
1

LIFAP1 – Partie A - Algorithmique
Contrôle Continu Terminal (Durée totale : 2h)

Lundi 14 décembre 2020

Recommandations : Les documents, calculatrice, téléphone portable sont
interdits. La qualité de l’écriture et de la présentation seront prises en
compte dans la note finale. Vous veillerez à respecter les notations et les
règles d’écriture des algorithmes vues en cours et en TD. Un soin tout
particulier devra être apporté à l’écriture des entêtes des différents sous-
programmes.

Exercice 1 : Tri par insertion ou tri du joueur de cartes

On souhaite écrire un programme permettant de trier un tableau d’entiers. Chacun des éléments de ce
tableau sera inséré dans un nouveau tableau résultat de manière à ce que les éléments restent triés tout au
long de l’exécution de l’algorithme. La taille maximale des tableaux notée MAX est une constante fixée à 50,

et le nombre de cases remplies à chaque étape noté tailleT sera passé en paramètre de tous les sous-
programmes.

Exemple : on dispose du tableau suivant
1 4 6 8 12

On souhaite ajouter la valeur 11 dans le tableau,
1 4 6 8 11 12

puis la valeur 3.
1 3 4 6 8 11 12

1. Ecrire l’algorithme d’une fonction trouve_pos qui à partir d’un tableau d’entiers T (dont les tailleT

premières cases seront remplies) et d’une valeur val retournera l’indice de la case dans laquelle val

doit être insérée dans le tableau T afin de respecter l’ordre croissant. Dans l’exemple ci-dessus, pour la
valeur 11 on aurait l’indice 4 et pour la valeur 3 on obtiendrait l’indice 1 comme résultats.

Fonction trouve_pos(tab : tableau [MAX] d’entiers, tailleT : entier,
val :entier) : entier
Préconditions : tailleT<=MAX
Données : tailleT, val
Données / résultat : tab
Resultat : entier
Description : retourne l’indice de la position à laquelle val doit être
insérée dans le tableau
Variables locales : i : entier
Début
 i  0
 tant que (i<tailleT et tab[i]<val) faire
 i  i + 1
 fin tant que
 retourner i
 Fin

NOM :

………………………………………………………

PRENOM :

………………………………………………………

Numéro Etudiant :

………………………………………………………

2

Pour insérer une valeur dans un tableau à un indice donné, il faut procéder à un décalage de toutes les
valeurs qui la suivent dans le tableau.
Exemple : pour insérer 3 dans ce tableau à la position 1

1 4 6 8 11 12
Il faut décaler toutes les valeurs à partir de la position 1 puis insérer la valeur à l’indice 1. Attention, tailleT
aura été incrémenté de 1 au final !!

1 3 4 6 8 11 12

2. Ecrire l’algorithme d’une procédure insere_valeur qui à partir du tableau T contenant tailleT
valeurs, insère la valeur val à l’indice ind donnés en paramètres en suivant l’algorithme décrit
précédemment.

Procédure insere_valeur(tab : tableau[MAX] d’entiers, tailleT entier,
val : entier, indice : entier)
Préconditions : tailleT<MAX, indice>=0, indice<=tailleT
Données : indice, val
Données / résultat : tab, tailleT
Description : insere val dans tab à l’indice indice
Variables locales : i : entier
Début
 pour i allant de tailleT à indice-1 par pas de -1 faire
 tab[i+1]  tab[i]
 fin pour
 tab[indice]  val
 tailleT  tailleT + 1
Fin

3. En utilisant les sous-programmes écrits en 1 et 2, écrire l’algorithme d’une procédure
tri_insertion qui construit un tableau T2 trié en insérant successivement chacun des éléments

du tableau T1. Les tableaux T1, T2 et la tailleT seront passés en paramètres.

Procédure tri_insertion (T1 tableau[MAX] d’entiers, T2[tableau[MAX]
d’entiers, tailleT : entier)
Préconditions : aucune
Données : tailleT
Données / résultat : T1,T2
Description : trie T1 en construisant T2
Variables locales : i, indice,nb : entier
Début

nb0
 pour i allant de 0 à tailleT-1 par pas de 1 faire
 indice  recherche_pos(T2,nb,T1[i])
 insere_val_tab(T2,nb,T1[i], indice)
 fin pour
fin

3

Exercice 2 : Distance de Hamming

La distance de Hamming entre deux mots (chaines de caractères) de même longueur est égale au nombre
de lettres, à la même position, qui diffèrent.

Par exemple la distance de Hamming entre "rose" et "ruse" est de 1, entre "pomme" et "poire" est de 2.

1- Ecrire l’algorithme d’un sous-programme met_a_la_meme_longueur qui à partir de deux chaines

de caractères ch1 et ch2 passées en paramètres, tronque la chaine la plus longue à la longueur de
la plus courte.
Exemple si ch1 = "cestbientotlafin" et ch2 = "boncourage", le sous-programme devra transformer ch1
en "cestbiento". On pourra utiliser la fonction longueur qui retourne la longueur d’une chaine.

Procédure met_a_la_meme_longueur (ch1 chaine[MAX] de caractères, ch2
chaine[MAX] de caractères)
Préconditions : aucune
Données : aucune
Données / résultat : ch1,ch2
Description : met ch1 et ch2 à la même longueur
Variables locales : lg1,lg2 : entier
Début

lg1  longueur (ch1)
lg2  longueur (ch2)

 si (lg1>lg2) alors
 ch1[lg2]  ‘\0’

sinon
 ch2[lg1]  ‘\0’

fin si
fin

2- Ecrire l’algorithme d’une fonction distance_hamming qui calcule la distance de Hamming entre

deux chaines de caractères de même longueur ch1 et ch2 passées en paramètres.

fonction hamming (ch1 chaine[MAX] de caractères, ch2 chaine[MAX] de
caractères) : entier
Préconditions : aucune
Données : aucune
Données / résultat : ch1,ch2
Résultat : entier
Description : calcule et retourne la distance de hamming
Variables locales : lg,i,distance : entier
Début

 lg  longueur(ch1)
 distance  0
 pour i allant de 0 à lg-1 par pas de 1 faire
 si (ch1[i]!=ch2[i])alors
 distance  distance +1
 fin si
 fin pour
 retourner distance

Fin

4

3- Ecrire l’algorithme du programme principal qui demande à l’utilisateur 2 chaines de caractères, et,
après les avoir mises à la même longueur, calcule et affiche la distance de Hamming entre ces deux
chaines. Vous utiliserez les sous-programmes écrits dans les questions précédentes.

Début
 chaine1 : chaine[MAX] de caractères
 chaine2 : chaine[MAX] de caractères
 Afficher ("donnez 2 chaines ")

Saisir (chaine1)
Saisir (chaine2)
met_a_la_meme_longueur(chaine1,chaine2);

 Afficher (hamming(chaine1,chaine2)
Fin

