Licence STS Université Claude Bernard Lyon I

LIFAPT: ALGORITHMIQUE
ET PROGRAMMATION IMPERATIVE,
INITIATION

COURS 1 : INTRODUCTION A 'ALGORITHMIQUE

I —————————

COORDONNEES ET SITE WEB

Responsables de 'UE
o Elodie DESSEREE elodie.desseree@univ-lyon1.fr
o Marie LEFEVRE marie.lefevre@univ-lyon1.fr

Responsables d’amphis

o Elodie DESSEREE (séguence 1)
> Nicolas PRONOST (séquence 3)
o Marie LEFEVRE (séquence 5)

Site WEB de "UE (pour infos pratiques, supports,
corrections ...)
= http://perso.univ-lyonl.fr/elodie.desseree/LIFAPI/

DETAIL DES ENSEIGNEMENTS DE L'UE

CM : 8 séances de 1h30
o Présentation des concepts fondamentaux
o |llustration par des exemples

TD : 16 séances de TD de 1h30
o Exercices d’application des notions vues en CM
o Ecriture d’algorithmes sur papier
° Indispensable d’avoir appris le cours avant la séance

TP : 16 séances de 1h30

o Exercices de difficulté similaires a ceux des TDs mais
traduits en langage de programmation = sur machine

PLANNING DE LANNEE 2025-2026

Semaine Creneaux
matin de la séguence apres-midi de la séquence
8h00 - 9h30 9h45 - 11h15 11h30 - 13h00 14h00 - 15h30 15h45 - 17h15
08/09/2025 CM1: Algo TD1: Algo 1 TD2 : Algo 2 CM2 ; C/C++
CM3 : Foncti
15/09/2025] TD3:Algo3 [TP1:Priseenmain| TP2: Etoiles BikHERS
procedures
TD4 : Fonctions TP3: Fonctions ; CM4 ; Passage de
22/09/2025 : / ekl Soutien 1 g
procédures procédures parametres
TDS :P d CC1TD TP4 :Foncti
29/09/2025 S . orictions /" |1 e Tablaau
parametres 25% procédures
06/10/2025 TD6 : Pas?age de | TP5: Pas?age de CM6 : Cha‘ines de
parametres parameétres caractéres
13/10/2025]| TD7 : Tableaux 1D | TP6 : Tableaux 1D Soutien 2 CM7 : Structures
TD8 : Tableaux 1D
20/10/2025 /2D TP7 : Tableaux 2D CM8 ;CC Blanc
27/10/2025 Vacances de Toussaint

PLANNING DE LANNEE 2025-2026

03/11/2025

10/11/2025

17/11/2025

24/11/2025

01/12/2025

08/12/2025

15/12/2025

TD9 : Chaines de
caractéres

CC mi-parcours
8h - 9h
(seq1et5)

TD11 : Mémory

TD12 : Structures

TD13 : Démineur

TD14 : Révisions

TD15 : Grapic ou
corrections

TP8 : Chaines de
caractéeres

TP9 : Chaines de
caracteres

TP10 : Structures

TP11 : Memory

TP13 : démineur

TP14 : Grapic ou
corrections

Soutien 3

TD10 : Chaines de
caractéres

CC mi-parcours
14h-15h
(seq 3)

TP noté
25%

TP12 : Démineur

TP noteé
25%

22/12/2025

29/12/2025

Vacances de Noél

05/01/2026

Seconde Chance

MODALITES DE CONTROLE DES CONNAISSANCES ET
DES COMPETENCES (MCCC)

4 épreuves avec un coefficient de 25% chacune
> semaine du 29 septembre = 1h en TD
o semaine du 10 novembre = 1h en TD
o semaine du 24 novembre = 1 en TP sur machine
o semaine du 8 décembre =» 1h30 en TP sur machine

1 épreuve de seconde chance (mais pas de rattrapage en juin !!)
o pendant la semaine d’examens en janvier 2026

o pour rattraper 1 absence ou améliorer une note (pas obligatoire si aucune absence)

MCCC ET GESTION DES ABSENCES / CALCUL DE LA
MOYENNE

Gestion des absences
o A justifier dans les 48h qui suivent I'absence auprés de la scolarité

o 1 absence max (justifiée ou non) aux épreuves de controle continu =» au-dela DEF

