
COURS 5 : LES TABLEAUX

1

Licence STS Université Claude Bernard Lyon I

LIFAP1 : ALGORITHMIQUE
ET PROGRAMMATION IMPÉRATIVE,

INITIATION

PLAN DE LA SÉANCE

 Comprendre l’utilité des tableaux
 Apprendre à manipuler des tableaux

 1 dimension
 2 dimensions
 Multi-dimensions

 Application au cas particulier des ensembles

2

UTILITÉ DES TABLEAUX

 Calcul d’une moyenne de n notes

 Solution sans tableau
 Déclarer autant de variables que de notes

 Écrire la somme de ces n variables

 Implique de connaître au départ le nombre de notes (pour déclarer
le bon nombre de variables)

 Notation très lourde (surtout si beaucoup de notes à gérer…)

 Idée : rassembler toutes ces variables dans une structure de
données particulière : le tableau !!!

3

TABLEAU : DÉFINITION

 Structure de données qui contient une collection d'éléments de
même type
 exemple : tableau d’entiers, de réels,

de caractères…
 Chaque élément a une position définie dans le tableau : désignée

par un indice
 L’indice d’un tableau est nécessairement de type entier

4

TABLEAU : DÉFINITION

Un tableau est de taille fixe, définie lors de sa déclaration
 Chaque élément est manipulé individuellement
 Pas d'opération de manipulation globale de tableau

 affichage du contenu du tableau

 initialisation du tableau

 …

5

TABLEAU À 1 DIMENSION : DÉCLARATION

 T : tableau [nbcases] de type
 T : tableau [10] de entier
 T désignera un tableau contenant 10 valeurs de type entier
 Attention : les indices valides seront compris entre 0 et 9 inclus

 Indice < nombre d’éléments du tableau !!!
 Chaque entrée (élément) du tableau sera désignée par son

indice
 T[i-1] désignera la ième case du tableau

6

TABLEAU : STRUCTURE DE STOCKAGE

 Un tableau permet de stocker différentes informations ayant le même type
 Chaque élément est identifié par sa position
 Nombre d'entrées maximal :

 fixé par la déclaration = taille du tableau
 Nombre d'entrées utilisées :

 à mémoriser dans une ou plusieurs variables à gérer
 On peut déclarer un tableau de 10 cases et n’en utiliser que 5 

surdimensionnement
 Attention la réciproque n’est pas vraie !!

Si on déclare 5 cases on ne peut pas accéder à la 7ème

7

TABLEAU : REMPLISSAGE COMPLET / PARTIEL

8

3 6 8 2 9 0 4

3 6 8 2

8 2

 Complet (toutes les cases contiennent une valeur)

0 1 2 3 4 5 6

 Partiel : certaines cases sont vides
 Premières cases seulement sont utilisées

0 1 2 3 4 5 6

Cases entre deux indices i et j donnés remplies

0 1 2 3 4 5 6

TABLEAU REMPLI PARTIELLEMENT

 De nombreux algorithmes nécessitent de travailler sur une
partie de tableau identifiée par :
 indice de début (noté p dans la suite)
 indice de fin (noté q)

 Il faut à tout moment être capable de savoir en quels
indices le tableau est rempli

9

TABLEAUX ET SOUS-PROGRAMMES

 Une fonction ne peut pas retourner un tableau

 Attention, en C/C++
 Dans les sous-programmes, les tableaux sont TOUJOURS passés

en donnée / résultat (par adresse)

Mais pas de & !!

