
LIFAPI : ALGORITHMIQUE
ET PROGRAMMATION IMPÉRATIVE,

INITIATION

COURS 1 : INTRODUCTION À L’ALGORITHMIQUE

1

Licence STS Université Claude Bernard Lyon I

COORDONNÉES ET SITE WEB

Responsables de L’UE
◦ Elodie DESSEREE elodie.desseree@univ-lyon1.fr
◦ Marie LEFEVRE marie.lefevre@univ-lyon1.fr

Responsables d’amphis
◦ Elodie DESSEREE (séquence 1)
◦ Nicolas PRONOST (séquence 3)
◦ Marie LEFEVRE (séquence 5)

Site WEB de l’UE (pour infos pratiques, supports,
corrections …)
http://perso.univ-lyon1.fr/elodie.desseree/LIFAPI/

2

CM : 8 séances de 1h30
◦ Présentation des concepts fondamentaux
◦ Illustration par des exemples

TD : 16 séances de TD de 1h30
◦ Exercices d’application des notions vues en CM
◦ Ecriture d’algorithmes sur papier
◦ Indispensable d’avoir appris le cours avant la séance

TP : 16 séances de 1h30
◦ Exercices de difficulté similaires à ceux des TDs mais

traduits en langage de programmation  sur machine

3

DÉTA IL D ES EN SE IG N EM EN TS D E L’UE

PLANNING DE L’ANNÉE 2025-2026

4

PLANNING DE L’ANNÉE 2025-2026

5

4 épreuves avec un coefficient de 25% chacune
◦ semaine du 29 septembre  1h en TD
◦ semaine du 10 novembre  1h en TD
◦ semaine du 24 novembre  1 en TP sur machine
◦ semaine du 8 décembre  1h30 en TP sur machine

1 épreuve de seconde chance (mais pas de rattrapage en juin !!)
◦ pendant la semaine d’examens en janvier 2026
◦ pour rattraper 1 absence ou améliorer une note (pas obligatoire si aucune absence)

6

MODALITÉS DE CONTRÔLE DES CONNAISSANCES ET
DES COMPÉTENCES (MCCC)

Gestion des absences
◦ À justifier dans les 48h qui suivent l’absence auprès de la scolarité
◦ 1 absence max (justifiée ou non) aux épreuves de contrôle continu  au-delà DEF

Calcul de la moyenne de l’UE
◦ Si pas d’absence et pas de seconde chance alors moyenne des 4 notes de CC
◦ Si pas d’absence mais seconde chance alors moyenne des 4 meilleures notes parmi les

5
◦ Si 1 absence alors seconde chance obligatoire et moyenne 3 notes CC + seconde chance
◦ Si 2 absences ou plus alors défaillant pour l’année

7

MCCC ET GESTION DES ABSENCES / CALCUL DE LA
MOYENNE

INFORMATIONS PRATIQUES

Début des TDs
◦ Juste après ce CM

Début des TPs
◦ Semaine du 15 septembre

Environnement de travail
◦ Windows
◦ Répertoire utilisateur W:

Outils complets pour le développement
◦ C5 (https://c5.univ-lyon1.fr/)
◦ CodeBlocks (gratuit)
◦ Dev-Cpp (gratuit)
◦ Microsoft Visual C++ (logiciel payant)
◦ Xcode sous Mac-OS

8

PLAN

LIFAPI : programme de l’UE, objectifs

LIFAPI / Culture Numérique / Autres UE informatiques

Le fonctionnement interne d’un ordinateur

La programmation

Le langage algorithmique

La syntaxe algorithmique

Quelques exemples complets

9

PROGRAMME DE L’UE

Algorithmique :
◦ syntaxe algorithmique, écriture d'algorithmes
◦ structures de contrôle : itérations, conditions
◦ sous-programmes (fonctions / procédures)
◦ mode de passage des paramètres dans des sous-programmes
◦ tableaux / chaînes de caractères
◦ structures

