LIFAP1 — Partie A - Algorithmique NOM :

Controle Continu Terminal (Durée totale : 2h)
Lundi 14 décembre 2020

Recommandations : Les documents, calculatrice, téléphone portable sont
interdits. La qualité de I’écriture et de la présentation SErONt PriSES €N |oeerieressinssssssssesssssenseees
compte dans la note finale. Vous veillerez a respecter les notations et les
régles d’écriture des algorithmes vues en cours et en TD. Un soin tout | Numéro Etudiant:
particulier devra étre apporté a [’écriture des entétes des différents sous-
programmes. | s

Exercice 1 : Tri par insertion ou tri du joueur de cartes

On souhaite écrire un programme permettant de trier un tableau d’entiers. Chacun des éléments de ce
tableau sera inséré dans un nouveau tableau résultat de maniére a ce que les éléments restent triés tout au
long de I'exécution de l'algorithme. La taille maximale des tableaux notée MAX est une constante fixée a 50,
et le nombre de cases remplies a chaque étape noté tailleT sera passé en paramétre de tous les sous-
programmes.

Exemple : on dispose du tableau suivant

.1 | 4 [6 | 8 | 12 | | | | | |
On souhaite ajouter la valeur 11 dans le tableau,

1 | 4 | 6 | 8 | 11 [12 | | | | |
puis la valeur 3.

.1+ [3 [4 | 6 [8 [11 | 12 | | | |

1. Ecrire I'algorithme d’une fonction trouve pos qui a partir d’'un tableau d’entiers T (dontles tailleT
premiéres cases seront remplies) et d’'une valeur val retournera I'indice de la case dans laquelle val
doit étre insérée dans le tableau T afin de respecter I'ordre croissant. Dans I'exemple ci-dessus, pour la
valeur 11 on aurait l'indice 4 et pour la valeur 3 on obtiendrait I'indice 1 comme résultats.

Fonction trouve pos(tab : tableau [MAX] d’entiers, tailleT : entier,
val :entier) : entier
Préconditions : tailleT<=MAX
Données : tailleT, val
Données / résultat : tab
Resultat : entier
Description : retourne 1’indice de la position a laquelle val doit étre
insérée dans le tableau
Variables locales : 1 : entier
Début

1 €0

tant que (i<tailleT et tablil<val) faire

i€ i+ 1

fin tant que
retourner i
Fin

Pour insérer une valeur dans un tableau a un indice donné, il faut procéder a un décalage de toutes les
valeurs qui la suivent dans le tableau.
Exemple : pour insérer 3 dans ce tableau a la position 1

N N
N N S S N B S | | |
[l faut décaler toutes les valeurs a partir de la position 1 puis insérer la valeur a I'indice 1. Attention, tailleT

aura été incrémenté de 1 au final !l
L 1+ [3 [4 [6 [& [= [12 [[|]

2. Ecrire l'algorithme d’une procédure insere valeur qui a partir du tableau T contenant tailleT
valeurs, insére la valeur val a l'indice ind donnés en paramétres en suivant I'algorithme décrit

précédemment.
Procédure insere valeur (tab : tableau[MAX] d’entiers, tailleT entier,
val : entier, indice : entier)

Préconditions : tailleT<MAX, indice>=0, indice<=tailleT
Données : indice, wval

Données / résultat : tab, tailleT

Description : insere val dans tab a 1’indice indice
Variables locales : 1 : entier

Début

pour i allant de tailleT a indice-1 par pas de -1 faire
tab[i+1] € tabl[i]
fin pour
tabl[indice] € val
tailleT € tailleT + 1
Fin

3. En dtilisant les sous-programmes écrits en 1 et 2, écrire l'algorithme d’'une procédure
tri insertion qui construit un tableau T2 trié en insérant successivement chacun des éléments
du tableau T1. Les tableaux T1, T2 et la tailleT seront passés en parameétres.

Procédure tri insertion (Tl tableau[MAX] d’entiers, T2 [tableau [MAX]
d’entiers, tailleT : entier)

Préconditions : aucune
Données : tailleT
Données / résultat : T1,T2
Description : trie Tl en construisant T2
Variables locales : i, indice,nb : entier
Début

nb€<0

pour i allant de 0 a tailleT-1 par pas de 1 faire
indice € recherche pos(T2,nb,T1[i])
insere val tab(T2,nb,T1[i], indice)
fin pour
fin

Exercice 2 : Distance de Hamming

La distance de Hamming entre deux mots (chaines de caractéres) de méme longueur est égale au nombre
de lettres, a la méme position, qui différent.

Par exemple la distance de Hamming entre "rose" et "ruse" est de 1, entre "pomme" et "poire" est de 2.

1- Ecrire l'algorithme d’un sous-programme met _a la meme longueur qui a partir de deux chaines
de caractéres ch1 et ch2 passées en paramétres, tronque la chaine la plus longue a la longueur de
la plus courte.

Exemple si ch1 = "cestbientotlafin" et ch2 = "boncourage", le sous-programme devra transformer ch1
en "cestbiento". On pourra utiliser la fonction 1ongueur qui retourne la longueur d’une chaine.

Procédure met a la meme longueur (chl chaine[MAX] de caracteres, ch2
chaine [MAX] de caracteres)

Préconditions : aucune

Données : aucune

Données / résultat : chl,ch?2

Description : met chl et ch2 a la méme longueur
Variables locales : 1gl,lg2 : entier

Début

lgl € longueur (chl)
lg2 € longueur (ch2)
si (lgl>1lg2) alors
chl[1g2] € ‘\0’
sinon
ch2[1gl] € ‘\0’
fin si
fin

2- Ecrire I'algorithme d’une fonction distance hamming qui calcule la distance de Hamming entre
deux chaines de caractéeres de méme longueur ch1 et ch2 passées en paramétres.

fonction hamming (chl chaine[MAX] de caractéres, ch2 chaine[MAX] de
caractéres) : entier
Préconditions : aucune
Données : aucune
Données / résultat : chl,ch2
Résultat : entier
Description : calcule et retourne la distance de hamming
Variables locales : 1lg,i,distance : entier
Début
lg € longueur (chl)
distance € 0
pour i allant de 0 a 1lg-1 par pas de 1 faire
si (chl[i]!=ch2[i])alors
distance € distance +1
fin si
fin pour
retourner distance
Fin

3- Ecrire l'algorithme du programme principal qui demande a I'utilisateur 2 chaines de caractéres, et,
aprés les avoir mises a la méme longueur, calcule et affiche la distance de Hamming entre ces deux
chaines. Vous utiliserez les sous-programmes écrits dans les questions précédentes.

Début
chainel : chaine[MAX] de caracteres
chaine2?2 : chaine[MAX] de caracteéres
Afficher ("donnez 2 chaines ")

Saisir (chainel)

Saisir (chaine?2)

met a la meme longueur (chainel,chaine2);
Afficher (hamming(chainel,chaine?2)

Fin

