Licence STS Université Claude Bernard Lyon I

LIFAP1 : ALGORITHMIQUE
ET PROGRAMMATION IMPERATIVE,
INITIATION

COURS 5 : LES TABLEAUX

I ——————

PLAN DE LA SEANCE

o Comprendre l'utilité des tableaux

o Apprendre a manipuler des tableaux
» 1 dimension
» 2 dimensions

* Multi-dimensions

o Application au cas particulier des ensembles

UTILITE DES TABLEAUX

Calcul d’'une moyenne de n notes

Solution sans tableau

Déclarer autant de variables que de notes

Ecrire la somme de ces n variables

Implique de connaitre au départ le nombre de notes (pour déclarer
le bon nombre de variables)

Notation tres lourde (surtout si beaucoup de notes a gérer...)

Idée : rassembler toutes ces variables dans une structure de
données particuliere : le tableau !!!

TABLEAU : DEFINITION

Structure de données qui contient une collection d'éléments de
méme type

exemple : tableau d’entiers, de réels,
de caracteres...

Chaque élément a une position définie dans le tableau : désignée
par un indice

L'indice d’un tableau est nécessairement de type entier

TABLEAU : DEFINITION

Un tableau est de taille fixe, définie lors de sa déclaration
Chaque élément est manipulé individuellement
Pas d'opération de manipulation globale de tableau

affichage du contenu du tableau

initialisation du tableau

TABLEAU A 1 DIMENSION : DECLARATION

o T:tableau [nbcases] de type
o T:tableau[10] de entier
o T désignera un tableau contenant 10 valeurs de type entier

o Attention : les indices valides seront compris entre 0 et 9 inclus

* |ndice < nombre d’éléments du tableau !!!

» Chaque entrée (élément) du tableau sera désignée par son
indice

o T[i-1] désignera la i*™¢ case du tableau

TABLEAU : STRUCTURE DE STOCKAGE

Un tableau permet de stocker différentes informations ayant le méme type
Chaque élément est identifié par sa position
Nombre d'entrées maximal :
fixé par la déclaration = taille du tableau
Nombre d'entrées utilisées :
a mémoriser dans une ou plusieurs variables a gérer

On peut déclarer un tableau de 10 cases et n’en utiliser que 5 =
surdimensionnement

Attention la réciproque n’est pas vraie !!
Si on déclare 5 cases on ne peut pas accéder a la 7eme

TABLEAU : REMPLISSAGE COMPLET / PARTIEL

= Complet (toutes les cases contiennent une valeur)

3 /6|82 |9 0|4

0 1 2 3 4 5 6
= Partiel : certaines cases sont vides

= Premieres cases seulement sont utilisées

36| 8| 2

0 1 2 3 4 5 6
Cases entre deux indices i et j donnés remplies

8 | 2

TABLEAU REMPLI PARTIELLEMENT

De nombreux algorithmes nécessitent de travailler sur une
partie de tableau identifiée par :

indice de début (noté p dans la suite)

indice de fin (noté q)

Il faut a tout moment étre capable de savoir en quels
indices le tableau est rempli

TABLEAUX ET SOUS-PROGRAMMES

© Une fonction ne peut pas retourner un tableau

o Attention, en C/C++

o Dans les sous-programmes, les tableaux sont TOUJOURS passés
en donnée / résultat (par adresse)

=>» Mais pas de & !!

INITIALISATION D’UN TABLEAU

Par défaut les tableaux sont “vides” :
c’est-a-dire pas initialisés
Il est incorrect d’accéder a une case qui ne contient rien ou n‘importe
quoi !!
mais l'ordinateur ne vous le dira pas
Initialisation : donner a chacune des cases du tableau une valeur
En général on met des 0 partout
Certains langages acceptent les initialisations des tableaux “en bloc”
Cas du C par exemple : int T[10]={0};

INITIALISATION D’UN TABLEAU

procédure initialisation (T : tableau[10] de entier))
préconditions : aucune
donnée/résultat : T
description : met des 0 dans toutes les cases du tableau
variable locale : indice : entier
début

indice €< 0
Tant Que indice < 10 Faire
T[indice] € 0
indice € indice + 1
Fin Tant Que
fin

INITIALISATION D’UN TABLEAU

procédure initialisation (T : tableau[10] de entier))
préconditions : aucune
donnée/résultat : T
description : met des 0 dans toutes les cases du tableau
variable locale : indice : entier
début
Pour indice allant de 0 a 9 par pas de 1 faire
T[indice]€< 0
Fin pour

fin

PERMUTATION DE DEUX ELEMENTS D’UN TABLEAU

© On connatit les deux indices des cases a permuter notées i et j

© On passe par I'intermédiaire d’une variable tampon de méme type que
le contenu du tableau

© On effectue la permutation
o Tableau donné et modifié = donnée et résultat

PERMUTATION DE DEUX ELEMENTS D’UN TABLEAU

procédure permutation (T : tableau[10] de entier, i : entier, j : entier)
préconditions : 0<i< 9,0<j< 9
données : |, j
donnée/résultat : T
Description : effectue |la permutation de deux éléments dans un tableau
variable locale : tampon : entier
Début
tampon < TJi]
T[i] € TIj]
T[j] € tampon
fin