Programmation impérative :
◦ Traduction dans un langage de programmation adapté

des notions algorithmiques étudiées (fonction / procédure, alternative,
séquence, structures, tableaux, chaînes de caractères, …)

(Utilisation d’une bibliothèque graphique)

10

OBJECTIFS DE L’UE

Analyser un problème

Le formaliser

Concevoir une solution (algorithme)

Programmer l'algorithme

Exécuter le programme sur un ordinateur

11

PLAN

 LIFAPI : programme de l’UE

 LIFAPI / PIX / Autres UE informatiques

 Le fonctionnement interne d’un ordinateur

 La programmation

 Le langage algorithmique

 La syntaxe algorithmique

 Quelques exemples complets

12

AUTRES UE INFORMATIQUES DE LA L1

◦ PIX dans TR1 : concepts informatiques généraux (bureautique,
outil internet, réseaux, messagerie, création de pages WEB …) 
certification PIX (pour TOUS)

◦ Pour licence Info ou Math-Info
◦ LIFUNIX : Unix
◦ LIFBAP : Bases de l’architecture pour la programmation

◦ LIFAMI : Applications aux maths et à l’info
◦ LIFAPR : Algorithmique programmation fonctionnelle et récursive
◦ LIFIRW : Introduction aux réseaux et au Web

13

PLAN

LIFAPI : programme de l’UE

LIFAPI / Culture Numérique / Autres UE informatiques

Le fonctionnement interne d’un ordinateur

La programmation

Le langage algorithmique

La syntaxe algorithmique

Quelques exemples complets

14

COMPOSITION D’UN ORDINATEUR

Vision simpliste du contenu d’un ordinateur
◦ Processeur : effectue les opérations
◦ Mémoire(s), disques : stockage données, instructions
◦ …

Effectue des opérations à partir de données

Vues d’un processeur

15

LE PROCESSEUR COMPREND

Programme (séquence d'instructions du processeur)
cc2: 55 push %ebp
cc3: 89 e5 mov %esp,%ebp
cc5: 53 push %ebx
cc6: 83 ec 14 sub $0x14,%esp
cc9: e8 fc ff ff ff call cca
cce: 81 c3 02 00 00 00 add $0x2,%ebx
cd4: 8b 45 08 mov 0x8(%ebp),%eax
cd7: 89 44 24 04 mov %eax,0x4(%esp)
cdb: 8b 45 08 mov 0x8(%ebp),%eax
cde: 89 04 24 mov %eax,(%esp)

Code machine Assembleur

Seul langage compris par le processeur
Codage hexadécimal des instructions
 Quasi inutilisable pour programmeur

16

PLAN

LIFAPI : programme de l’UE

LIFAPI / Culture Numérique / Autres UE informatiques

Le fonctionnement interne d’un ordinateur

La programmation

Le langage algorithmique

La syntaxe algorithmique

Quelques exemples complets

17

POURQUOI PROGRAMMER ?

Programmation existe partout
◦ Réveil
◦ Digicode
◦ Téléphone
◦ Tablette …

Besoin d’effectuer des nouvelles tâches

 besoin d’écrire des programmes nouveaux
◦ Par non informaticien : formalisation en français
◦ Par informaticien : langage compréhensible par lui et la machine

18

UN PROGRAMME C’EST QUOI ?

Un programme, c'est tout ce qui fonctionne sur votre ordinateur, par exemple :
◦ Un jeu vidéo (Fortnite, Call of Duty, …)
◦ Un lecteur vidéo (comme VLC par exemple ou Youtube),
◦ Ou même un truc tout simple comme OpenOffice, Mozilla Firefox.
◦ Et le plus important le système d’exploitation (Windows, Android …)

Sans programme pas d’application sur votre ordinateur !

19

LA NAISSANCE DE LA PROGRAMMATION

20

 Première machine programmable :
métier à tisser de Jacquard en 1801
(suite de cartons perforés avec le motif à
reproduire lors du tissage).
Repris par IBM bien plus tard !

