Etudiant.

o Chacun des champs est
o soit de type simple  nombre entier ou

réel
o soit de type complexe 
IdentiteEtudiant

7

EXEMPLE : EN C/C++

struct IdentiteEtudiant
{
char prenom[64];
char nom[64];
};

struct Etudiant
{
struct IdentiteEtudiant
identite ;
float note[10];
int numero;
};

Mot clé : struct

En C on termine la définition de la
structure par un ";" après l’accolade

Tous les champs se terminent par un
";"

8

UTILISATION DE CONSTANTES EN C

9

Possibilité de définir des constantes et de fixer leurs valeurs

const int longueurNom = 64 ;
const int nombreDeNotes = 10 ;

struct etudiant
{
char nom[longueurNom] ;
float note[nombreDeNotes] ;

} ;

DÉCLARATION D’UNE VARIABLE DE TYPE STRUCTURE

o Nécessaire avant d’utiliser la structure

o De même qu’on écrit “int i” avant d’utiliser “i”,
on déclare une variable de type structure Nom_Structure avant de l’utiliser

En algorithmique :
◦ etu : etudiant

En C :
◦ struct etudiant etu ;

10

ACCÈS À UN CHAMP

Pour remplir une variable de type structure, il faut procéder champ par
champ (pas de remplissage global) car les types des champs sont différents

Quelques exemples en C/C++

struct etudiant e; déclaration de e, variable de type etudiant

Cin >> e.numero; lit le numero de l’étudiant e

cout << e.note[i]; affiche la ieme note de l’étudiant e

cin >> e.identite.nom; avec un champ de type structure

11

UTILISATION DES STRUCTURES

o Une fonction peut retourner une structure

o Une structure peut faire l’objet d’une affectation (avec une variable de
même type !)

etudiant e1,e2;
e2=e1;

o Les tableaux de structures sont possibles
struct etudiant classe[20] ; /*tableau de 20 etudiants*/

struct etudiant y ;
y = creerEtudiant() ;
classe[0] = y ;

12

UTILISATION

Exemple de création d’une fiche étudiant

13

struct etudiant creerEtudiant(void)
{

struct etudiant e ;
int i ;

cout << endl << "entrer le nom :" << endl ;
cin >> e.identite.nom ;
cout << endl << "entrer le prénom :" << endl ;
cin >> e.identite.prenom ;
cout << endl << "entrer le numero de l etudiant :" << endl ;
cin >> e.numero ;
for (i=0; i < nombreDeNotes; i++) {

cout << endl << "entrer la " << i << "ème note :" << endl;
cin >> e.note[i] ;

}
return e ;

}

TRANSFORMATION

Il est possible de transformer la fonction précédente
en procédure

L’entête devient alors :
◦ void creerEtudiant(struct etudiant & e)

Une structure peut être passée en donnée – résultat

Une structure peut être retournée par une fonction

14

LES STRUCTURES EN RÉFÉRENCE CONSTANTE

Passer une structure par référence constante signifie transmettre une
variable de type struct à une fonction :

void maFonction(const MaStructure& s)

const : empêche la fonction de modifier la structure.

& : signifie que la structure est passée par référence, donc sans copie
inutile

 Quand on veut par exemple afficher une structure

15

LES STRUCTURES EN RÉFÉRENCE CONSTANTE

void afficherEtudiant(const struct etudiant &e)
{

int i ;
cout << "nom :" << e.identite.nom <<endl;
cout << "prénom " << e.identite.prenom <<endl;
cout << "numero de l etudiant :" << e.numero <<endl ;
for (i=0; i < nombreDeNotes; i++) {

cout << i << "ème note :" <<e.note[i]<<endl; ;
}

}

16

AUTRE EXEMPLE RÉSOLUTION D’UN POLYNÔME DU 2ND DEGRÉ

Informations à connaître ou à évaluer
◦ Les coefficients du polynôme : a, b, c donnés par l’utilisateur
◦ Le discriminant delta calculé en fonction de a, b, et c
◦ Le nombre de racine (en fonction de delta 0 1 ou 2 racines)
◦ Les racines réelles dans la mesure où elles existent

Soit on utilise 7 variables différentes

Soit on met toutes ces informations dans une structure

17

LA STRUCTURE "POLYNÔME"

En algo

Structure polynome
a,b,c : réels
delta : réel
nb_racines : entiers
rac1,rac2 : réels
Fin Structure

En C/C++

Struct polynome
{
float a,b,c;
float delta;
int nb_racines;
double rac1,rac2;
};

18

LES FONCTIONS ASSOCIÉES

o Plusieurs fonctions à écrire
◦ Saisie des coefficients
◦ Calcul de delta
◦ Calcul du résultat
◦ Affichage du résultat

o 1 paramètre unique à passer  une variable de type "polynome"

o Certains champs seront remplis / calculés / affichés

o Structure passée en donnée / résultat ou retournée en résultat

19

LA FONCTION DE SAISIE

On demande à l’utilisateur de donner les 3 coefficients a, b et c

struct polynome saisie_coefficients(void)

{

struct polynome p;

cout << "donnez a, b et c" ;

cin>>p.a>>p.b>>p.c;

return p;

}

On crée la structure avant de la retourner car elle n’existe pas au départ

20

LA FONCTION DE CALCUL DE DELTA

On calcule delta en fonction de a, b et c

void calcul_delta(struct polynome & p)

{

p.delta = (p.b*p.b) - 4*p.a*p.c;

}

p est passé en donnée/résultat car on va utiliser 3 champs pour en
remplir un.

21

LA FONCTION DE CALCUL DES RACINES

On calcule les racines en fonction de delta, a, b et c
void calcul_racines(struct polynome & p)

{

if (p.delta == 0)

{

p.rac1=-p.b / (2*p.a);

p.rac2 =-p.b / (2*p.a);

p.nb_racines=1;

}

else if (p.delta > 0)

{

p.rac1=(-p.b + sqrt(p.delta))/ (2*p.a);

p.rac2 =(-p.b – sqrt(p.delta))/ (2*p.a);

p.nb_racines=2;

}

else p.nb_racines=0

}

22

EXEMPLE AVEC DES ENUM DÉCLARATION DES STRUCTURES DE DONNÉES

// Enum des types de biscuits
enum TypeBiscuit {

Cookie,
Sable,
Madeleine,
BiscuitSec

};

// Structure représentant un biscuit
struct Biscuit {

char nom[20];
TypeBiscuit type;
bool contientChocolat;
int cuissonMinutes;

};

23

EXEMPLE AVEC DES ENUM AFFICHAGE ET UTILISATION

void afficherBiscuit(const Biscuit& b) {
cout << "Nom : " << b.nom << endl;
cout << "Type : " ;
switch (b.type) {

case Cookie: cout << "Cookie"; break;
case Sable: cout << "Sable"; break;
case Madeleine: cout << "Madeleine"; break;
case BiscuitSec: cout << "Biscuit sec"; break;

}
cout << "Contient du chocolat : " ;
if (b.contientChocolat) cout<< "Oui"<<endl ;
else cout<< "Non" << endl;
cout << « Cuisson :" << b.cuissonMinutes << "min" << endl;

}

int main() {
Biscuit b1 = {"Croquant du matin", Sable, false, 12};
afficherBiscuit(b1);
return 0;

}

24

CONCLUSION

Stuctures
◦ Permettent de ranger dans une même variable toutes les informations relatives à un

objet : exemple étudiant
◦ Moins de variables, informations mieux organisées
◦ Possibilité de faire des tableaux de structures

Type énum et utilisation dans les structures

Passages par référence constate d’une structure

25