RECHERCHE DU MINIMUM D’UN TABLEAU ENTRE 2 INDICES

o Pour rechercher le minimum

» initialisation : hypothese que le premier élément (correspondant a l'indice
p) est le plus petit du tableau

» balayage des éléments d’indices p+1a q
pour chercher éventuellement un élément plus petit qui deviendra le
minimum “courant”

» en fin de balayage, le plus petit élément est trouvé

RECHERCHE DU MINIMUM D’UN TABLEAU : ALGORITHME

fonction minimum(T : tableau[100] de entier, p : entier, g : entier) : entier
Données: T, p, q
Préconditions :100>q>=p >=0
Description : retourne le minimum d’un tableau
Variable locale : i : entier,m : entier
Début
m < T[p]
i<—p+1
Tant Que i <= g Faire
Si T [i] < m Alors
m <« TJi]
Fin Si
i<—i+1
Fin Tant Que
Retourner m
Fin

TABLEAU A 2 DIMENSIONS

T[O][O] | T[O][1]
o Déclaration :

T : tableau [10] [5] d’entiers T[1][0]

T[2][1]
o Tsera un tableau

de 10 lignes
et 5 colonnes

o Acces:
o T[i-1][j-1]
o désigne la case T[6][3]
alai®™e ligne
et j*™e colonne

TABLEAU A 2 DIMENSIONS : UTILITE

o Modélisation de la notion mathématique de matrice
o Modélisation d’une grille :

» Bataille navale

o Tétris

© Modéliser une surface ou un plan

INITIALISATION

procédure initialisationAO (T : tableau[10][10] de entier)
préconditions : aucune

donnée/résultat : T
description : met des 0 dans toutes les cases du tableau 2D

variable locale : i : entier, j : entier

début
Pour i allant de 0 a 9 par pas de 1 faire
Pour j allant de 0 a 9 pas de 1 faire
T[i][j] «- 0
Fin Pour
Fin Pour
fin

LA MATRICE IDENTITE =2 CAS PARTICULIER

Matrice carrée : tableau de taille n*n

Des 0 partout sauf sur la diagonale :
sii=jalorson metun1

Algorithme de remplissage

On initialise dans un premier temps
avec que des O (initialisationAO)

On met les 1 sur la diagonale TJ[i][i]

O = O O
= O O O

O O O ==
O O = O

LA MATRICE IDENTITE — INITIALISATION "POUR"

procédure identité (T : tableau[10][10] de entier)
préconditions : aucune

donnée/résultat : T
description : met des 1 sur la diagonale du tableau

variable locale : i : entier
début
initialisationAO(T)
Pour i allant de 0 a 9 par pas de 1 faire
T[i][i] <=1
Fin Pour
Fin

REMARQUES, EXTENSION EN N DIMENSIONS

Comme pour les tableaux 1 dimension, les nombres de lignes et de colonnes
effectivement utilisées peuvent étre passés en parametres :

taille dans chaque dimension
indices début et fin dans chaque dimension (bloc)

Utilisation partielle de la matrice

Nombre de dimensions aussi grand que |'on veut :
T3 : tableau [N][M][O] de truc
o a3 dimensions

Limitation dues :
o Représentation graphique et “visuelle” difficile pour programmeur

o Manipulation des indices

STRUCTURE ABSTRAITE : 'ENSEMBLE

o Application directe des tableaux

o Objet mathématique

O Restriction a un ensemble fini
o Chaque élément est unique
© Une valeur appartient ou n'appartient pas a un ensemble
o Opérations sur les ensembles :
» Union / intersection / différence

© Ordre partiel : relation d'inclusion

|’ENSEMBLE VIA L UTILISATION D'UN TABLEAU

Déclaration du tableau :

Dimension = cardinalité maximale de I'ensemble

Si toutes les positions du tableau ne sont pas significatives,
il faut mémoriser celles qui contiennent des données valides :

généralement placées en début de tableau

une variable indigue le nombre de positions valides a partir du premier
indice
(n éléments occupent les indices compris entre O et n-1)

EXEMPLE : TABLEAU DES 10 PREMIERES VALEURS DE FACTORIELLE

o Conditions d’ensemble vérifiées ?
v~ Ensemble fini : 10 valeurs uniguement

v Valeurs uniques : les valeurs de la factorielle pour n de 1 a 10 sont bien
toutes différentes

» On peut utiliser ce concept mathématique pour formaliser le probleme

» Définition d’un tableau contenant ces valeurs

EXEMPLE : TABLEAU DES 10 PREMIERES VALEURS DE FACTORIELLE

Déclaration :
Fact10 : tableau [10] de entier

Les valeurs contenues dans le tableau sont indéterminées

Procédure d'initialisation

Attention : par définition, les tableaux seront passés
en Données/Résultats

c'est a dire que les modifications des entrées du tableaux
seront conservées apres |'exécution de la fonction ou
de la procédure

RELATION D’APPARTENANCE A 'ENSEMBLE

Test booléen : renvoie vrai ou faux
Répond a la question : la valeur x appartient-elle a Fact10 ?