10

INITIALISATION D’UN TABLEAU

 Par défaut les tableaux sont “vides” :
 c’est-à-dire pas initialisés

 Il est incorrect d’accéder à une case qui ne contient rien ou n’importe
quoi !!!
 mais l’ordinateur ne vous le dira pas

 Initialisation : donner à chacune des cases du tableau une valeur
 En général on met des 0 partout
 Certains langages acceptent les initialisations des tableaux “en bloc”

 Cas du C par exemple : int T[10]={0};

11

procédure initialisation (T : tableau[10] de entier)
préconditions : aucune
donnée/résultat : T
description : met des 0 dans toutes les cases du tableau
variable locale : indice : entier
début

indice  0
Tant Que indice < 10 Faire

T[indice]  0
indice  indice + 1

Fin Tant Que
fin

12

INITIALISATION D’UN TABLEAU

procédure initialisation (T : tableau[10] de entier)
préconditions : aucune
donnée/résultat : T
description : met des 0 dans toutes les cases du tableau
variable locale : indice : entier
début

Pour indice allant de 0 à 9 par pas de 1 faire
T[indice] 0

Fin pour
fin

13

INITIALISATION D’UN TABLEAU

PERMUTATION DE DEUX ÉLÉMENTS D’UN TABLEAU

 On connaît les deux indices des cases à permuter notées i et j
 On passe par l’intermédiaire d’une variable tampon de même type que

le contenu du tableau
 On effectue la permutation
 Tableau donné et modifié  donnée et résultat

14

PERMUTATION DE DEUX ÉLÉMENTS D’UN TABLEAU

procédure permutation (T : tableau[10] de entier, i : entier, j : entier)
préconditions : 0 i  9, 0  j  9
données : i, j
donnée/résultat : T
Description : effectue la permutation de deux éléments dans un tableau
variable locale : tampon : entier
Début

tampon  T[i]
T[i]  T[j]
T[j]  tampon

fin 15

RECHERCHE DU MINIMUM D’UN TABLEAU ENTRE 2 INDICES

 Pour rechercher le minimum

 initialisation : hypothèse que le premier élément (correspondant à l'indice
p) est le plus petit du tableau

 balayage des éléments d’indices p+1 à q
pour chercher éventuellement un élément plus petit qui deviendra le
minimum “courant”

 en fin de balayage, le plus petit élément est trouvé

16

RECHERCHE DU MINIMUM D’UN TABLEAU : ALGORITHME

17

fonction minimum(T : tableau[100] de entier, p : entier, q : entier) : entier
Données : T, p, q
Préconditions :100>q>=p >= 0
Description : retourne le minimum d’un tableau
Variable locale : i : entier,m : entier

Début
m  T[p]
i  p + 1
Tant Que i <= q Faire

Si T [i] < m Alors
m  T[i]

Fin Si
i  i + 1

Fin Tant Que
Retourner m

Fin

TABLEAU À 2 DIMENSIONS

 Déclaration :
T : tableau [10] [5] d’entiers

 T sera un tableau
de 10 lignes
et 5 colonnes

 Accès :
 T[i-1][j-1]
 désigne la case

à la ième ligne
et jème colonne

T[0][0] T[0][1]

T[1][0]

T[2][1]

T[6][3]

18

TABLEAU À 2 DIMENSIONS : UTILITÉ

 Modélisation de la notion mathématique de matrice
 Modélisation d’une grille :

 Bataille navale
 Tétris

 Modéliser une surface ou un plan

19

INITIALISATION

20

procédure initialisationA0 (T : tableau[10][10] de entier)
préconditions : aucune
donnée/résultat : T
description : met des 0 dans toutes les cases du tableau 2D
variable locale : i : entier, j : entier

début
Pour i allant de 0 à 9 par pas de 1 faire

Pour j allant de 0 à 9 pas de 1 faire
T[i][j]  0

Fin Pour
Fin Pour

fin

LA MATRICE IDENTITÉ CAS PARTICULIER

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 Matrice carrée : tableau de taille n*n
 Des 0 partout sauf sur la diagonale :

si i=j alors on met un 1
 Algorithme de remplissage

 On initialise dans un premier temps
avec que des 0 (initialisationA0)

 On met les 1 sur la diagonale T[i][i]