Calcul de la moyenne de "UE
o Sipas d’absence et pas de seconde chance alors moyenne des 4 notes de CC

o Sjpas d’absence mais seconde chance alors moyenne des 4 meilleures notes parmi les
5

o Si 1 absence alors seconde chance obligatoire et moyenne 3 notes CC + seconde chance
o Si 2 absences ou plus alors défaillant pour I'année

INFORMATIONS PRATIQUES

Début des TDs
o Juste apres ce CM

Début des TPs
o Semaine du 15 septembre

Environnement de travail
o Windows

o Répertoire utilisateur W:

Outils complets pour le développement
o C5 (https://c5.univ-lyon1.fr/)
o CodeBlocks (gratuit)
o Dev-Cpp (gratuit)
o Microsoft Visual C++ (logiciel payant)
o Xcode sous Mac-0S

PLAN

LIFAPI : programme de I'UE, objectifs

LIFAPI / Culture Numérique / Autres UE informatiques
Le fonctionnement interne d’un ordinateur

La programmation

Le langage algorithmique

La syntaxe algorithmique

Quelques exemples complets

PROGRAMMIE DE L’ UE

Algorithmique :
o syntaxe algorithmique, écriture d'algorithmes

(o]

structures de controle : itérations, conditions
o sous-programmes (fonctions / procédures)

(e]

mode de passage des parametres dans des sous-programmes

o

tableaux / chaines de caractéres

(e]

structures

Programmation impérative :

° Traduction dans un langage de programmation adapté
des notions algorithmiques étudiées (fonction / procédure, alternative,
séguence, structures, tableaux, chaines de caracteres, ...)

(Utilisation d’une bibliotheque graphique)

OBJECTIFS DE L'UE

Analyser un probleme

Le formaliser

Concevoir une solution (algorithme)
Programmer l'algorithme

Exécuter le programme sur un ordinateur

PLAN

LIFAPI : programme de I'UE

LIFAPI / PIX / Autres UE informatiques

Le fonctionnement interne d’un ordinateur
La programmation

Le langage algorithmique

La syntaxe algorithmique

Quelques exemples complets

AUTRES UE INFORMATIQUES DE LA L1

o PIX dans TR1 : concepts informatiques généraux (bureautique,
outil internet, réseaux, messagerie, création de pages WEB ...) =
certification PIX (pour TOUS)

o Pour licence Info ou Math-Info
o LIFUNIX : Unix
o LIFBAP : Bases de l'architecture pour la programmation

o LIFAMI : Applications aux maths et a l'info

o LIFAPR : Algorithmigue programmation fonctionnelle et récursive
o LIFIRW : Introduction aux réseaux et au Web

PLAN

LIFAPI : programme de I'UE

LIFAPI / Culture Numérique / Autres UE informatiques
Le fonctionnement interne d’un ordinateur

La programmation

Le langage algorithmique

La syntaxe algorithmique

Quelques exemples complets

COMPOSITION D" UN ORDINATEUR

Vision simpliste du contenu d’un ordinateur
o Processeur : effectue les opérations

o Mémoire(s), disques : stockage données, instructions

Effectue des opérations a partir de données

Vues d’un processeur

LE PROCESSEUR COMPREND

Programme (séquence d'instructions du processeur)

cc2: 55 push %ebp

cc3: 89e5 mov %esp,%ebp

cc5: 53 push %ebx

cc6: 83 ec14 sub S0x14,%esp

cc9: e8 fc ff ff ff call cca

cce: 81¢3 02000000 add SO0x2,%ebx

cd4: 8b 4508 mov 0x8(%ebp),%eax

cd7: 89442404 mov %eax,0x4(%esp)

cdb: 8b 4508 mov 0x8(%ebp),%eax

cde: 890424 mov %eax,(%esp)
Code machine Assembleur

Seul langage compris par le processeur
Codage hexadécimal des instructions
— Quasi inutilisable pour programmeur

PLAN

LIFAPI : programme de I'UE

LIFAPI / Culture Numérique / Autres UE informatiques
Le fonctionnement interne d’un ordinateur

La programmation

Le langage algorithmique

La syntaxe algorithmique

Quelques exemples complets

POURQUOI PROGRAMMER

Programmation existe partout
o Réveil

o Digicode

o Téléphone

o Tablette ...