 En 1936, création de l'ordinateur
programmable : la machine de Turing
 premier calculateur universel

programmable
 invention des concepts et des termes de

programmation et de programme.

LE LANGAGE DE PROGRAMMATION

Langage commun entre
◦ Le programmeur
◦ Le processeur : traduit en assembleur puis en code machine

Grande diversité
◦ Langage C/C++ (LIFAPI, ce semestre)
◦ Python (NSI au lycée pour certains)
◦ Scheme / Racket (LIFAPR, prochain semestre)
◦ Java, Matlab, Mathematica, macros word / excel (écrites en Visual Basic for

Applications VBA)…
◦ …
◦ Plus de 700 langages de programmation !!

21

DU PROBLÈME AU PROGRAMME

Besoins exprimés en français (cahier des charges)

Traduction dans un langage "universel"  algorithmique

Traduction de l’algorithme en programme C

Puis en code assembleur

Puis en code machine compréhensible par le processeur

22

Besoins Algorithme Programme C Assembleur Code machine

Non informaticien informaticien processeur

PLAN

LIFAPI : programme de l’UE

LIFAPI / Culture Numérique / Autres UE informatiques

Le fonctionnement interne d’un ordinateur

La programmation

Le langage algorithmique

La syntaxe algorithmique

Quelques exemples complets

23

L’ALGORITHME AU QUOTIDIEN

L'algorithmique intervient dans la vie de tous les jours
◦ Une recette de cuisine :

◦ des entrées (les ingrédients, le matériel utilisé) ;
◦ des instructions élémentaires simples, dont l'exécution amène au résultat voulu ;
◦ un résultat : le plat préparé.

◦ Le tissage, surtout tel qu'il a été automatisé par le métier Jacquard est une
activité que l'on peut dire algorithmique.

◦ Un casse-tête, tel le Rubik's Cube, peut être résolu de façon systématique
par un algorithme qui mécanise sa résolution.

◦ En sport, l'exécution de séquences répondant à des finalités d'attaque, de
défense, de progression.

24

ALGORITHME : DÉFINITION

 Un algorithme est une méthode
◦ Suffisamment générale pour permettre de traiter toute une classe de

problèmes
◦ Combinant des opérations suffisamment simples pour être effectuées par

une machine

 Pour un problème donné, il peut y avoir plusieurs algorithmes ou aucun

25

ALGORITHME : PROPRIÉTÉS

Lisible : l'algorithme doit être compréhensible même par un non-
informaticien

Haut niveau : doit pouvoir être traduit en n'importe quel langage de
programmation ne pas faire appel à des notions techniques relatives
à un programme particulier ou bien à un système d'exploitation donné

Précis / non ambigu : chaque élément de l'algorithme ne doit pas
porter à confusion

Concis : ne doit pas dépasser une page, sinon décomposer le problème
en plusieurs sous-problèmes

Structuré : un algorithme doit être composé de différentes parties
facilement identifiables

26

ALGORITHME : MÉTHODOLOGIE

Trois étapes caractérisent la résolution d'un problème
1. comprendre la nature du problème posé

et préciser les données fournies
("entrées" ou "input" en anglais)

2. préciser les résultats que l'on désire obtenir
("sorties" ou "output" en anglais)

3. déterminer le processus de transformation
des données en résultats.

27

 Un algorithme est
◦ Une suite d’instructions élémentaires
décrites dans un langage universel exécutées de manière séquentielle
◦ Indépendant du langage de programmation

 Un langage de programmation
◦ Est un langage commun entre machine et programmeur
◦ Implante ou réalise un algorithme

28

ALGORITHMIQUE / LANGAGE PROGRAMMATION

PLAN

LIFAPI : programme de l’UE

LIFAPI / Culture Numérique / Autres UE informatiques

Le fonctionnement interne d’un ordinateur

La programmation

Le langage algorithmique

La syntaxe algorithmique

Quelques exemples complets

29

L’INSTRUCTION, LA SÉQUENCE

Instruction
◦ Étape dans un programme informatique / brique de base
◦ Dicte à l'ordinateur l'action nécessaire qu'il doit effectuer avant de passer à

l'instruction suivante.
◦ Opération élémentaire
◦ Comprise et exécutée par le processeur

