Licence STS Université Claude Bernard Lyon I

LIFAP1 : ALGORITHMIQUE
ET PROGRAMMATION IMPERATIVE,
INITIATION

COURS 4 : PASSAGE DE PARAMETRES
ERREURS FREQUENTES EN C

-

OBJECTIFS DE LA SEANCE

Faire le point sur les parametres
o Parameétres formels / effectifs

Comprendre le mécanisme de passage des parametres
o Par valeur (donnée)
o Par adresse ou référence (donnée / résultat)
o Par référence constante

Apprendre a transformer une fonction en procédure

Faire le tour d’horizon des erreurs fréquentes commises en TP

PLAN

Parametres formels / parametres effectifs

Passage de parametres
o Par valeur ou donnée

o Par adresse ou donnée / résultat

Transformation fonction = procédure

Les erreurs en C

PARAMETRES FORMELS / EFFECTIFS

Parametre formel : variable utilisée dans le corps du sous-programme
(il fait partie de la description de la fonction)

Parametre effectif : variable (ou valeur) fournie lors de |'appel du sous-

programme
(valeurs fournies pour utiliser la fonction et valeurs renvoyées)

Copie de la valeur du parametre effectif vers le parametre formel correspondant
lors de ['appel

#include <iostream>
using namespace std;

// Définition de la fonction avec un paramétre formel 'a’

Parametres formel et effectif ont des void afficherCarre(int a) {

cout << < a < << a * a < endl;

}
noms différents

int main() {
int nombre = 5;

// Appel de la fonction avec un paramétre effectif 'nombre'
afficherCarre(nombre);

return 0;

PARAMETRES FORMELS / EFFECTIFS

Lorsqu’on écrit I'en-téte d’un sous-programme,
il s'agit des parametres formels

o Exemple : int moyenne (int x, int y)
x et y sont les parametres formels ;
ils n‘lont pas de valeur particuliere dans la définition
du sous-programme

Lorsqu’on appelle un sous-programme,
il s'agit des parametres réels ou effectifs

o Exemple resultat = moyenne (a,b)

a et b sont les parametres effectifs ;
ils doivent avoir une valeur du méme type
que les parametres formels

PLAN

Paramétres formels / parametres effectifs

Passage de parametres
o Par valeur ou donnée

o Par adresse ou donnée / résultat
o Par référence constante

Transformation fonction = procédure

Les erreurs en C

PASSAGE DES PARAMETRES FORMELS

Données (passage par valeur)
o Le sous-programme dispose d'une copie de la valeur.
o Toute modification dans la fonction n*affecte pas la variable originale.

o Utile quand tu veux protéger la variable d'origine.
Syntaxe : type nom ;

Résultats ou données / résultats (passage par adresse)

o Le sous-programme dispose d'une information lui permettant d'accéder en
meémoire a la valeur que le code appelant cherche a lui transmettre.

o Toute modification dans la fonction affecte |a variable originale
o Pratique pour modifier des données ou éviter de copier de gros objets

Syntaxe : type & nom ;

PASSAGE DES PARAMETRES FORMELS

Références constantes permettent de passer des arguments a une fonction
sans les modifier, tout en évitant une copie inutile, surtout pour les objets

volumineux.
- La fonction recoit une référence (donc pas de copie).
- Mais elle ne peut pas modifier la variable originale.

Syntaxe : const Type& nom

PASSAGE PAR VALEUR

Valeur de I'expression passée en parametre
copiée dans une variable locale
o Utilisée pour faire les calculs dans la fonction appelée
o Aucune modification de la variable locale ne modifie la variable passée en parametre

o La variable locale ayant servi a effectuer les calculs est ensuite détruite donc sa valeur est
perdue

void doubler(int x) {
X =X * 2;
}

int main() {
int a = 5;
doubler(a);

cout << a <« endl; // Affiche 5, car 'a' n'a pas éte modifie

PASSAGE PAR VALEUR =2 EXEMPLE

int doubler (int a)

{ main carre

return 2*a;

}

avant val = 3
appel |car=7?

int main () \
dans
{ a=3
- _ . I"appel
int val=3, car; dep(l:jarre CaICUI :9
car = carre(val); /
cout <<<< "Cc;g.ré = » aprés Val = 3 /
return 0; appel car = 9

}

Et si on modifie a...

return a;

}

int main()

{

int val=3, car;

main carre

int carre (int a) avant Val _ 3

appel car = ?

dans \ copie valeu

’ Ei=53

I'appel 9

de carre a=

apl‘és val = 3 /retour valeu

car = carre(val);
<< car;

return O0;

}

appel

car =9

PASSAGE DE PARAMETRES RESULTAT OU DONNEE / RESULTAT

Plus de copie des valeurs des parametres effectifs,
plus de variable locale

On travaille directement sur la variable passée en parametre

Toute modification du parametre dans la fonction entraine la modification de la variable passée
en parametre

Matérialisé dans I'entéte par le symbole &

PASSAGE PAR DONNEE/RESULTAT (REFERENCE) =2 EXEMPLE

void calculAire (double r,
&aire)

{

aire = 3.14*r*r;

}

int main ()

{

double rayon=1,5, air;
calculAire (rayon,air);
cout<<air;

return EXIT SUCCESS;

}

double

main calculAire
Avant appel |rayon=1,5

air =7 copie valeur
Dans l'appel r= i‘,S
de la _

’ copie aflresse

procedure air = ? «———|aire

air = 7,06« aire = 7,06
Apres appel |rayon=1,5

air = 7,06

PASSAGE DE PARAMETRES PAR REFERENCE CONSTANTE

Pourquoi les utiliser ?