21

LA MATRICE IDENTITÉ – INITIALISATION "POUR"

22

procédure identité (T : tableau[10][10] de entier)
préconditions : aucune
donnée/résultat : T
description : met des 1 sur la diagonale du tableau
variable locale : i : entier

début
initialisationA0(T)
Pour i allant de 0 à 9 par pas de 1 faire

T[i][i]  1
Fin Pour

Fin

REMARQUES, EXTENSION EN N DIMENSIONS

 Comme pour les tableaux 1 dimension, les nombres de lignes et de colonnes
effectivement utilisées peuvent être passés en paramètres :
 taille dans chaque dimension

 indices début et fin dans chaque dimension (bloc)

 Utilisation partielle de la matrice

 Nombre de dimensions aussi grand que l’on veut :
 T3 : tableau [N][M][O] de truc

 à 3 dimensions

 Limitation dues :
 Représentation graphique et “visuelle” difficile pour programmeur
 Manipulation des indices

23

STRUCTURE ABSTRAITE : L’ENSEMBLE

 Application directe des tableaux
 Objet mathématique

 Restriction à un ensemble fini
 Chaque élément est unique
 Une valeur appartient ou n'appartient pas à un ensemble
 Opérations sur les ensembles :

 Union / intersection / différence

 Ordre partiel : relation d'inclusion

24

L’ENSEMBLE VIA L’UTILISATION D’UN TABLEAU

 Déclaration du tableau :
 Dimension = cardinalité maximale de l'ensemble

 Si toutes les positions du tableau ne sont pas significatives,
il faut mémoriser celles qui contiennent des données valides :
 généralement placées en début de tableau
 une variable indique le nombre de positions valides à partir du premier

indice
(n éléments occupent les indices compris entre 0 et n-1)

25

EXEMPLE : TABLEAU DES 10 PREMIÈRES VALEURS DE FACTORIELLE

 Conditions d’ensemble vérifiées ?
 Ensemble fini : 10 valeurs uniquement

 Valeurs uniques : les valeurs de la factorielle pour n de 1 à 10 sont bien
toutes différentes

 On peut utiliser ce concept mathématique pour formaliser le problème
 Définition d’un tableau contenant ces valeurs

26

 Déclaration :
 Fact10 : tableau [10] de entier

 Les valeurs contenues dans le tableau sont indéterminées

 Procédure d'initialisation

 Attention : par définition, les tableaux seront passés
en Données/Résultats
 c'est à dire que les modifications des entrées du tableaux

seront conservées après l'exécution de la fonction ou
de la procédure

27

EXEMPLE : TABLEAU DES 10 PREMIÈRES VALEURS DE FACTORIELLE

RELATION D’APPARTENANCE À L’ENSEMBLE

 Test booléen : renvoie vrai ou faux
 Répond à la question : la valeur x appartient-elle à Fact10 ?

 Pour répondre à cette question, la valeur x sera comparée aux éléments
contenus dans le tableau Fact10 jusqu'à :
 soit trouver un élément dont la valeur est égale à x,

la valeur x appartient à Fact10
 soit tous les éléments ont été comparés à x

et aucun n'est égal,
la valeur x n'appartient pas à Fact10

28

RELATION D’APPARTENANCE À L’ENSEMBLE

 Amélioration : on s’arrête dès qu’on trouve une valeur supérieure à celle
recherchée
 Car les valeurs de la factorielle sont rangées dans l’ordre croissant dans

le tableau :
factorielle(n)<factorielle(n+1) pour tout n

 Le tableau est donc trié


Définir la relation d’appartenance revient donc à chercher l’élément dans le
tableau