Besoin d’effectuer des nouvelles taches

=>» besoin d’écrire des programmes nouveaux
o Par non informaticien : formalisation en francais
o Par informaticien : langage compréhensible par lui et la machine

UN PROGRAMMIE C EST QUOI ?

Un programme, c'est tout ce qui fonctionne sur votre ordinateur, par exemple :
o Un jeu vidéo (Fortnite, Call of Duty, ...)
o Un lecteur vidéo (comme VLC par exemple ou Youtube),
°c Ou méme un truc tout simple comme OpenOffice, Mozilla Firefox.
o Et le plus important le systeme d’exploitation (Windows, Android ...)

Sans programme pas d’application sur votre ordinateur !

LA NAISSANCE DE LA PROGRAMMATION

o Premiere machine programmable
métier a tisser de Jacquard en 1801
(suite de cartons perforés avec le motif a
reproduire lors du tissage).
Repris par IBM bien plus tard !

o En 1936, création de l'ordinateur
programmable : la machine de Turing

o premier calculateur universel
programmable

h I

* invention des concepts et des termes de
programmation et de programme.

LE LANGAGE DE PROGRAMMATION

Langage commun entre
° Le programmeur
o Le processeur : traduit en assembleur puis en code machine

Grande diversité
o Langage C/C++ (LIFAPI, ce semestre)
Python (NSI au lycée pour certains)
Scheme / Racket (LIFAPR, prochain semestre)

Java, Matlab, Mathematica, macros word / excel (écrites en Visual Basic for
Applications VBA)...

(¢]

(¢]

o

o

Plus de 700 langages de programmation !!

DU PROBLEME AU PROGRAMME

Besoins exprimés en francais (cahier des charges)
Traduction dans un langage "universel" = algorithmique
Traduction de l'algorithme en programme C

Puis en code assembleur

Puis en code machine compréhensible par le processeur

Besoins | Algorithme | Programme C | Assembleur _

Non informaticien informaticien processeur

PLAN

LIFAPI : programme de I'UE

LIFAPI / Culture Numérique / Autres UE informatiques
Le fonctionnement interne d’un ordinateur

La programmation

Le langage algorithmique

La syntaxe algorithmique

Quelques exemples complets

" ALGORITHME AU QUOTIDIEN

L'algorithmique intervient dans la vie de tous les jours
o Une recette de cuisine :

o des entrées (les ingrédients, le matériel utilisé) ;
o des instructions élémentaires simples, dont I'exécution amene au résultat voulu ;
o un résultat : le plat préparé.

o Le tissage, surtout tel gqu'il a été automatisé par le métier Jacquard est une
activité que I'on peut dire algorithmique.

o Un casse-téte, tel le Rubik's Cube, peut étre résolu de facon systématique
par un algorithme qui mécanise sa résolution.

° En sport, I'exécution de séquences répondant a des finalités d'attaque, de
défense, de progression.

ALGORITHME : DEFINITION

Un algorithme est une méthode

o Suffisamment générale pour permettre de traiter toute une classe de
problemes

o Combinant des opérations suffisamment simples pour étre effectuées par
une machine

Pour un probleme donné, il peut y avoir plusieurs algorithmes ou aucun

ALGORITHME : PROPRIETES

Lisible : I'algorithme doit étre compréhensible méme par un non-
informaticien

Haut niveau : doit pouvoir étre traduit en n'importe quel langage de
programmation=>» ne pas faire appel a des notions techniques relatives
a un programme particulier ou bien a un systeme d'exploitation donné

Précis / non ambigu : chaque élément de I'algorithme ne doit pas
porter a confusion

Concis : ne doit pas dépasser une page, sinon décomposer le probleme
en plusieurs sous-problemes

Structuré : un algorithme doit étre composé de différentes parties
facilement identifiables

ALGORITHME : METHODOLOGIE

Trois étapes caractérisent la résolution d'un probleme
1. comprendre la nature du probleme posé
et préciser les données fournies
("entrées" ou "input” en anglais)
2. préciser les résultats que I'on désire obtenir
("sorties" ou "output” en anglais)
3. déterminer le processus de transformation
des données en résultats.