- Performance : évite la copie, surtout pour les objets volumineux
- Sécurité : garantit que la fonction ne modifiera pas I'argument.
- Clarté : indique clairement l'intention de lecture seule.

Matérialisé dans I'entéte par const Type &var

PASSAGE PAR REFERENCE CONSTANTE =2 EXEMPLE

#include <iostream>

using namespace std;

// Fonction qui prend un int en référence constantevoid
afficherValeur (const int& valeur) {

cout << "La wvaleur est : " << valeur << endl;

// valeur = 10; // Erreur : impossible de modifier une référence
constante}

int main() {
int x = 42;

afficherValeur (x); // Passe x sans le copier, mais sans pouvoir le
modifier}

PASSAGE DES PARAMETRES EFFECTIFS

Que peut-on mettre dans un parametre effectif ?

o Valeurs littérales :
factorielle(6);

o Valeur d'une variable :
factorielle(n);

o Valeur renvoyée par une fonction :
factorielle(n_premiers(4));

EXEMPLE

#include <iostream>

using namespace std;

_ , , Parametres formels
void permuter (int & a, int & Db)
L passés par adresse
int t; , ,
(données / resultats)
t= a;
a =b;
b= t;

int main (void)
{ 0
int u, v;
cin >> u;
cin >> v;

permuter (u, vVv);

cout << u << endl; Parameétres effectifs :
cout << v << endl;

contenu des variables
}

EXEMPLE SOUS C5

Que se passe-t-il sion ne met pas le & ??
o Exemple

Et maintenant apres correction
o Résultat

PLAN

Paramétres formels / parametres effectifs

Passage de parametres
o Par valeur ou donnée

o Par adresse ou donnée / résultat

Transformation fonction = procédure

Les erreurs en C

TRANSFORMER UNE FONCTION EN PROCEDURE : POURQUOI ?

Parce gu’en C on ne peut renvoyer qu’une seule valeur dans une
fonction

Parfois on a besoin de retourner deux choses
o Par exemple le produit et la somme de deux valeurs

La fonction doit alors céder sa place a une procédure

TRANSFORMER UNE FONCTION EN PROCEDURE : PRINCIPE

1. Rajouter autant de parametres formels que de résultats a renvoyer
2. Passer ces nouveaux parametres formels en donnée / résultat

3. Supprimer l'instruction return

Exemple : on souhaite renvoyer la somme et le produit de deux entiers

TRANSFORMER UNE FONCTION EN PROCEDURE : EXEMPLE

int somme (int a, int Db)

{
int som; Fonction qui retourne un

som=a+b; entier

return som;

vold somme (int a, int b, 1int &

som) Procédure qui contient un
{ nouveau parametre
permettant de stocker la

som=a+b; " Z
valeur "retournee

TRANSFORMER UNE FONCTION EN PROCEDURE : EXEMPLE

Impossible d’écrire une fonction parfois

=» on écrit alors une procédure

void som prod(int a, int b, int &s, 1int &p)

{
s=a+b;
p=a*b;

EXEMPLE ;: CALCULER LES RACINES D'UN POLYNOME (TRADUCTION ALGO = C++)

En algorithmique

Fonction RacinesPolynome (a, b, ¢ : réels, x1, x2 : réels) : entier
données : a, b, ¢ (coefficients du polyndme)

valeur retournée par la fonction : nb racines : entier

données /résultats : x1, x2 : réels

Traductions possibles en C
int racines (float a, float b, float ¢, float & x1, float & x2)

void racines (float a, float b,float ¢, int & nb racines, float & x1, float & x2)

» nb_racines, x1 et x2 sont passés en résultats avec un “&” devant.

EXEMPLE : APPEL DE LA PROCEDURE

Les résultats sont des parametres formels supplémentaires,
il faut donc ajouter les parametres effectifs correspondants.

int main (void)

{
int n;
float a, b, c, x1, x2;

cin >> a; cin >> b; cin >> c;
n= racines(a, b, c, x1, x2);

x1 et x2 n‘ont pas de valeur avant de rentrer dans la procédure
= parametres données /résultats !!

PLAN

Paramétres formels / parametres effectifs

Passage de parametres
o Par valeur ou donnée
o Par adresse ou donnée / résultat

Transformation fonction = procédure

Les erreurs en C

LES ERREURS DANS LES PROGRAMMES

Il ne faut pas étre frustré avec les erreurs de C;
c'est comme quand on apprend a parler une autre langue...

