Licence STS Université Claude Bernard Lyon I

LIFAP1 : ALGORITHMIQUE
ET PROGRAMMATION IMPERATIVE,
INITIATION

COURS 2 : BASES DU LANGAGE C

I ——————

OBJECTIFS DE LA SEANCE

Apprendre la syntaxe du langage C
Savoir traduire un algorithme en langage C

Vous permettre de pouvoir débuter les séances de travaux pratiques
o Environnement C5 / (code::blocks)
o OS : windows (linux)

PLAN

Historique du C

Un programme C

Les entrées / sorties en C

Types des données algorithmique / C

Eléments syntaxiques du langage C
o Structures de controles

Traduction d’algorithmes simples en langage C

UN PEU D'HISTOIRE

1945, les programmes étaient écrits directement
en code machine...

1954 : FORTRAN 1

1978 : “The C programming language”
° Brian W. Kernighan et Dennis M.Ritchie

1983-1988 : Normalisation ANSI (avec C++)

1988 : “The C programming language : 2eme édition”
o des mémes auteurs

Evolutions permanentes

PLAN

Historique du C

Un programme C

Les entrées / sorties en C

Types des données algorithmique / C

Eléments syntaxiques du langage C
o Structures de controles

Traduction d’algorithmes simples en langage C

PREMIER EXEMPLE EN C

premierexemple.cpp Mots clé du langage :
o |dentifiés par une couleur particuliere
dans l'interface C5 et Code::Blocks

1 #include <iostream.h>

2 #include <i°5tf"ea$; Anatomie d’un programme C :

3 UsS1ing namespace s > . . .

. s g ’ > Nom de fichier d’extension .cpp

5 int main (void) o Utilisation de bibliotheques

6 { (déclarations des fonctions externes) :
7 cout << “Hello world” << endl ; directive #include

8 return 0 ; ; .

5 } o Pour entrées / sorties

o Pour opérations mathématiques

O
oo

o Définitions des sous-programmes
(fonctions et procédures) = CM 3

o Définition de la fonction
principale main

PREMIER EXEMPLE EN C

premierexemple.cpp Fonction principale : main

o Instruction particuliere
exit ou return (EXIT_SUCCESS)

»indique si le programme s’est déroulé et

1 #include <iostream.h> terminé normalement

2 #include <iostream>
3 using namespace std;

4 Délimitation des blocs par { et }

5 int main (void))]]

s { Toutes les instructions se terminent
7 cout << “Hello world” << endl ; parun’ ;"

8 return 0 ;

2 }

cout : permet d’afficher un message a
’écran (c++) (cout <<)

o “ " :chaine de caracteres
o On peut avoir plusieurs <<

o end! : constante C++

UN PROGRAMME C

Suites ordonnées de déclarations ou de définitions
o de types,
o de variables,
o de sous-programmes (CM 3)

Une fonction particuliere : main
o premiere fonction appelée lors de I'exécution
o appelle les autres sous-programmes

Tout nom doit étre déclaré avant d’étre utilisé
o type, variable, fonction

Préprocesseur : #include

o directive de compilation pour l'inclusion des déclarations des sous-
programmes prédéfinis dans les bibliotheques

PLAN

Historique du C

Un programme C

Les entrées / sorties en C

Types des données algorithmique / C

Eléments syntaxiques du langage C
o Structures de controles

Traduction d’algorithmes simples en langage C

LES ENTREES / SORTIES EN C / C++

Communication programme / utilisateur

Traduction de "afficher" et "lire" de l'algorithmique
o cout : permet d’afficher un message a l’écran
o Exemple : on veut afficher un message de bienvenue a l'utilisateur :
cout << "bienvenue" ;

o cin : permet de récupérer une valeur fournie par
I"utilisateur

o Exemple : on veut demander a l'utilisateur une valeur en vue de
calculer sa factorielle

cin >> nomvariable ;

LES ENTREES / SORTIES EN C

cout << "texte"

<
<«

cin >> variable Programme

Attention :
o << pour cout (du programme vers I'écran)
o >> pour cin (du clavier vers le programme)

