
1

LIFAP1 – CC mi-parcours – Séquence 5
Contrôle Continu (Durée totale : 1h)

Jeudi 22 octobre 2020

Recommandations : Les documents, calculatrice, téléphone portable sont
interdits. La qualité de l’écriture et de la présentation seront prises en
compte dans la note finale. Vous veillerez à respecter les notations et les
règles d’écriture des algorithmes vues en cours et en TD. Un soin tout
particulier devra être apporté à l’écriture des entêtes des différents sous-
programmes.

Partie A – Algorithmique

1. Ecrire l’algorithme d’un sous-programme saisie_valeur qui demande à l’utilisateur une
valeur strictement supérieure à 3 et impaire et la retourne. On recommencera la saisie tant
que la valeur proposée ne respecte pas ces contraintes.

 3 points
fonction saisie_valeur() : entier
préconditions : aucun
donnée : aucune entête : 1 point
donnée / résultat : aucune
résultat : entier
description : saisit et retourne une valeur strictement supérieure à 3 et impaire
variable locale : val : entier

début
 faire
 afficher (« Donnez un entier paire strictement positif »)
 saisir (val) saisie : 0,5 point
 tant que ((val<=3) ou (val modulo 2 = 0)) boucle : 1 point
 retourner val retour : 0.5 pt
fin

2. Ecrire l’algorithme d’un sous-programme dessine_triangle qui
permet d’afficher le motif ci-contre. La hauteur (une valeur supérieure
à 3 et impaire) ainsi que les caractères seront passés en paramètres
du sous-programme.
On pourra utiliser afficher(saut de ligne) pour passer à la
ligne suivante. Dans l’exemple ci-contre on aura :
dessine_triangle(5,’*’,’-’)

NOM :

CORRIGE et BAREME

PRENOM :

………………………………………………………

Numéro Etudiant :

………………………………………………………

*
-

2

 4.5 points

procédure dessine_triangle (h : entier, c1 : caractère, c2 : caractère)
préconditions : aucun
donnée : h, c1, c2 entête : 1 point
donnée / résultat : aucune
description : affiche le motif
variable locale : i, j : entier

début
 pour i allant de 1 à h par pas de 1 faire
 pour j allant de 1 à 2*i-1 par pas de 1 faire double boucle : 1.5 points
 si (i =h) ou (j=1) ou (j=2*i-1) alors test : 1.5 points
 afficher (c1)
 sinon afficher (c2) affichage : 0.5 point
 fin si
 fin pour
 affiche (saut de ligne)
 fin pour
fin

3. En utilisant les sous-programmes écrits en 1- et 2-, écrire l’algorithme du programme principal
qui affiche un triangle avec des caractéristiques choisies par l’utilisateur.

Programme principal 2.5 points
Variables :
 hauteur : entier
 car_pair, car_impair : caractères
début
 hauteur  saisie_valeur () appel saisie_valeur : 1 point
 afficher ("Donnez deux caractères")
 saisir (car_pair, car_impair) saisie des caractères : 0.5 point
 dessine_triangle (hauteur,car_impaire, car_pair) appel dessin : 1 point
fin

Partie B – Langage C/C++

On souhaite écrire une version simplifiée du 421… L’ordinateur tirera aléatoirement 3 valeurs et
recommencera l’opération tant que la combinaison est différente de 4 / 2 / 1.

1- Ecrire en langage C/C++ un sous-programme combinaison_des permettant de tirer
aléatoirement 3 valeurs appelées de1, de2, et de3 comprises entre 1 et 6 inclus. Ces valeurs
ne seront pas affichées dans le sous-programme mais "renvoyées" au programme principal.

3

On utilisera la fonction C/C++ rand() qui retourne une valeur aléatoire comprise entre 0 et
une constante RANDMAX très grande.

 2 points au total

void combinaison_des (int & de1, int &de2, int &de3) entête 1.5 points
{
 de1=rand()%6 +1;
 de2=rand()%6 +1; utilisation du rand : 0.5 point
 de3=rand()%6 +1;
}

2- Ecrire en langage C/C++ un sous-programme tri_des qui à partir des 3 entiers passés en
paramètres les trie par ordre décroissant.
Exemple : si de1=4 de2=5 de3=1

on aura le résultat du tri suivant : d1=5 de2=4 de3=1

 3 points au total
void ordonne_des (int & de1, int &de2, int &de3) entete 1.5 points
{int tampon;
 if (de1<de2)
 {
 tampon = de1;
 de1 = de2;
 de2 = tampon;
 }
 if (de1<de3) tri 1.5 points
 {
 tampon = de1;
 de1 = de3;
 de3 = tampon;
 }
 /* trier B et C */
 if (de2<de3)
 {
 tampon = de2;
 de2 = de3;
 de3 = tampon;
 }
}

4

3- Ecrire en langage C/C++ une fonction booléenne verifie_combinaison qui renverra
vrai si la combinaison des 3 dés fournis en paramètres est 4, 2, et 1, faux sinon.

 1.5 points au total

bool combinaison_gagnante (int de1, int de2, int de3) entête 0.5 point
{
 return ((de1==4)&&(de2==2)&&(de3==1)); test + return : 1 point
}

4- Ecrire en langage C/C++ le programme principal permettant, en utilisant les 3 sous-programmes
précédents, d’afficher le nombre de tirages nécessaires pour parvenir à la combinaison 4, 2, et 1.

 4 points au total

int main (void)
{
 int v1,v2,v3;
 int nb_coups=0; déclaration + initialisation : 1 point
 srand(time(NULL));
 do
 { incrémentation 0.5 point
 nb_coups++;
 combinaison_des(v1,v2,v3);
 ordonne_des(v1,v2,v3); appels : 1 point
 } while (!combinaison_gagnante(v1,v2,v3)); boucle 1 point
 cout<<"421 en "<<nb_coups<<" coups "<<endl; affichage 0.5 point

return 0;
}