ALGORITHMIQUE / LANGAGE PROGRAMMATION

Un algorithme est
o Une suite d’instructions élémentaires

décrites dans un langage universel exécutées de maniere séquentielle
o Indépendant du langage de programmation

Un langage de programmation
o Est un langage commun entre machine et programmeur
o Implante ou réalise un algorithme

PLAN

LIFAPI : programme de I'UE

LIFAPI / Culture Numérique / Autres UE informatiques
Le fonctionnement interne d’un ordinateur

La programmation

Le langage algorithmique

La syntaxe algorithmique

Quelques exemples complets

L'INSTRUCTION, LA SEQUENCE

Instruction
o Etape dans un programme informatique / brique de base

> Dicte a l'ordinateur |'action nécessaire qu'il doit effectuer avant de passer a
I'instruction suivante.

o Opération élémentaire
o Comprise et exécutée par le processeur

Séquence / suite d’instructions
> Suite bloquée d'instructions qui sont exécutées dans l'ordre ou elles sont écrites,
dans toutes les circonstances du traitement.

o Délimitée par Début et Fin (= bloc)

Début
instructionl
instruction2
instructionN
Fin

LA VARIABLE / LA CONSTANTE

Une variable
o nom utilisé dans un programme pour faire référence a une donnée manipulée
par programme

o peut contenir un entier, un réel, un caractere...
° associe un nom ou symbole a une valeur
° sa valeur peut éventuellement varier au cours du temps

Une constante
o nom utilisé pour faire référence a une valeur permanente (dont la valeur ne
change pas au cours du programme).

=> Pl =3.14159...

TYPE DES DONNEES

Définit les valeurs que peut prendre une donnée, ainsi que les
opérateurs qui peuvent lui étre appliqués

Types de base utilisés en algorithmique

(7 () III
« ee

Caractere : ‘'c’, ‘@, ‘-,
Entier : 30-3-789
Réel : 0 3,345 -7,678
Booléen : VRAI / FAUX

o

(¢]

o

(¢]

DECLARATION DES VARIABLES

La declaration permet de donner un nom a la variable
o Eventuellement de lui associer un type,

o Ainsi qu'une valeur initiale.

Exemples
° indice : entier

permettra de déclarer une variable "indice" de type entier
o Est_majuscule : booléen
permettra de déclarer une variable booléenne

La variable doit avoir un nom aussi évocateur que possible de son contenu

AFFECTATION

Attribue une valeur a une variable
Symbolisée en algorithmique par le symbole " <"

La valeur peut étre
° une valeur numérique

a < 2 (la variable a contient la valeur 2)
o le résultat d’'une expression

variable < expression

varl < a + 2*racine(15)

OPERATIONS SUR LES VARIABLES

Affectation : variable €< expression

La variable contient la valeur de I'expression

Cette valeur est conservée jusqu'a la prochaine affectation

Une variable peut apparaitre dans une expression,
elle sera remplacée par la valeur qu'elle contient au moment du calcul
de I'expression

CONTENU D'UNE VARIABLE

Pour pouvoir stocker la valeur et vérifier qu'une variable est correctement utilisée,
une variable a un type.

Un type est

> un domaine de valeurs (ensemble des valeurs possibles)
o Entiers, réels
° Booléen
° caracteres

o un ensemble d'opérations pour manipuler ces valeurs
o Addition, soustraction, multiplication ...
o Opérations logiques
o Concaténation, substitution ...

ENTREES / SORTIES

Assurent la communication programmeur / machine

Données du probléeme (utilisateur = machine)

Lire (valeur) ou Saisir (Valeur)

Résultats affichés a I’écran (machine = utilisateur)

Afficher (valeur) ou Ecrire (Valeur)

STRUCTURES DE CONTROLE

J Contrélent I'ordre dans lequel seront effectuées les
instructions

] 2 catégories
[Les structures de choix
[Les structures de boucles

CONDITIONNELLE

Si condition alors

instruction(s) InstrLIJction 1 Instrucltion 2
Sinon
. . Instruction 3
instruction(s) T
FinSi

Condition = expression booléenne (vrai / faux)
o Elémentaire

o Complexe (conjonction, négation ou disjonction de conditions élémentaires
et/ou complexes)

Partie sinon facultative : il n’y a pas nécessairement de traitement a
effectuer.