Pour répondre a cette question, la valeur x sera comparée aux éléments
contenus dans le tableau Fact10 jusqu'a :

soit trouver un élément dont la valeur est égale a x,
la valeur x appartient a Fact10

soit tous les éléments ont été compareés a x
et aucun n'est égal,
la valeur x n'appartient pas a Fact10

RELATION D’APPARTENANCE A L'ENSEMBLE

Amélioration : on s’arréte dés gu’on trouve une valeur supérieure a celle
recherchée

Car les valeurs de la factorielle sont rangées dans |'ordre croissant dans
le tableau :
factorielle(n)<factorielle(n+1) pour tout n

Le tableau est donc trié

Définir la relation d’appartenance revient donc a chercher I'élément dans le
tableau

RELATION D’APPARTENANCE A L'ENSEMBLE : ALGORITHME

fonction appartientAFact10(Fact10 : tableau[10] de entier, x : entier) : booléen
Données : x
Données / Résultat : Fact10
Préconditions : aucune
description : teste si I'entier x appartient au tableau
Variable locale : i : entier
début
i< 0
Tant Que i < 10 Faire
Si Fact10[i] = x Alors
Retourner Vrai

Fin Si
l<—i+1
Fin Tant Que
Retourner Faux
Fin

RELATION D’APPARTENANCE A L'ENSEMBLE : ALGORITHME

Ici, on ne réécrit pas l'algorithme avec une boucle POUR
a la place du TANT QUE :

o Le nombre maximum d’itérations est connu (10)

o Mais il est possible de sortir avant la fin si on trouve I'élément

Variante : on sort de la boucle des qu’on dépasse la valeur recherchée

o Condition supplémentaire dans le "tant que"

RELATION D’APPARTENANCE A L'ENSEMBLE : ALGORITHME

fonction appartientAFact10(Fact10 : tableau[10] de entier, x : entier) : booléen
Données : x
Données / résultat : Fact10
Préconditions : aucune
Description : teste si I'entier x appartient au tableau
Variable locale : i : entier
début
i< 0
Tant Que (i < 10) et (Fact10[i]<= x) Faire
Si Fact10[i] = x Alors
Retourner Vrai
Fin Si
i<—i+1
Fin Tant Que
Retourner Faux
Fin

EXTENSION DU PROBLEME

Si on voulait maintenant les 15 premieres valeurs de la factorielle
Faut-il réécrire la fonction d'appartenance ?
Seule la taille du tableau change,

o dans la déclaration
o dans le test d'arrét de la boucle

Paramétrer !

La taille du tableau si balayage complet
Indices de début et de fin, pour travailler sur une partie du tableau

APPARTENANCE PARAMETREE

fonction appartientA (T : tableau[100] de entier, n : entier, x : entier) : booléen
Données : x, n (n: nombre de cases occupées dans le tableau)
Données /résultat : T
Préconditions: 100>n >0
Description : teste si I'entier x appartient au tableau
Variable locale : i : entier
Début
i<« 0
Tant Que (i < n) et (T[i]<= x) Faire
Si T [i] = x Alors
Retourner Vrai
Fin Si
l<—i+1
Fin Tant Que
Retourner Faux
Fin

LES TABLEAUX EN C/C++

Déclaration :
type T[dimension]; //tableau a 1 dimension
type T[ligne][colonne]; //tableau a 2 dimensions

Opérations sur le tableau :
Aucune a part initialisation (limitation du C/C++)
Opérations sur un élément :

Un élément T[i] est une variable,
les mémes opérations sont disponibles.

Utilisation comme parameétre :

Identique a la déclaration

UTILISATION DES TABLEAUX EN C/C++ : REMPLISSAGE

int main(void)

{
int tableau[10]; Déclaration du tableau de 10
int i; entiers
/* remplir le tableau */
i=0;
while(i < 10) Remplissage de la case i avec
{ comme valeur celle de son indice
tableaul[i]=i;
i=i+1;
}
return O;

}

EXEMPLE : AFFICHAGE D'UN TABLEAU

void affiche(int T[10])

L
int i;
i=0;
while(i < 10)
{
cout << TIi];
i=i+1;
}
}

int main(void)
{
int tableau[10];
// remplir le tableau

affiche(tableau);
return O;

}

LIMITATIONS DU C/C++

C/C++ ne permet ni de renvoyer plusieurs valeurs,
ni de renvoyer un tableau
=>» uniguement des types de retour simples (entier, réel, booléen)

Transformer les fonctions concernées (plusieurs résultats ou tableau) en
procédures et utiliser des parametres résultats supplémentaires. (cf. CM4)

CONCLUSION

o Structure de données tableau
* 1dimension
* N dimensions
* De n’importe quoi
o Notion d’ensemble mathématique modélisé dans un tableau

o Algorithmes de bases