29

RELATION D’APPARTENANCE À L’ENSEMBLE : ALGORITHME

30

fonction appartientAFact10(Fact10 : tableau[10] de entier, x : entier) : booléen
Données : x
Données / Résultat : Fact10
Préconditions : aucune
description : teste si l’entier x appartient au tableau
Variable locale : i : entier

début
i  0
Tant Que i < 10 Faire

Si Fact10[i] = x Alors
Retourner Vrai

Fin Si
i  i + 1

Fin Tant Que
Retourner Faux

Fin

RELATION D’APPARTENANCE À L’ENSEMBLE : ALGORITHME

31

 Ici, on ne réécrit pas l’algorithme avec une boucle POUR
à la place du TANT QUE :
 Le nombre maximum d’itérations est connu (10)
 Mais il est possible de sortir avant la fin si on trouve l’élément

 Variante : on sort de la boucle dès qu’on dépasse la valeur recherchée
 Condition supplémentaire dans le "tant que"

RELATION D’APPARTENANCE À L’ENSEMBLE : ALGORITHME

32

fonction appartientAFact10(Fact10 : tableau[10] de entier, x : entier) : booléen
Données : x
Données / résultat : Fact10
Préconditions : aucune
Description : teste si l’entier x appartient au tableau
Variable locale : i : entier

début
i  0
Tant Que (i < 10) et (Fact10[i]<= x) Faire

Si Fact10[i] = x Alors
Retourner Vrai

Fin Si
i  i + 1

Fin Tant Que
Retourner Faux

Fin

EXTENSION DU PROBLÈME

 Si on voulait maintenant les 15 premières valeurs de la factorielle
 Faut-il réécrire la fonction d'appartenance ?

 Seule la taille du tableau change,
 dans la déclaration
 dans le test d'arrêt de la boucle

 Paramétrer !
 La taille du tableau si balayage complet
 Indices de début et de fin, pour travailler sur une partie du tableau

33

APPARTENANCE PARAMÉTRÉE

34

fonction appartientA (T : tableau[100] de entier, n : entier, x : entier) : booléen
Données : x, n (n: nombre de cases occupées dans le tableau)
Données /résultat : T
Préconditions : 100 > n > 0
Description : teste si l’entier x appartient au tableau
Variable locale : i : entier

Début
i  0
Tant Que (i < n) et (T[i]<= x) Faire

Si T [i] = x Alors
Retourner Vrai

Fin Si
i  i + 1

Fin Tant Que
Retourner Faux

Fin

LES TABLEAUX EN C/C++

 Déclaration :
type T[dimension]; //tableau à 1 dimension
type T[ligne][colonne]; //tableau à 2 dimensions

 Opérations sur le tableau :
 Aucune à part initialisation (limitation du C/C++)

 Opérations sur un élément :
 Un élément T[i] est une variable,

les mêmes opérations sont disponibles.

 Utilisation comme paramètre :
 Identique à la déclaration

35

UTILISATION DES TABLEAUX EN C/C++ : REMPLISSAGE

int main(void)
{

int tableau[10];
int i;

/* remplir le tableau */
i= 0;
while(i < 10)
{

tableau[i]= i;
i= i+1;

}
return 0;

}

Déclaration du tableau de 10
entiers

Remplissage de la case i avec
comme valeur celle de son indice

36

EXEMPLE : AFFICHAGE D’UN TABLEAU

void affiche(int T[10])
{

int i;

i= 0;
while(i < 10)
{

cout << T[i];
i= i+1;

}
}

int main(void)
{

int tableau[10];
...
// remplir le tableau

affiche(tableau);
return 0;

}

37

LIMITATIONS DU C/C++

 C/C++ ne permet ni de renvoyer plusieurs valeurs,
ni de renvoyer un tableau
 uniquement des types de retour simples (entier, réel, booléen)

 Transformer les fonctions concernées (plusieurs résultats ou tableau) en
procédures et utiliser des paramètres résultats supplémentaires. (cf. CM4)

38

CONCLUSION

 Structure de données tableau
 1 dimension
 N dimensions
 De n’importe quoi

 Notion d’ensemble mathématique modélisé dans un tableau
 Algorithmes de bases

39