LES ENTREES / SORTIES EN C

Dans un "cout" on peut mettre
o Des chaines de caracteres : cout <<"bienvenue" ;

o Le contenu de variables : cout << a;
o Une constante qui permet de passer a la ligne : cout << endl ;

On peut mélanger ces trois types d’affichage dans un méme cout ; il suffit de
répéter les "<<" :
o Ex : cout <<"bienvenue " << a << endl;

° sila variable a contient "Pierre" alors on affichera sur la méme ligne "bienvenue
Pierre" puis on passera a la ligne suivante avec endl.

On peut saisir plusieurs valeurs a la suite dans un "cin" : cin>>a>>b>>c
permettra de saisir les trois variables a, b et c.

cin >> "bienvenue" ; est une erreur, pourquoi ?

PLAN

Historique du C

Un programme C

Les entrées / sorties en C

Types des données algorithmique / C

Eléments syntaxiques du langage C
o Structures de controles

Traduction d’algorithmes simples en langage C

CORRESPONDANCE DES TYPES

Algorithmique Langage C / C++

Entier int, short

Réel float, double

(différence sur la longueur du
codage et donc de la précision)

Booleén bool

Caractere char

DECLARATION DES VARIABLES

algorithmique langage C
oV :entier °ointv;
°o X : réel o float x ; (4 octets)
o |X : réel o double Ix ; (8 octets)
°o C:caractere o char c;

Octet : vecteur de huit bits (chiffre binaire)

pouvant représenter 28 (256) valeurs differentes

STOCKAGE DES VARIABLES

Type Taille
Les variables sont stockées dans 1a (octets)
meémoire vive de l'ordinateur
Char
Place occupée fonction du type de |la Short
variable =
Int, long, float 4
En mémoire, les variables sont repérées
par leur emplacement ou adresse Double 8
o Soient les déclarations suivantes : Long double 10
° inta;
o char toto, indice;
o float fact;
o Les variables seront stockées en mémoire de
la maniéere suivante :
a a a a Toto | indice | fact fact
i-1 i i+1 i+2 i+3 i+4 I+5 iI+6

LES CONSTANTES EN C

Une constante = nom désignant une valeur non modifiable lors de I'exécution
d'un programme.

Définie grace a la directive du préprocesseur #define,
qgui permet de remplacer toutes les occurrences du mot qui le suit par la
valeur immédiatement derriere elle.

o #define P1 3.1415927 remplacera tous les identifiants « Pl » (sans les guillemets) par
la valeur 3.1415927

Toutefois, avec cette méthode les constantes ne sont pas typées
=>» utiliser le mot clé const, qui permet de déclarer des constantes typées :

o const int DIX = 10;

PLAN

Historique du C

Un programme C

Les entrées / sorties en C

Types des données algorithmique / C

Eléments syntaxiques du langage C
o Structures de contréles

Traduction d’algorithmes simples en langage C

IDENTIFICATEURS

Nom
o de variable,
o de constantes.

Chaine de caracteres
o commencant par une lettre (majuscule ou minuscule)
o constituée de lettres [a-zA-Z], de chiffres [0-9], de _,
° sans accent, ni espace, ni—

Attention : MAJUSCULES et minuscules différenciées
Convention : nom de constante en majuscule

Un identificateur doit étre evocateur de ce gu’il représente

o discriminant : identificateur correct pour variable de calcul du
discriminant;
nom_etudiants : identificateur correct...

o Fgmqgsdgfk, rapidos, tempo, variable : a éviter !l!