Séquence / suite d’instructions
◦ Suite bloquée d'instructions qui sont exécutées dans l'ordre où elles sont écrites,

dans toutes les circonstances du traitement.
◦ Délimitée par Début et Fin ( bloc)

Début

instruction1

instruction2

…

instructionN

Fin

30

LA VARIABLE / LA CONSTANTE

Une variable
◦ nom utilisé dans un programme pour faire référence à une donnée manipulée

par programme
◦ peut contenir un entier, un réel, un caractère…
◦ associe un nom ou symbole à une valeur
◦ sa valeur peut éventuellement varier au cours du temps

Une constante
◦ nom utilisé pour faire référence à une valeur permanente (dont la valeur ne

change pas au cours du programme).
 PI = 3.14159…

31

TYPE DES DONNÉES

Définit les valeurs que peut prendre une donnée, ainsi que les
opérateurs qui peuvent lui être appliqués

Types de base utilisés en algorithmique
◦ Caractère : ‘c’ , ‘a’, ‘-’, ‘!’ …
◦ Entier : 3 0 -3 -789
◦ Réel : 0 3,345 -7,678
◦ Booléen : VRAI / FAUX
◦ …

32

DÉCLARATION DES VARIABLES

 La déclaration permet de donner un nom à la variable
◦ Eventuellement de lui associer un type,
◦ Ainsi qu'une valeur initiale.

 Exemples
◦ indice : entier
permettra de déclarer une variable "indice" de type entier
◦ Est_majuscule : booléen
permettra de déclarer une variable booléenne

 La variable doit avoir un nom aussi évocateur que possible de son contenu

33

AFFECTATION

Attribue une valeur à une variable

Symbolisée en algorithmique par le symbole ""

La valeur peut être
◦ une valeur numérique

a  2 (la variable a contient la valeur 2)
◦ le résultat d’une expression

variable  expression

var1  a + 2*racine(15)

34

OPÉRATIONS SUR LES VARIABLES

Affectation : variable  expression

La variable contient la valeur de l'expression

Cette valeur est conservée jusqu'à la prochaine affectation

Une variable peut apparaître dans une expression,
elle sera remplacée par la valeur qu'elle contient au moment du calcul
de l'expression

35

CO N TEN U D ’U N E V A RIA B LE

Pour pouvoir stocker la valeur et vérifier qu'une variable est correctement utilisée,
une variable a un type.

Un type est
◦ un domaine de valeurs (ensemble des valeurs possibles)

◦ Entiers, réels
◦ Booléen
◦ caractères

◦ un ensemble d'opérations pour manipuler ces valeurs
◦ Addition, soustraction, multiplication …
◦ Opérations logiques
◦ Concaténation, substitution …

36

ENTRÉES / SORTIES

Assurent la communication programmeur / machine

Données du problème (utilisateur machine)

Lire (valeur) ou Saisir (Valeur)

Résultats affichés à l’écran (machine  utilisateur)

Afficher (valeur) ou Ecrire (Valeur)

37

STRUCTURES DE CONTRÔLE

 Contrôlent l'ordre dans lequel seront effectuées les
instructions

 2 catégories
 Les structures de choix
 Les structures de boucles

38

CONDITIONNELLE

Si condition alors

instruction(s)

Sinon

instruction(s)

FinSi

Condition = expression booléenne (vrai / faux)
◦ Élémentaire
◦ Complexe (conjonction, négation ou disjonction de conditions élémentaires

et/ou complexes)

Partie sinon facultative : il n’y a pas nécessairement de traitement à
effectuer.