L'ordinateur n'est pas votre ennemi, il se plaint car il ne comprend pas vos intentions,
et il n'ose pas prendre des initiatives

2 types d'erreurs :

o Syntaxiques : probléme dans I'écriture du code (les plus faciles a corriger : ca ne compile
pas)
o Algorithmiques : Il faut réfléchir, simuler...

APPELS FONCTION / PROCEDURE

Une fonction renvoie une valeur que I'on peut utiliser :
o afficher
o affecter dans une variable,
o comparer a une autre valeur.

Une procédure ne renvoie pas de valeur :
° on ne peut ni afficher, ni affecter, ni comparer le « résultat » d'une procédure

LES ERREURS SYNTAXIQUES FREQUENTES

Le « ; » se met a la fin de chaque instruction

mais jamais
o Apres I'entéte d’une fonction ou procédure
o Apres la condition d’'un while, d’un for ...

o Apres une « } » (sauf les structures)

La différenciation majuscules / minuscules
° int toto # int ToTo

o Pour les mots clés du langage aussi !!!
Si pas en gras dans l'interface, pas reconnus

Parentheses autour des conditions dans if et while

Le test d’eégalité : « =»enalgo, «==»enC
o if (@ = 0) {a++;} else {a--;} => passera toujours dans le sinon !!!

LES ERREURS SYNTAXIQUES FREQUENTES

int puissance (int n); Pas de ; a la fin de la déclaration

{

int i, res;

res=1 Ici il en faut un !!

for (i=1;i<n;i++); Pas la !

{

res = rEs * n; variable rEs pas reconnue

car différent de res

}
pas comme mot clé

RETURN res; car return en majuscules !

STRUCTURES DE CONTROLE : IF, WHILE ET FOR

if, while et for prennent soit
o une instruction (accolades pas indispensables mais conseillées)
> un bloc d'instructions obligatoirement délimité par des accolades.

Les instructions sont par exemple :
o affectation

o appels aux autres fonctions
° ou méme autres opérations de controle

for (i = 0; 1 < 10; i++)

1f ((x=rand()%20-10) && x < 0) cout << endl << x * x;
else while(x != 0) cout << x—— << " ",

RAPPELS : INDENTATION

Mais il est recommandé de mettre for (i = 0; 1 < 10; i++)
TOUJOURS les accolades {

pour étre plus clair et certain if ((x=rand()%20-10)
du corps des opérations de contréle 55 (x < 0))

{
cout << endl << x * x;

Prend plus de place }
else {
while(x !'= 0)
Mais plus facile a lire ! {
cout << x—-——- << " ",
}
}
}
for (1 = 0; 1 < 10; i++)
1f ((x=rand()%20-10) && x < 0) cout << endl << x * x; else

while(x !'= 0) cout << x-- << " ";

STUCTURES DE CONTROLE : IF, WHILE ET FOR

Possible mais a éviter :
o for (i=0; i< 10; i++);

o while (a < m);

Sont des lignes valables en C/C++,
la premiere pas trop dangereuse,
mais la deuxieme peut aboutir a une boucle infinie.

EQUIVALENCE : WHILE ET FOR

for (initialisation ; condition ; itération)

{ instructionl ; instruction2?2 ; ...}

est equivalent a :

initialisation;
while (condition)

{

instructionl ; instruction2 ;

itération;

»Donc on comprend la raison du “;” dans le for

SIGNATURE DES FONCTIONS/PROCEDURES

La signature des fonctions /procédures avertit le compilateur du type du résultat et
des parametres

La signature est la fonction sans son corps, le nom des parametres est facultatif
Pour l'instant vous écriviez vos fonctions avant de les utiliser.
Ex:

int RacinesPoly(int a,1int,int,int &rl,1int &r2);

vold afficherPoly(void)

{

; nbres = RacinesPoly(1l,2,3,resl,res2);....

}

int RacinesPoly(int c0,int cl,int c2,1int &rl,int &r2)

{

return nb sol;

SIGNATURE SUIVI D'UN BLOC

int factorielle(int n);
{
int i; int r;
r = 1;
for (1i=1,; i<=n; i++) {r = r*i;}

return r;

Quel est le probleme ?

=> Le “;” aprés I'entéte : devient une signature et plus I'entéte !

MAUVAISE INITIALISATION

int 1i;
int 7,
i=20; 3 =20;
while (i < N) {
while (3 < M) {
Jt++;
}

i++;

int 1i;
int 7,
i =0;

while

(1 < N) {

0;

while

J++;
}
i++;

}

.
14

(3 < M)

{

CONCLUSION

Approfondissement des notions de fonction et procédure
Définition des parametres formels et effectifs

Compréhension du mécanisme de passage de parametres

o Par valeur (donnée) : copie dans une variable locale ;
modifications perdues

o Par référence (donnée résultat) : on travaille directement sur le
contenu de la variable ; modifications conservées

Apercu des erreurs fréquentes en programmation