INSTRUCTION SIMPLE

Expression ;

; »ala fin de chaque instruction simple

Exécutées séquentiellement de haut en bas
(sens de la lecture)

L'expression est généralement une affectation
o Xx=3;

BLOC D'INSTRUCTIONS

Bloc : séquence d'instructions entre { ... }

Considéré comme une instruction
A utiliser systématiquement dans les instructions complexes
Instructions exécutées du début a la fin du bloc

Les blocs peuvent étre imbriqués

EXEMPLE : PRODUIT DE 2 ENTIERS

Traduction de I'exemple du CM1

#include <iostream>
using namespace std;

int main (void)
{
int a, b, c;
cout<<"Donnez 2 entiers"<<endl;
cin>>a>>b;
c = a*b;
cout<<"Le produit de "<<a<<™ par "<<b<<"™ est : "<<c<<kendl;
return 0 ;

i

STRUCTURES DE CONTROLE

Constructions du langage algorithmique

Alternative :
o Si-alors-sinon

Itérations
o Tant que ... Faire ...FinTantQue

o Faire ... Tant que ...
o Pour...de...a ... pas de... Faire ...FinPour

Sélection
o Selon... autrement ... Fin Selon

TRADUCTION DE L'ALTERNATIVE

Si expressionCondition if (expressionCondition)
Alors {
Action(s) 1 Action(s) 1
Sinon }
Action(s) 2 else
FinSi {
Action(s) 2
}

 Attention : ne pas mettre de ; apres la condition !!

« Comme en algorithmique : partie else (sinon) pas forcément
necessaire

ALTERNATIVE : EXEMPLE

Si la moyenne de deux notes est supérieure ou égal a
10
on affiche recu sinon on affiche recalé.

si (moyenne >=10) if (moyenne >=10) |
alors {

afficher (recu) cout << "recu";
sinon }else{

afficher (recalé) cout << "recalé";

Fin si 1

TRADUCTION DE TANTQUE...FAIRE

TantQue ExpressionCondition Faire
Action(s)

FinTantQue

Traductionen C:

while (expressionCondition)

{

Action(s)

}

TRADUCTION DE TANTQUE...FAIRE

TantQue i>1 Faire while (i>1)
f& f+i {
< i f=f+i;
FinTantQue i=i-1;

}

TRADUCTION DE FAIRE ... TANTQUE

Faire do
Action(s) {

TantQue expressionCondition Action(s)

}

while(expressionCondition);

La sequence d’instructions “Action(s)” est effectuée
au minimum une fois puisque |'évaluation de la
condition est effectué au sortir de la boucle.

BOUCLE A NOMBRE D’ITERATION CONNU

for (instructionl ; instruction 1 ; /* intialisation */
expressionCondition ;
. . /* boucle */
instruction2) _ . .
while (expressionCondition)
{ {
Action(s .
s) Action(s)

instruction 2 ; /* pas de l'itération */

Deux méthodes pour écrire la méme chose

Nombre d’itérations connu au départ

EXEMPLE POUR ECRIRE LES NOMBRES DE 1 A 10

#include <iostream.h> #include <iostream.h>
#include <stdlib.h> #include <stdlib.h>
int main() int main()
{ {

inti; inti;

for (i = 1; i <=10; i=i+1) =1

{ while (i <=10)

cout<<i<<"": {

} cout<<i<"" ;

return O ; \ =i+1;
! return O ;

}

SELON CHOIX

. _ En algorithmique : selon choix
switch (expression)
expression est une expression entiere

{ quelconque

caseel: _ _ _
Action(s) 1 brea!< per\metlde sortir glu SWIch ; sinon on
break continue a executer la ligne suivantes

Case e2: default : au cas ou I'expression ne prendrait
Action(s) 2 aucune des valeurs définies
break ;

default :

Action(s) par défaut

SELON CHOIX : EXEMPLE

switch (jour)

selon jour {
1 - afﬁCher('Lundil) case 1 : cout<<"lundi";
) break;
2 : afficher('Mardi') case 2 : cout<<"mardi";
3 : afficher('Mercredi') break;
] : N case 3 : cout<<"mercredi";
4 . afficher('Jeudi') break;
5 : afficher("Vendredi') case 4 : cout<<b"jeuliii";
] . . . reak;
6: afﬁCher(Samedi) case 5 : cout<<"vendredi";
/7 : afficher('Dimanche’) break;
autrement : case 6 : cout<<"samedi";
) break;
. 1 1 /
afﬁCher(Erreur) case 7 : cout<<"dimanche";
fin selon break;
default : cout<<"erreur";
break;
by

LES COMMENTAIRES EN C

Objectifs
o Expliguer comment fonctionne le programme

o Justifier les choix qui ont été faits
o S’y retrouver quand on reprend un programme

Bloc de commentaires sur plusieurs lignes délimités par /* et */ :
exemple
/* blablabla

ici on calcule ...*/
Commentaire en fin de ligne
// commentaire

A utiliser sans modération !!