39

CONDITIONNELLE : EXEMPLES

 Exemple 1 sans "sinon"

Si (A>2) alors
BA*3

FinSi

 Exemple 2 avec "sinon"

Si ((A<10) et (B>racine(A*5))) alors
BA*3
A A+B

Sinon
AA+2

BA*B
FinSi

Les opérateurs de comparaison sont
◦ =  égal à…
◦ ≠  différent de…
◦ <  strictement plus petit que…
◦ >  strictement plus grand que…
◦ ≤  plus petit ou égal à…
◦ ≥  plus grand ou égal à…

Expression booléenne

3 opérateurs logiques ET, OU, NON

40

CO N D IT IO N / TEST

 Apparaît dans les "Si" et les "Tant Que"

 Variable booléenne qui renvoie comme valeur VRAI ou FAUX

 Combinaison de conditions
 conjonction (ET)
 disjonction (OU)
 négation (NON)

 Tables de vérité

41

CONDITIONNELLE : IMBRICATION

42

 gérer des décisions complexes ou multiniveaux
 placer un test conditionnel à l’intérieur d’un autre

permet de
 raffiner les choix
 réagir à plusieurs niveaux

 Pourquoi utiliser l’imbrication ?
- Pour éviter les répétitions.
- Pour organiser la logique de manière hiérarchique.
- Pour gérer des cas complexes sans tout mélanger.

CONDITIONNELLE : IMBRICATION

43

si temperature > 25 alors
si budget ≥ 100 alors

afficher "On part à la plage !"
sinon

afficher "On fait un pique-nique au parc."
fin si

sinon
afficher "On reste à la maison avec un bon film.«

fin si

STRUCTURE CONDITIONNELLE SELON

 lorsqu’on a plusieurs niveaux d’imbrication

aussi appelée à choix multiple ou sélective

 sélectionne entre plusieurs choix à la fois, et non entre deux choix
alternatifs (le cas de la structure SI).

SELON (sélecteur) FAIRE
Cas <valeurs-1> : <suite d'action (s)-1>
[Cas <valeur-2> : <suite d'action (s)-2>
……….]
[Autrement : <suite d'action (s)-n>]

FIN SELON

Le sélecteur est une variable de type entier ou caractère

44

STRUCTURE CONDITIONNELLE SELON : EXEMPLE

Afficher la couleur en fonction d’un entier = 1: rouge, 2 : orangé, 3 : jaune, 4
: vert, 5 : bleu, 6 : indigo et 7 : violet.

Selon couleur Faire
Cas 1 : afficher(" rouge")
Cas 2 : afficher(" orangé")
Cas 3 : afficher(" jaune")
Cas 4 : afficher(" vert")
Cas 5 : afficher(" bleu")
Cas 6 : afficher(" indigo ")
Cas 7 : afficher(" violet")

Autrement : afficher ("Couleur inconnue")
Fin selon

45

STRUCTURE DE CONTRÔLE ITÉRATIVE

46

 Une boucle ou itération est une structure de contrôle destinée à exécuter une
portion de code plusieurs fois de suite

 Les langages proposent en général plusieurs types de boucles :
 boucle à pré-condition : la condition est vérifiée avant la première boucle
 boucle à post-condition : la condition est vérifiée après la première boucle
 boucle à condition d'arrêt : la condition est vérifiée au milieu de la boucle
 boucle itérative : un compteur est utilisé pour compter le nombre

d'itérations
 boucle de parcours : la boucle est exécutée sur chacun des éléments d'une

liste

Permet de réitérer une instruction
ou une suite d’instructions
jusqu’à ce qu’une condition ne soit plus vraie

Condition évaluée avant d’effectuer les instructions

TantQue condition faire

instruction(s)

FinTantQue

47

ITÉRATION : BOUCLE CONDITIONNELLE

i 1

TantQue i<10 faire

afficher(i)

i  i+1

FinTantQue

Instruction qui modifie la condition
pour éviter les boucles infinies

48

BOUCLE CONDITIONNELLE : EXEMPLE

Autre construction

Condition évaluée après avoir effectué les instructions

Faire

instruction(s)