CONDITIONNELLE : EXEMPLES

Les opérateurs de comparaison sont
o = =» égal a...

=¥ différent de...

< =» strictement plus petit que...

O Exemple 1 sans "sinon"

o

Si (A>2) alors
B&A*3
FinSi

o

o

> =» strictement plus grand que...

(¢]

< =>» plus petit ou égal a...

o

O Exemple 2 avec "sinon" > =» plus grand ou égal a...

Expression booléenne
Si ((A<10) et (B>racine(A*5))) alors

B&A*3 3 opérateurs logiques ET, OU, NON
A< A+B
Sinon
A< A+2
BEA*B
FinSi

CONDITION /TEST

J Apparait dans les "Si" et les "Tant Que"

[Variable booléenne qui renvoie comme valeur VRAI ou FAUX

(J Combinaison de conditions
= conjonction (ET)
= disjonction (OU)
= négation (NON)

[Tables de vérité

X Y NetY Y Y Xouy

v v W Vv W WV X Non X
v F F v F v v F

F v F F v v F W

F F F F F F

CONDITIONNELLE : IMBRICATION

[gérer des décisions complexes ou multiniveaux
 placer un test conditionnel a I'intérieur d’un autre
permet de

Q raffiner les choix
Q) réagir a plusieurs niveaux

O Pourquoi utiliser I'imbrication ?
- Pour éviter les répétitions.
- Pour organiser la logique de maniere hiérarchique.
- Pour gérer des cas complexes sans tout mélanger.

CONDITIONNELLE : IMBRICATION

si temperature > 25 alors
si budget 2 100 alors

afficher "On part a la plage !"
sinon
afficher "On fait un pique-nique au parc."
fin si
sinon
afficher "On reste a la maison avec un bon film.«

fin si

STRUCTURE CONDITIONNELLE SELON

= [orsqu’on a plusieurs niveaux d’imbrication
=aussi appelée a choix multiple ou sélective

= sélectionne entre plusieurs choix a la fois, et non entre deux choix
alternatifs (le cas de la structure SI).

SELON (sélecteur) FAIRE
Cas <valeurs-1> : <suite d'action (s)-1>
[Cas <valeur-2> : <suite d'action (s)-2>

..........]

[Autrement : <suite d'action (s)-n>]
FIN SELON

Le sélecteur est une variable de type entier ou caractere

STRUCTURE CONDITIONNELLE SELON : EXEMPLE

Afficher la couleur en fonction d’un entier = 1: rouge, 2 : orangé, 3 : jaune, 4
:vert, 5 : bleu, 6 : indigo et 7 : violet.

Selon couleur Faire
Cas 1 : afficher(" rouge")
Cas 2 : afficher(" orangé")
Cas 3 : afficher(" jaune")
Cas 4 : afficher(" vert")
(
(

Cas 5 : afficher(" bleu")
Cas 6 : afficher(" indigo ")
Cas 7 : afficher(" violet")

Autrement : afficher ("Couleur inconnue")

Fin selon

STRUCTURE DE CONTROLE ITERATIVE

o Une boucle ou itération est une structure de controéle destinée a exécuter une
portion de code plusieurs fois de suite

o Les langages proposent en général plusieurs types de boucles :
* boucle a pré-condition : la condition est vérifiée avant la premiere boucle
* boucle a post-condition : la condition est vérifiée apres la premiere boucle
* boucle a condition d'arrét : la condition est vérifiée au milieu de la boucle

* boucle itérative : un compteur est utilisé pour compter le nombre
d'itérations

* boucle de parcours : la boucle est exécutée sur chacun des éléments d'une

liste
Test vran>"2” Instruction 1
A . A
oul non
| Instruction 1 I @
R — | oui
Instruction 2 I Instruction 2

ITERATION : BOUCLE CONDITIONNELLE

Permet de réitérer une instruction

ou une suite d’instructions
jusqu’a ce qu’une condition ne soit plus vraie

Condition évaluée avant d’effectuer les instructions
TantQue condition faire

instruction(s)