EXPRESSIONS ENTIERES

Opérations réalisables sur les entiers

Types : int, short

Opérations arithmétiques :
o Opérations mathématiques standards : +, -, *, /

> Modulo = reste de la division entiere (%)
o (12%5)=2
o (5% 12)=5

Résultat entier si opérandes entiers : 1 /2 ==

EXPRESSIONS REELLES

Opér ations réalisables sur les réels

Types : float, double
> float : stockages

o double : calcul (plus de précision)

Opérations arithmétiques : +, -, *, /

TYPAGE ET CONVERSION IMPLICITE

Calcul :
o 2 opérandes int : résultat int
o 2 opérandes float ou double : résultat double
o opérande entier et opérande réel : résultat double

Affectation :
o entier dans une variable réelle : conversion

° a=2
° si areel alors a=2.0
o réel dans une variable entiere : on enleve la partie décimal

o ent =2,245
o si ent entier alors ent =2 !l

OPERATEURS RELATIONNELS

égal : ==

différent : I=

inférieur ou égal : <=
inférieur strictement : <
supérieur ou égal : >=

supeérieur strictement : >

attention : ne pas utiliser == avec les réels
o Ex (((1/3)*3)/3)*3... égal? 1 ...
o probléme de précision dans le codage des réels

OPERATEURS LOGIQUES

ET : && (et commercial, perluete ou esperluette)
OU: || (pipe, 2 barres verticales) (Alt GR + 6)
NON : !

Utiliser les parentheses pour respecter les priorités des opérateurs

Attention AND / OR et NOT sont des mots clés alternatifs ! IIs PEUVENT
se compter comme les opérateurs standards mais certains compilateurs
peuvent ne pas les reconnaitre = a éviter !

BOOLEEN

Pas vraiment de booléen en C
(méme si le type bool existe)

Codage des valeurs booléennes dans les entiers :
o 0 :faux
o autres valeurs, souvent 1 : vrai (!0 ==1)

Stockage dans un entier :
° intb;
cb=((a<2)&&(i>10))
> b aura pour valeur soit 0 ou soit 1

OPERATIONS EXOTIQUES SUR LES ENTIERS

Opérations qui modifient la valeur stockée
° ++ et -- (incrémentation et décrémentation automatique)

o souvent utilisé sous la forme : i++;
o équivalentai=i+1;
ca=0;i=1a=i++;

o que valent a et i apres exécution ?
a == 1' | == 2

ca=0;i=1,a=++1i;

o que valent a et i apres exécution ?

a==2,i==

Opérateurs += -= et /=

PLAN

Historique du C

Un programme C

Les entrées / sorties en C

Types des données algorithmique / C

Eléments syntaxiques du langage C
o Structures de controles

Traduction d’algorithmes simples en langage C

EXEMPLE COMPLET =2 QUE FAIT CE PROGRAMME ?

#include <iostream>
using namespace std;

int main() {
int n, nombre;

cout << "Combien de nombres voulez-vous entrer ? “;
cin >> n;

cout << "Entrez " << n << " nombres entiers :" << endl;

for (int i = 1; i <= n; i++) {
cin >> nombre;

if (nombre % 2 == 0) {
cout << nombre << " est pair." << endl;
} else {
cout << nombre << " est impair." << endl;
by
}

return 9;

CONCLUSION

Petit tour d’horizon des éléments syntaxiques de base du langage C
o Types et variables
o Structures de controle
o Conditions / expressions

A enrichir durant les prochaines séances
De quoi débuter les travaux pratiques

Présentation rapide de l'outil utilisé