TantQue condition

Les instructions sont effectuées au moins une fois

49

ITÉRATIVE : BOUCLE CONDITIONNELLE

i 1

Faire

afficher(i)

i  i+1

Tant que i< 10

instruction qui modifie la condition pour éviter les boucles infinies

50

BOUCLE CONDITIONNELLE : EXEMPLE

BOUCLE INCONDITIONNELLE : POUR

Cas particulier du TantQue

Pour compteur allant de … à … par pas de … faire

instruction(s)

FinPour

Permet de répéter un nombre connu de fois
une suite d’instructions

51

Compter de 1 à 10 (incrémentation)
Pour i allant de 1 à 10 par pas de 1 faire

afficher(i) Résultat affiché ?
FinPour

Compter de 10 à 1 (décrémentation)
Pour i allant de 10 à 1 par pas de -1 faire

afficher(i) Résultat affiché ?
FinPour

Compter de (deux en deux)
Pour i allant de 0 à 10 par pas de 2 faire

afficher(i) Résultat affiché ?
FinPour

52

BOUCLE INCONDITIONNELLE : EXEMPLES

 Break Interrompt immédiatement la boucle
pour i de 1 à 10 faire

si i mod 2 = 0 alors
afficher "Premier nombre pair : " + i
break

fin si
fin pour

 Continue Passe directement à l’itération suivante
pour i de 1 à 10 faire

si i mod 3 = 0 alors
continue

fin si
afficher i

fin pour

 Inconvénients
 Le flux logique devient plus difficile à suivre
 Risque de masquer des erreurs
 Contredit la logique structurée
 Difficile à tester et à maintenir

53

BO U C LE IN C O N D IT IO N N E LLE : PA R T IC U LA R IT É S

PLAN

LIFAPI : programme de l’UE

LIFAPI / Culture Numérique / Autres UE informatiques

Le fonctionnement interne d’un ordinateur

La programmation

Le langage algorithmique

La syntaxe algorithmique

Un exemple complet

54

EXEMPLE : CALCUL DU PRODUIT DE 2 ENTIERS

On veut calculer le produit de a par b deux entiers et stocker le résultat dans une
variable C

Version 1  en utilisant l’opérateur "*"

Début
a,b,c : entiers déclaration des variables
afficher ("Donnez deux entiers") entrées / sorties
saisir (a)
saisir (b)
c  a*b stockage du résultat
afficher ("Le produit de" , a, "par" , b, " est : ", c)

Fin

55

EXEMPLE : CALCUL DU PRODUIT

 Dans cet algorithme, on n’utilisera pas la multiplication !!

 Raisonnement : 5 * 4 = 5 + 5 +5 + 5

4 fois

 Généralisation : a * b = a+a+…+a (b fois)

 Formalisation
tant qu’on n’a pas ajouté b fois a,
on ajoute a à la somme

56

EXEMPLE : CALCUL DU PRODUIT

Début
a,b,c : entiers déclaration des variables
afficher ("Donnez deux entiers") entrées / sorties
saisir (a)
saisir (b)
c  0 initialisation à 0 du résultat
TantQue b ≠ 0 faire

c  c + a incrémentation
b  b – 1 modification de la condition

FinTantQue
afficher ("Le produit de" , a, "par" , b, " est : ", c)

Fin

57

EXEMPLE 2 : CALCUL DU PRODUIT

Traduction algorithmique avec un "pour"
Début

a,b,c ,i: entiers déclaration des variables
afficher ("Donnez deux entiers") entrées / sorties
saisir (a)
saisir (b)
c  0 initialisation à 0 du résultat
Pour i allant de 1 à b par pas de 1 faire

c  c + a incrémentation
Fin Pour
afficher ("Le produit de" , a, "par" , b, " est : ", c)

Fin

58

CO N C LU SIO N

Tour d’horizon des notions de bases de l’algorithmique
◦ Variable : déclaration, type
◦ Instruction : séquence, bloc
◦ Structures de contrôle

◦ Conditionnelles
◦ Conditionnelle  si
◦ Sélecteur  selon

◦ Boucles
◦ Conditionnelles  Tant que
◦ Inconditionnelles Pour

59