FinTantQue

BOUCLE CONDITIONNELLE : EXEMPLE

i< 1

TantQue i<10 faire
afficher(i)
i € i+l

FinTantQue

Instruction qui modifie la condition
pour éviter les boucles infinies

ITERATIVE : BOUCLE CONDITIONNELLE

Autre construction
Condition évaluée apres avoir effectué les instructions
Faire

instruction(s)

TantQue condition

Les instructions sont effectuées au moins une fois

BOUCLE CONDITIONNELLE : EXEMPLE

i<1
Faire
afficher(i)
i € i+l
Tant que i< 10

instruction qui modifie la condition pour éviter les boucles infinies

BOUCLE INCONDITIONNELLE : POUR

Cas particulier du TantQue

Pour compteur allant de ... a ... par pas de ... faire
instruction(s)

FinPour

Permet de répéter un nombre connu de fois
une suite d’instructions

BOUCLE INCONDITIONNELLE : EXEMPLES

Compterde 1 a 10 (incrementation)
Pouriallant de 1 a 10 par pas de 1 faire

afficher(i) Résultat affiché ?
FinPour

Compter de 10 a 1 (décrémentation)
Pour i allant de 10 a 1 par pas de -1 faire

afficher(i) Résultat affiché ?
FinPour

Compter de (deux en deux)
Pour i allant de 0 a 10 par pas de 2 faire

afficher(i) Résultat affiché ?
FinPour

BOUCLE INCONDITIONNELLE : PARTICULARITES

J Break = Interrompt immédiatement la boucle
pouride1a 10 faire
siimod 2 =0 alors
afficher "Premier nombre pair: " +i
break
fin si
fin pour

(] Continue =» Passe directement a I'itération suivante
pouride1a 10 faire
siimod 3 =0alors
continue
fin si
afficher i
fin pour

O Inconvénients
U Le flux logique devient plus difficile a suivre

U Risque de masquer des erreurs
U Contredit la logique structurée
U Difficile a tester et a maintenir

PLAN

LIFAPI : programme de I'UE

LIFAPI / Culture Numérique / Autres UE informatiques
Le fonctionnement interne d’un ordinateur

La programmation

Le langage algorithmique

La syntaxe algorithmique

Un exemple complet

EXEMPLE : CALCUL DU PRODUIT DE 2 ENTIERS

On veut calculer le produit de a par b deux entiers et stocker le résultat dans une
variable C

Version 1 =» en utilisant 'opérateur "*"

Début
a,b,c : entiers déclaration des variables
afficher ("Donnez deux entiers") entrées / sorties
saisir (a)
saisir (b)
c <€ a*b stockage du résultat

afficher ("Le produit de", a, "par", b, "est: ", c)

Fin

EXEMPLE : CALCUL DU PRODUIT

Dans cet algorithme, on n’utilisera pas la multiplication !!

Raisonnement:5*4=5+5+45+5
— /

Y
4 fois

Généralisation : a * b = a+a+...+a (b fois)

Formalisation
tant gu’on n’a pas ajouté b fois a,
on ajoute a a la somme

EXEMPLE : CALCUL DU PRODUIT

Début
a,b,c : entiers déclaration des variables
afficher ("Donnez deux entiers") entrées / sorties
saisir (a)
saisir (b)
c< O initialisation a 0 du résultat
TantQue b # O faire
c<c+a incrémentation
b&b-1 modification de la condition
FinTantQue
afficher ("Le produit de", a, "par", b, "est: ", c)
Fin

EXEMPLE 2 : CALCUL DU PRODUIT

Traduction algorithmique avec un "pour"

Début
a,b,c,i: entiers déclaration des variables
afficher ("Donnez deux entiers") entrées / sorties
saisir (a)
saisir (b)
c< O initialisation a 0 du résultat
Pouriallant de 1 a b par pas de 1 faire
c<c+a incrémentation
Fin Pour
afficher ("Le produit de", a, "par" , b, "est: ", c)
Fin

CONCLUSION

Tour d’horizon des notions de bases de l'algorithmique
o Variable : déclaration, type

° |Instruction : séquence, bloc
o Structures de controle
o Conditionnelles
o Conditionnelle =» si
o Sélecteur =» selon
> Boucles
o Conditionnelles =» Tant que
o Inconditionnelles =2 Pour

